Newer
Older
DH_Apicture / src / views / voice / lamejs / lame.all.js
@zhangqy zhangqy on 29 Nov 517 KB first commit
  1. function lamejs() {
  2. function new_byte(count) {
  3. return new Int8Array(count);
  4. }
  5.  
  6. function new_short(count) {
  7. return new Int16Array(count);
  8. }
  9.  
  10. function new_int(count) {
  11. return new Int32Array(count);
  12. }
  13.  
  14. function new_float(count) {
  15. return new Float32Array(count);
  16. }
  17.  
  18. function new_double(count) {
  19. return new Float64Array(count);
  20. }
  21.  
  22. function new_float_n(args) {
  23. if (args.length == 1) {
  24. return new_float(args[0]);
  25. }
  26. var sz = args[0];
  27. args = args.slice(1);
  28. var A = [];
  29. for (var i = 0; i < sz; i++) {
  30. A.push(new_float_n(args));
  31. }
  32. return A;
  33. }
  34. function new_int_n(args) {
  35. if (args.length == 1) {
  36. return new_int(args[0]);
  37. }
  38. var sz = args[0];
  39. args = args.slice(1);
  40. var A = [];
  41. for (var i = 0; i < sz; i++) {
  42. A.push(new_int_n(args));
  43. }
  44. return A;
  45. }
  46.  
  47. function new_short_n(args) {
  48. if (args.length == 1) {
  49. return new_short(args[0]);
  50. }
  51. var sz = args[0];
  52. args = args.slice(1);
  53. var A = [];
  54. for (var i = 0; i < sz; i++) {
  55. A.push(new_short_n(args));
  56. }
  57. return A;
  58. }
  59.  
  60. function new_array_n(args) {
  61. if (args.length == 1) {
  62. return new Array(args[0]);
  63. }
  64. var sz = args[0];
  65. args = args.slice(1);
  66. var A = [];
  67. for (var i = 0; i < sz; i++) {
  68. A.push(new_array_n(args));
  69. }
  70. return A;
  71. }
  72.  
  73.  
  74. var Arrays = {};
  75.  
  76. Arrays.fill = function (a, fromIndex, toIndex, val) {
  77. if (arguments.length == 2) {
  78. for (var i = 0; i < a.length; i++) {
  79. a[i] = arguments[1];
  80. }
  81. } else {
  82. for (var i = fromIndex; i < toIndex; i++) {
  83. a[i] = val;
  84. }
  85. }
  86. };
  87.  
  88. var System = {};
  89.  
  90. System.arraycopy = function (src, srcPos, dest, destPos, length) {
  91. var srcEnd = srcPos + length;
  92. while (srcPos < srcEnd)
  93. dest[destPos++] = src[srcPos++];
  94. };
  95.  
  96.  
  97. var Util = {};
  98. Util.SQRT2 = 1.41421356237309504880;
  99. Util.FAST_LOG10 = function (x) {
  100. return Math.log10(x);
  101. };
  102.  
  103. Util.FAST_LOG10_X = function (x, y) {
  104. return Math.log10(x) * y;
  105. };
  106.  
  107. function ShortBlock(ordinal) {
  108. this.ordinal = ordinal;
  109. }
  110. /**
  111. * LAME may use them, even different block types for L/R.
  112. */
  113. ShortBlock.short_block_allowed = new ShortBlock(0);
  114. /**
  115. * LAME may use them, but always same block types in L/R.
  116. */
  117. ShortBlock.short_block_coupled = new ShortBlock(1);
  118. /**
  119. * LAME will not use short blocks, long blocks only.
  120. */
  121. ShortBlock.short_block_dispensed = new ShortBlock(2);
  122. /**
  123. * LAME will not use long blocks, short blocks only.
  124. */
  125. ShortBlock.short_block_forced = new ShortBlock(3);
  126.  
  127. var Float = {};
  128. Float.MAX_VALUE = 3.4028235e+38;
  129.  
  130. function VbrMode(ordinal) {
  131. this.ordinal = ordinal;
  132. }
  133. VbrMode.vbr_off = new VbrMode(0);
  134. VbrMode.vbr_mt = new VbrMode(1);
  135. VbrMode.vbr_rh = new VbrMode(2);
  136. VbrMode.vbr_abr = new VbrMode(3);
  137. VbrMode.vbr_mtrh = new VbrMode(4);
  138. VbrMode.vbr_default = VbrMode.vbr_mtrh;
  139.  
  140. var assert = function (x) {
  141. //console.assert(x);
  142. };
  143.  
  144. var module_exports = {
  145. "System": System,
  146. "VbrMode": VbrMode,
  147. "Float": Float,
  148. "ShortBlock": ShortBlock,
  149. "Util": Util,
  150. "Arrays": Arrays,
  151. "new_array_n": new_array_n,
  152. "new_byte": new_byte,
  153. "new_double": new_double,
  154. "new_float": new_float,
  155. "new_float_n": new_float_n,
  156. "new_int": new_int,
  157. "new_int_n": new_int_n,
  158. "new_short": new_short,
  159. "new_short_n": new_short_n,
  160. "assert": assert
  161. };
  162. //package mp3;
  163.  
  164. /* MPEG modes */
  165. function MPEGMode(ordinal) {
  166. var _ordinal = ordinal;
  167. this.ordinal = function () {
  168. return _ordinal;
  169. }
  170. }
  171.  
  172. MPEGMode.STEREO = new MPEGMode(0);
  173. MPEGMode.JOINT_STEREO = new MPEGMode(1);
  174. MPEGMode.DUAL_CHANNEL = new MPEGMode(2);
  175. MPEGMode.MONO = new MPEGMode(3);
  176. MPEGMode.NOT_SET = new MPEGMode(4);
  177.  
  178. function Version() {
  179.  
  180. /**
  181. * URL for the LAME website.
  182. */
  183. var LAME_URL = "http://www.mp3dev.org/";
  184.  
  185. /**
  186. * Major version number.
  187. */
  188. var LAME_MAJOR_VERSION = 3;
  189. /**
  190. * Minor version number.
  191. */
  192. var LAME_MINOR_VERSION = 98;
  193. /**
  194. * Patch level.
  195. */
  196. var LAME_PATCH_VERSION = 4;
  197.  
  198. /**
  199. * Major version number.
  200. */
  201. var PSY_MAJOR_VERSION = 0;
  202. /**
  203. * Minor version number.
  204. */
  205. var PSY_MINOR_VERSION = 93;
  206.  
  207. /**
  208. * A string which describes the version of LAME.
  209. *
  210. * @return string which describes the version of LAME
  211. */
  212. this.getLameVersion = function () {
  213. // primary to write screen reports
  214. return (LAME_MAJOR_VERSION + "." + LAME_MINOR_VERSION + "." + LAME_PATCH_VERSION);
  215. }
  216.  
  217. /**
  218. * The short version of the LAME version string.
  219. *
  220. * @return short version of the LAME version string
  221. */
  222. this.getLameShortVersion = function () {
  223. // Adding date and time to version string makes it harder for output
  224. // validation
  225. return (LAME_MAJOR_VERSION + "." + LAME_MINOR_VERSION + "." + LAME_PATCH_VERSION);
  226. }
  227.  
  228. /**
  229. * The shortest version of the LAME version string.
  230. *
  231. * @return shortest version of the LAME version string
  232. */
  233. this.getLameVeryShortVersion = function () {
  234. // Adding date and time to version string makes it harder for output
  235. return ("LAME" + LAME_MAJOR_VERSION + "." + LAME_MINOR_VERSION + "r");
  236. }
  237.  
  238. /**
  239. * String which describes the version of GPSYCHO
  240. *
  241. * @return string which describes the version of GPSYCHO
  242. */
  243. this.getPsyVersion = function () {
  244. return (PSY_MAJOR_VERSION + "." + PSY_MINOR_VERSION);
  245. }
  246.  
  247. /**
  248. * String which is a URL for the LAME website.
  249. *
  250. * @return string which is a URL for the LAME website
  251. */
  252. this.getLameUrl = function () {
  253. return LAME_URL;
  254. }
  255.  
  256. /**
  257. * Quite useless for a java version, however we are compatible ;-)
  258. *
  259. * @return "32bits"
  260. */
  261. this.getLameOsBitness = function () {
  262. return "32bits";
  263. }
  264.  
  265. }
  266.  
  267. /*
  268. * ReplayGainAnalysis - analyzes input samples and give the recommended dB change
  269. * Copyright (C) 2001 David Robinson and Glen Sawyer
  270. * Improvements and optimizations added by Frank Klemm, and by Marcel Muller
  271. *
  272. * This library is free software; you can redistribute it and/or
  273. * modify it under the terms of the GNU Lesser General Public
  274. * License as published by the Free Software Foundation; either
  275. * version 2.1 of the License, or (at your option) any later version.
  276. *
  277. * This library is distributed in the hope that it will be useful,
  278. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  279. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  280. * Lesser General Public License for more details.
  281. *
  282. * You should have received a copy of the GNU Lesser General Public
  283. * License along with this library; if not, write to the Free Software
  284. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  285. *
  286. * concept and filter values by David Robinson (David@Robinson.org)
  287. * -- blame him if you think the idea is flawed
  288. * original coding by Glen Sawyer (mp3gain@hotmail.com)
  289. * -- blame him if you think this runs too slowly, or the coding is otherwise flawed
  290. *
  291. * lots of code improvements by Frank Klemm ( http://www.uni-jena.de/~pfk/mpp/ )
  292. * -- credit him for all the _good_ programming ;)
  293. *
  294. *
  295. * For an explanation of the concepts and the basic algorithms involved, go to:
  296. * http://www.replaygain.org/
  297. */
  298.  
  299. /*
  300. * Here's the deal. Call
  301. *
  302. * InitGainAnalysis ( long samplefreq );
  303. *
  304. * to initialize everything. Call
  305. *
  306. * AnalyzeSamples ( var Float_t* left_samples,
  307. * var Float_t* right_samples,
  308. * size_t num_samples,
  309. * int num_channels );
  310. *
  311. * as many times as you want, with as many or as few samples as you want.
  312. * If mono, pass the sample buffer in through left_samples, leave
  313. * right_samples NULL, and make sure num_channels = 1.
  314. *
  315. * GetTitleGain()
  316. *
  317. * will return the recommended dB level change for all samples analyzed
  318. * SINCE THE LAST TIME you called GetTitleGain() OR InitGainAnalysis().
  319. *
  320. * GetAlbumGain()
  321. *
  322. * will return the recommended dB level change for all samples analyzed
  323. * since InitGainAnalysis() was called and finalized with GetTitleGain().
  324. *
  325. * Pseudo-code to process an album:
  326. *
  327. * Float_t l_samples [4096];
  328. * Float_t r_samples [4096];
  329. * size_t num_samples;
  330. * unsigned int num_songs;
  331. * unsigned int i;
  332. *
  333. * InitGainAnalysis ( 44100 );
  334. * for ( i = 1; i <= num_songs; i++ ) {
  335. * while ( ( num_samples = getSongSamples ( song[i], left_samples, right_samples ) ) > 0 )
  336. * AnalyzeSamples ( left_samples, right_samples, num_samples, 2 );
  337. * fprintf ("Recommended dB change for song %2d: %+6.2 dB\n", i, GetTitleGain() );
  338. * }
  339. * fprintf ("Recommended dB change for whole album: %+6.2 dB\n", GetAlbumGain() );
  340. */
  341.  
  342. /*
  343. * So here's the main source of potential code confusion:
  344. *
  345. * The filters applied to the incoming samples are IIR filters,
  346. * meaning they rely on up to <filter order> number of previous samples
  347. * AND up to <filter order> number of previous filtered samples.
  348. *
  349. * I set up the AnalyzeSamples routine to minimize memory usage and interface
  350. * complexity. The speed isn't compromised too much (I don't think), but the
  351. * internal complexity is higher than it should be for such a relatively
  352. * simple routine.
  353. *
  354. * Optimization/clarity suggestions are welcome.
  355. */
  356.  
  357. /**
  358. * Table entries per dB
  359. */
  360. GainAnalysis.STEPS_per_dB = 100.;
  361. /**
  362. * Table entries for 0...MAX_dB (normal max. values are 70...80 dB)
  363. */
  364. GainAnalysis.MAX_dB = 120.;
  365. GainAnalysis.GAIN_NOT_ENOUGH_SAMPLES = -24601;
  366. GainAnalysis.GAIN_ANALYSIS_ERROR = 0;
  367. GainAnalysis.GAIN_ANALYSIS_OK = 1;
  368. GainAnalysis.INIT_GAIN_ANALYSIS_ERROR = 0;
  369. GainAnalysis.INIT_GAIN_ANALYSIS_OK = 1;
  370.  
  371. GainAnalysis.YULE_ORDER = 10;
  372. GainAnalysis.MAX_ORDER = GainAnalysis.YULE_ORDER;
  373.  
  374. GainAnalysis.MAX_SAMP_FREQ = 48000;
  375. GainAnalysis.RMS_WINDOW_TIME_NUMERATOR = 1;
  376. GainAnalysis.RMS_WINDOW_TIME_DENOMINATOR = 20;
  377. GainAnalysis.MAX_SAMPLES_PER_WINDOW = ((GainAnalysis.MAX_SAMP_FREQ * GainAnalysis.RMS_WINDOW_TIME_NUMERATOR) / GainAnalysis.RMS_WINDOW_TIME_DENOMINATOR + 1);
  378.  
  379. function GainAnalysis() {
  380. /**
  381. * calibration value for 89dB
  382. */
  383. var PINK_REF = 64.82;
  384.  
  385. var YULE_ORDER = GainAnalysis.YULE_ORDER;
  386. /**
  387. * percentile which is louder than the proposed level
  388. */
  389. var RMS_PERCENTILE = 0.95;
  390. /**
  391. * maximum allowed sample frequency [Hz]
  392. */
  393. var MAX_SAMP_FREQ = GainAnalysis.MAX_SAMP_FREQ;
  394. var RMS_WINDOW_TIME_NUMERATOR = GainAnalysis.RMS_WINDOW_TIME_NUMERATOR;
  395. /**
  396. * numerator / denominator = time slice size [s]
  397. */
  398. var RMS_WINDOW_TIME_DENOMINATOR = GainAnalysis.RMS_WINDOW_TIME_DENOMINATOR;
  399. /**
  400. * max. Samples per Time slice
  401. */
  402. var MAX_SAMPLES_PER_WINDOW = GainAnalysis.MAX_SAMPLES_PER_WINDOW;
  403.  
  404.  
  405. var ABYule = [
  406. [0.03857599435200, -3.84664617118067, -0.02160367184185,
  407. 7.81501653005538, -0.00123395316851, -11.34170355132042,
  408. -0.00009291677959, 13.05504219327545, -0.01655260341619,
  409. -12.28759895145294, 0.02161526843274, 9.48293806319790,
  410. -0.02074045215285, -5.87257861775999, 0.00594298065125,
  411. 2.75465861874613, 0.00306428023191, -0.86984376593551,
  412. 0.00012025322027, 0.13919314567432, 0.00288463683916],
  413. [0.05418656406430, -3.47845948550071, -0.02911007808948,
  414. 6.36317777566148, -0.00848709379851, -8.54751527471874,
  415. -0.00851165645469, 9.47693607801280, -0.00834990904936,
  416. -8.81498681370155, 0.02245293253339, 6.85401540936998,
  417. -0.02596338512915, -4.39470996079559, 0.01624864962975,
  418. 2.19611684890774, -0.00240879051584, -0.75104302451432,
  419. 0.00674613682247, 0.13149317958808, -0.00187763777362],
  420. [0.15457299681924, -2.37898834973084, -0.09331049056315,
  421. 2.84868151156327, -0.06247880153653, -2.64577170229825,
  422. 0.02163541888798, 2.23697657451713, -0.05588393329856,
  423. -1.67148153367602, 0.04781476674921, 1.00595954808547,
  424. 0.00222312597743, -0.45953458054983, 0.03174092540049,
  425. 0.16378164858596, -0.01390589421898, -0.05032077717131,
  426. 0.00651420667831, 0.02347897407020, -0.00881362733839],
  427. [0.30296907319327, -1.61273165137247, -0.22613988682123,
  428. 1.07977492259970, -0.08587323730772, -0.25656257754070,
  429. 0.03282930172664, -0.16276719120440, -0.00915702933434,
  430. -0.22638893773906, -0.02364141202522, 0.39120800788284,
  431. -0.00584456039913, -0.22138138954925, 0.06276101321749,
  432. 0.04500235387352, -0.00000828086748, 0.02005851806501,
  433. 0.00205861885564, 0.00302439095741, -0.02950134983287],
  434. [0.33642304856132, -1.49858979367799, -0.25572241425570,
  435. 0.87350271418188, -0.11828570177555, 0.12205022308084,
  436. 0.11921148675203, -0.80774944671438, -0.07834489609479,
  437. 0.47854794562326, -0.00469977914380, -0.12453458140019,
  438. -0.00589500224440, -0.04067510197014, 0.05724228140351,
  439. 0.08333755284107, 0.00832043980773, -0.04237348025746,
  440. -0.01635381384540, 0.02977207319925, -0.01760176568150],
  441. [0.44915256608450, -0.62820619233671, -0.14351757464547,
  442. 0.29661783706366, -0.22784394429749, -0.37256372942400,
  443. -0.01419140100551, 0.00213767857124, 0.04078262797139,
  444. -0.42029820170918, -0.12398163381748, 0.22199650564824,
  445. 0.04097565135648, 0.00613424350682, 0.10478503600251,
  446. 0.06747620744683, -0.01863887810927, 0.05784820375801,
  447. -0.03193428438915, 0.03222754072173, 0.00541907748707],
  448. [0.56619470757641, -1.04800335126349, -0.75464456939302,
  449. 0.29156311971249, 0.16242137742230, -0.26806001042947,
  450. 0.16744243493672, 0.00819999645858, -0.18901604199609,
  451. 0.45054734505008, 0.30931782841830, -0.33032403314006,
  452. -0.27562961986224, 0.06739368333110, 0.00647310677246,
  453. -0.04784254229033, 0.08647503780351, 0.01639907836189,
  454. -0.03788984554840, 0.01807364323573, -0.00588215443421],
  455. [0.58100494960553, -0.51035327095184, -0.53174909058578,
  456. -0.31863563325245, -0.14289799034253, -0.20256413484477,
  457. 0.17520704835522, 0.14728154134330, 0.02377945217615,
  458. 0.38952639978999, 0.15558449135573, -0.23313271880868,
  459. -0.25344790059353, -0.05246019024463, 0.01628462406333,
  460. -0.02505961724053, 0.06920467763959, 0.02442357316099,
  461. -0.03721611395801, 0.01818801111503, -0.00749618797172],
  462. [0.53648789255105, -0.25049871956020, -0.42163034350696,
  463. -0.43193942311114, -0.00275953611929, -0.03424681017675,
  464. 0.04267842219415, -0.04678328784242, -0.10214864179676,
  465. 0.26408300200955, 0.14590772289388, 0.15113130533216,
  466. -0.02459864859345, -0.17556493366449, -0.11202315195388,
  467. -0.18823009262115, -0.04060034127000, 0.05477720428674,
  468. 0.04788665548180, 0.04704409688120, -0.02217936801134]];
  469.  
  470. var ABButter = [
  471. [0.98621192462708, -1.97223372919527, -1.97242384925416,
  472. 0.97261396931306, 0.98621192462708],
  473. [0.98500175787242, -1.96977855582618, -1.97000351574484,
  474. 0.97022847566350, 0.98500175787242],
  475. [0.97938932735214, -1.95835380975398, -1.95877865470428,
  476. 0.95920349965459, 0.97938932735214],
  477. [0.97531843204928, -1.95002759149878, -1.95063686409857,
  478. 0.95124613669835, 0.97531843204928],
  479. [0.97316523498161, -1.94561023566527, -1.94633046996323,
  480. 0.94705070426118, 0.97316523498161],
  481. [0.96454515552826, -1.92783286977036, -1.92909031105652,
  482. 0.93034775234268, 0.96454515552826],
  483. [0.96009142950541, -1.91858953033784, -1.92018285901082,
  484. 0.92177618768381, 0.96009142950541],
  485. [0.95856916599601, -1.91542108074780, -1.91713833199203,
  486. 0.91885558323625, 0.95856916599601],
  487. [0.94597685600279, -1.88903307939452, -1.89195371200558,
  488. 0.89487434461664, 0.94597685600279]];
  489.  
  490.  
  491. /**
  492. * When calling this procedure, make sure that ip[-order] and op[-order]
  493. * point to real data
  494. */
  495. //private void filterYule(final float[] input, int inputPos, float[] output,
  496. //int outputPos, int nSamples, final float[] kernel) {
  497. function filterYule(input, inputPos, output, outputPos, nSamples, kernel) {
  498.  
  499. while ((nSamples--) != 0) {
  500. /* 1e-10 is a hack to avoid slowdown because of denormals */
  501. output[outputPos] = 1e-10 + input[inputPos + 0] * kernel[0]
  502. - output[outputPos - 1] * kernel[1] + input[inputPos - 1]
  503. * kernel[2] - output[outputPos - 2] * kernel[3]
  504. + input[inputPos - 2] * kernel[4] - output[outputPos - 3]
  505. * kernel[5] + input[inputPos - 3] * kernel[6]
  506. - output[outputPos - 4] * kernel[7] + input[inputPos - 4]
  507. * kernel[8] - output[outputPos - 5] * kernel[9]
  508. + input[inputPos - 5] * kernel[10] - output[outputPos - 6]
  509. * kernel[11] + input[inputPos - 6] * kernel[12]
  510. - output[outputPos - 7] * kernel[13] + input[inputPos - 7]
  511. * kernel[14] - output[outputPos - 8] * kernel[15]
  512. + input[inputPos - 8] * kernel[16] - output[outputPos - 9]
  513. * kernel[17] + input[inputPos - 9] * kernel[18]
  514. - output[outputPos - 10] * kernel[19]
  515. + input[inputPos - 10] * kernel[20];
  516. ++outputPos;
  517. ++inputPos;
  518. }
  519. }
  520.  
  521. //private void filterButter(final float[] input, int inputPos,
  522. // float[] output, int outputPos, int nSamples, final float[] kernel) {
  523. function filterButter(input, inputPos, output, outputPos, nSamples, kernel) {
  524.  
  525. while ((nSamples--) != 0) {
  526. output[outputPos] = input[inputPos + 0] * kernel[0]
  527. - output[outputPos - 1] * kernel[1] + input[inputPos - 1]
  528. * kernel[2] - output[outputPos - 2] * kernel[3]
  529. + input[inputPos - 2] * kernel[4];
  530. ++outputPos;
  531. ++inputPos;
  532. }
  533. }
  534.  
  535. /**
  536. * @return INIT_GAIN_ANALYSIS_OK if successful, INIT_GAIN_ANALYSIS_ERROR if
  537. * not
  538. */
  539. function ResetSampleFrequency(rgData, samplefreq) {
  540. /* zero out initial values */
  541. for (var i = 0; i < MAX_ORDER; i++)
  542. rgData.linprebuf[i] = rgData.lstepbuf[i] = rgData.loutbuf[i] = rgData.rinprebuf[i] = rgData.rstepbuf[i] = rgData.routbuf[i] = 0.;
  543.  
  544. switch (0 | (samplefreq)) {
  545. case 48000:
  546. rgData.reqindex = 0;
  547. break;
  548. case 44100:
  549. rgData.reqindex = 1;
  550. break;
  551. case 32000:
  552. rgData.reqindex = 2;
  553. break;
  554. case 24000:
  555. rgData.reqindex = 3;
  556. break;
  557. case 22050:
  558. rgData.reqindex = 4;
  559. break;
  560. case 16000:
  561. rgData.reqindex = 5;
  562. break;
  563. case 12000:
  564. rgData.reqindex = 6;
  565. break;
  566. case 11025:
  567. rgData.reqindex = 7;
  568. break;
  569. case 8000:
  570. rgData.reqindex = 8;
  571. break;
  572. default:
  573. return INIT_GAIN_ANALYSIS_ERROR;
  574. }
  575.  
  576. rgData.sampleWindow = 0 | ((samplefreq * RMS_WINDOW_TIME_NUMERATOR
  577. + RMS_WINDOW_TIME_DENOMINATOR - 1) / RMS_WINDOW_TIME_DENOMINATOR);
  578.  
  579. rgData.lsum = 0.;
  580. rgData.rsum = 0.;
  581. rgData.totsamp = 0;
  582.  
  583. Arrays.ill(rgData.A, 0);
  584.  
  585. return INIT_GAIN_ANALYSIS_OK;
  586. }
  587.  
  588. this.InitGainAnalysis = function (rgData, samplefreq) {
  589. if (ResetSampleFrequency(rgData, samplefreq) != INIT_GAIN_ANALYSIS_OK) {
  590. return INIT_GAIN_ANALYSIS_ERROR;
  591. }
  592.  
  593. rgData.linpre = MAX_ORDER;
  594. rgData.rinpre = MAX_ORDER;
  595. rgData.lstep = MAX_ORDER;
  596. rgData.rstep = MAX_ORDER;
  597. rgData.lout = MAX_ORDER;
  598. rgData.rout = MAX_ORDER;
  599.  
  600. Arrays.fill(rgData.B, 0);
  601.  
  602. return INIT_GAIN_ANALYSIS_OK;
  603. };
  604.  
  605. /**
  606. * square
  607. */
  608. function fsqr(d) {
  609. return d * d;
  610. }
  611.  
  612. this.AnalyzeSamples = function (rgData, left_samples, left_samplesPos, right_samples, right_samplesPos, num_samples,
  613. num_channels) {
  614. var curleft;
  615. var curleftBase;
  616. var curright;
  617. var currightBase;
  618. var batchsamples;
  619. var cursamples;
  620. var cursamplepos;
  621.  
  622. if (num_samples == 0)
  623. return GAIN_ANALYSIS_OK;
  624.  
  625. cursamplepos = 0;
  626. batchsamples = num_samples;
  627.  
  628. switch (num_channels) {
  629. case 1:
  630. right_samples = left_samples;
  631. right_samplesPos = left_samplesPos;
  632. break;
  633. case 2:
  634. break;
  635. default:
  636. return GAIN_ANALYSIS_ERROR;
  637. }
  638.  
  639. if (num_samples < MAX_ORDER) {
  640. System.arraycopy(left_samples, left_samplesPos, rgData.linprebuf,
  641. MAX_ORDER, num_samples);
  642. System.arraycopy(right_samples, right_samplesPos, rgData.rinprebuf,
  643. MAX_ORDER, num_samples);
  644. } else {
  645. System.arraycopy(left_samples, left_samplesPos, rgData.linprebuf,
  646. MAX_ORDER, MAX_ORDER);
  647. System.arraycopy(right_samples, right_samplesPos, rgData.rinprebuf,
  648. MAX_ORDER, MAX_ORDER);
  649. }
  650.  
  651. while (batchsamples > 0) {
  652. cursamples = batchsamples > rgData.sampleWindow - rgData.totsamp ? rgData.sampleWindow
  653. - rgData.totsamp
  654. : batchsamples;
  655. if (cursamplepos < MAX_ORDER) {
  656. curleft = rgData.linpre + cursamplepos;
  657. curleftBase = rgData.linprebuf;
  658. curright = rgData.rinpre + cursamplepos;
  659. currightBase = rgData.rinprebuf;
  660. if (cursamples > MAX_ORDER - cursamplepos)
  661. cursamples = MAX_ORDER - cursamplepos;
  662. } else {
  663. curleft = left_samplesPos + cursamplepos;
  664. curleftBase = left_samples;
  665. curright = right_samplesPos + cursamplepos;
  666. currightBase = right_samples;
  667. }
  668.  
  669. filterYule(curleftBase, curleft, rgData.lstepbuf, rgData.lstep
  670. + rgData.totsamp, cursamples, ABYule[rgData.reqindex]);
  671. filterYule(currightBase, curright, rgData.rstepbuf, rgData.rstep
  672. + rgData.totsamp, cursamples, ABYule[rgData.reqindex]);
  673.  
  674. filterButter(rgData.lstepbuf, rgData.lstep + rgData.totsamp,
  675. rgData.loutbuf, rgData.lout + rgData.totsamp, cursamples,
  676. ABButter[rgData.reqindex]);
  677. filterButter(rgData.rstepbuf, rgData.rstep + rgData.totsamp,
  678. rgData.routbuf, rgData.rout + rgData.totsamp, cursamples,
  679. ABButter[rgData.reqindex]);
  680.  
  681. curleft = rgData.lout + rgData.totsamp;
  682. /* Get the squared values */
  683. curleftBase = rgData.loutbuf;
  684. curright = rgData.rout + rgData.totsamp;
  685. currightBase = rgData.routbuf;
  686.  
  687. var i = cursamples % 8;
  688. while ((i--) != 0) {
  689. rgData.lsum += fsqr(curleftBase[curleft++]);
  690. rgData.rsum += fsqr(currightBase[curright++]);
  691. }
  692. i = cursamples / 8;
  693. while ((i--) != 0) {
  694. rgData.lsum += fsqr(curleftBase[curleft + 0])
  695. + fsqr(curleftBase[curleft + 1])
  696. + fsqr(curleftBase[curleft + 2])
  697. + fsqr(curleftBase[curleft + 3])
  698. + fsqr(curleftBase[curleft + 4])
  699. + fsqr(curleftBase[curleft + 5])
  700. + fsqr(curleftBase[curleft + 6])
  701. + fsqr(curleftBase[curleft + 7]);
  702. curleft += 8;
  703. rgData.rsum += fsqr(currightBase[curright + 0])
  704. + fsqr(currightBase[curright + 1])
  705. + fsqr(currightBase[curright + 2])
  706. + fsqr(currightBase[curright + 3])
  707. + fsqr(currightBase[curright + 4])
  708. + fsqr(currightBase[curright + 5])
  709. + fsqr(currightBase[curright + 6])
  710. + fsqr(currightBase[curright + 7]);
  711. curright += 8;
  712. }
  713.  
  714. batchsamples -= cursamples;
  715. cursamplepos += cursamples;
  716. rgData.totsamp += cursamples;
  717. if (rgData.totsamp == rgData.sampleWindow) {
  718. /* Get the Root Mean Square (RMS) for this set of samples */
  719. var val = GainAnalysis.STEPS_per_dB
  720. * 10.
  721. * Math.log10((rgData.lsum + rgData.rsum)
  722. / rgData.totsamp * 0.5 + 1.e-37);
  723. var ival = (val <= 0) ? 0 : 0 | val;
  724. if (ival >= rgData.A.length)
  725. ival = rgData.A.length - 1;
  726. rgData.A[ival]++;
  727. rgData.lsum = rgData.rsum = 0.;
  728.  
  729. System.arraycopy(rgData.loutbuf, rgData.totsamp,
  730. rgData.loutbuf, 0, MAX_ORDER);
  731. System.arraycopy(rgData.routbuf, rgData.totsamp,
  732. rgData.routbuf, 0, MAX_ORDER);
  733. System.arraycopy(rgData.lstepbuf, rgData.totsamp,
  734. rgData.lstepbuf, 0, MAX_ORDER);
  735. System.arraycopy(rgData.rstepbuf, rgData.totsamp,
  736. rgData.rstepbuf, 0, MAX_ORDER);
  737. rgData.totsamp = 0;
  738. }
  739. if (rgData.totsamp > rgData.sampleWindow) {
  740. /*
  741. * somehow I really screwed up: Error in programming! Contact
  742. * author about totsamp > sampleWindow
  743. */
  744. return GAIN_ANALYSIS_ERROR;
  745. }
  746. }
  747. if (num_samples < MAX_ORDER) {
  748. System.arraycopy(rgData.linprebuf, num_samples, rgData.linprebuf,
  749. 0, MAX_ORDER - num_samples);
  750. System.arraycopy(rgData.rinprebuf, num_samples, rgData.rinprebuf,
  751. 0, MAX_ORDER - num_samples);
  752. System.arraycopy(left_samples, left_samplesPos, rgData.linprebuf,
  753. MAX_ORDER - num_samples, num_samples);
  754. System.arraycopy(right_samples, right_samplesPos, rgData.rinprebuf,
  755. MAX_ORDER - num_samples, num_samples);
  756. } else {
  757. System.arraycopy(left_samples, left_samplesPos + num_samples
  758. - MAX_ORDER, rgData.linprebuf, 0, MAX_ORDER);
  759. System.arraycopy(right_samples, right_samplesPos + num_samples
  760. - MAX_ORDER, rgData.rinprebuf, 0, MAX_ORDER);
  761. }
  762.  
  763. return GAIN_ANALYSIS_OK;
  764. };
  765.  
  766. function analyzeResult(Array, len) {
  767. var i;
  768.  
  769. var elems = 0;
  770. for (i = 0; i < len; i++)
  771. elems += Array[i];
  772. if (elems == 0)
  773. return GAIN_NOT_ENOUGH_SAMPLES;
  774.  
  775. var upper = 0 | Math.ceil(elems * (1. - RMS_PERCENTILE));
  776. for (i = len; i-- > 0;) {
  777. if ((upper -= Array[i]) <= 0)
  778. break;
  779. }
  780.  
  781. //return (float) ((float) PINK_REF - (float) i / (float) STEPS_per_dB);
  782. return (PINK_REF - i / GainAnalysis.STEPS_per_dB);
  783. }
  784.  
  785. this.GetTitleGain = function (rgData) {
  786. var retval = analyzeResult(rgData.A, rgData.A.length);
  787.  
  788. for (var i = 0; i < rgData.A.length; i++) {
  789. rgData.B[i] += rgData.A[i];
  790. rgData.A[i] = 0;
  791. }
  792.  
  793. for (var i = 0; i < MAX_ORDER; i++)
  794. rgData.linprebuf[i] = rgData.lstepbuf[i] = rgData.loutbuf[i] = rgData.rinprebuf[i] = rgData.rstepbuf[i] = rgData.routbuf[i] = 0.;
  795.  
  796. rgData.totsamp = 0;
  797. rgData.lsum = rgData.rsum = 0.;
  798. return retval;
  799. }
  800.  
  801. }
  802.  
  803.  
  804. function Presets() {
  805. function VBRPresets(qual, comp, compS,
  806. y, shThreshold, shThresholdS,
  807. adj, adjShort, lower,
  808. curve, sens, inter,
  809. joint, mod, fix) {
  810. this.vbr_q = qual;
  811. this.quant_comp = comp;
  812. this.quant_comp_s = compS;
  813. this.expY = y;
  814. this.st_lrm = shThreshold;
  815. this.st_s = shThresholdS;
  816. this.masking_adj = adj;
  817. this.masking_adj_short = adjShort;
  818. this.ath_lower = lower;
  819. this.ath_curve = curve;
  820. this.ath_sensitivity = sens;
  821. this.interch = inter;
  822. this.safejoint = joint;
  823. this.sfb21mod = mod;
  824. this.msfix = fix;
  825. }
  826.  
  827. function ABRPresets(kbps, comp, compS,
  828. joint, fix, shThreshold,
  829. shThresholdS, bass, sc,
  830. mask, lower, curve,
  831. interCh, sfScale) {
  832. this.quant_comp = comp;
  833. this.quant_comp_s = compS;
  834. this.safejoint = joint;
  835. this.nsmsfix = fix;
  836. this.st_lrm = shThreshold;
  837. this.st_s = shThresholdS;
  838. this.nsbass = bass;
  839. this.scale = sc;
  840. this.masking_adj = mask;
  841. this.ath_lower = lower;
  842. this.ath_curve = curve;
  843. this.interch = interCh;
  844. this.sfscale = sfScale;
  845. }
  846.  
  847. var lame;
  848.  
  849. this.setModules = function (_lame) {
  850. lame = _lame;
  851. };
  852.  
  853. /**
  854. * <PRE>
  855. * Switch mappings for VBR mode VBR_RH
  856. * vbr_q qcomp_l qcomp_s expY st_lrm st_s mask adj_l adj_s ath_lower ath_curve ath_sens interChR safejoint sfb21mod msfix
  857. * </PRE>
  858. */
  859. var vbr_old_switch_map = [
  860. new VBRPresets(0, 9, 9, 0, 5.20, 125.0, -4.2, -6.3, 4.8, 1, 0, 0, 2, 21, 0.97),
  861. new VBRPresets(1, 9, 9, 0, 5.30, 125.0, -3.6, -5.6, 4.5, 1.5, 0, 0, 2, 21, 1.35),
  862. new VBRPresets(2, 9, 9, 0, 5.60, 125.0, -2.2, -3.5, 2.8, 2, 0, 0, 2, 21, 1.49),
  863. new VBRPresets(3, 9, 9, 1, 5.80, 130.0, -1.8, -2.8, 2.6, 3, -4, 0, 2, 20, 1.64),
  864. new VBRPresets(4, 9, 9, 1, 6.00, 135.0, -0.7, -1.1, 1.1, 3.5, -8, 0, 2, 0, 1.79),
  865. new VBRPresets(5, 9, 9, 1, 6.40, 140.0, 0.5, 0.4, -7.5, 4, -12, 0.0002, 0, 0, 1.95),
  866. new VBRPresets(6, 9, 9, 1, 6.60, 145.0, 0.67, 0.65, -14.7, 6.5, -19, 0.0004, 0, 0, 2.30),
  867. new VBRPresets(7, 9, 9, 1, 6.60, 145.0, 0.8, 0.75, -19.7, 8, -22, 0.0006, 0, 0, 2.70),
  868. new VBRPresets(8, 9, 9, 1, 6.60, 145.0, 1.2, 1.15, -27.5, 10, -23, 0.0007, 0, 0, 0),
  869. new VBRPresets(9, 9, 9, 1, 6.60, 145.0, 1.6, 1.6, -36, 11, -25, 0.0008, 0, 0, 0),
  870. new VBRPresets(10, 9, 9, 1, 6.60, 145.0, 2.0, 2.0, -36, 12, -25, 0.0008, 0, 0, 0)
  871. ];
  872.  
  873. /**
  874. * <PRE>
  875. * vbr_q qcomp_l qcomp_s expY st_lrm st_s mask adj_l adj_s ath_lower ath_curve ath_sens interChR safejoint sfb21mod msfix
  876. * </PRE>
  877. */
  878. var vbr_psy_switch_map = [
  879. new VBRPresets(0, 9, 9, 0, 4.20, 25.0, -7.0, -4.0, 7.5, 1, 0, 0, 2, 26, 0.97),
  880. new VBRPresets(1, 9, 9, 0, 4.20, 25.0, -5.6, -3.6, 4.5, 1.5, 0, 0, 2, 21, 1.35),
  881. new VBRPresets(2, 9, 9, 0, 4.20, 25.0, -4.4, -1.8, 2, 2, 0, 0, 2, 18, 1.49),
  882. new VBRPresets(3, 9, 9, 1, 4.20, 25.0, -3.4, -1.25, 1.1, 3, -4, 0, 2, 15, 1.64),
  883. new VBRPresets(4, 9, 9, 1, 4.20, 25.0, -2.2, 0.1, 0, 3.5, -8, 0, 2, 0, 1.79),
  884. new VBRPresets(5, 9, 9, 1, 4.20, 25.0, -1.0, 1.65, -7.7, 4, -12, 0.0002, 0, 0, 1.95),
  885. new VBRPresets(6, 9, 9, 1, 4.20, 25.0, -0.0, 2.47, -7.7, 6.5, -19, 0.0004, 0, 0, 2),
  886. new VBRPresets(7, 9, 9, 1, 4.20, 25.0, 0.5, 2.0, -14.5, 8, -22, 0.0006, 0, 0, 2),
  887. new VBRPresets(8, 9, 9, 1, 4.20, 25.0, 1.0, 2.4, -22.0, 10, -23, 0.0007, 0, 0, 2),
  888. new VBRPresets(9, 9, 9, 1, 4.20, 25.0, 1.5, 2.95, -30.0, 11, -25, 0.0008, 0, 0, 2),
  889. new VBRPresets(10, 9, 9, 1, 4.20, 25.0, 2.0, 2.95, -36.0, 12, -30, 0.0008, 0, 0, 2)
  890. ];
  891.  
  892. function apply_vbr_preset(gfp, a, enforce) {
  893. var vbr_preset = gfp.VBR == VbrMode.vbr_rh ? vbr_old_switch_map
  894. : vbr_psy_switch_map;
  895.  
  896. var x = gfp.VBR_q_frac;
  897. var p = vbr_preset[a];
  898. var q = vbr_preset[a + 1];
  899. var set = p;
  900.  
  901. // NOOP(vbr_q);
  902. // NOOP(quant_comp);
  903. // NOOP(quant_comp_s);
  904. // NOOP(expY);
  905. p.st_lrm = p.st_lrm + x * (q.st_lrm - p.st_lrm);
  906. // LERP(st_lrm);
  907. p.st_s = p.st_s + x * (q.st_s - p.st_s);
  908. // LERP(st_s);
  909. p.masking_adj = p.masking_adj + x * (q.masking_adj - p.masking_adj);
  910. // LERP(masking_adj);
  911. p.masking_adj_short = p.masking_adj_short + x
  912. * (q.masking_adj_short - p.masking_adj_short);
  913. // LERP(masking_adj_short);
  914. p.ath_lower = p.ath_lower + x * (q.ath_lower - p.ath_lower);
  915. // LERP(ath_lower);
  916. p.ath_curve = p.ath_curve + x * (q.ath_curve - p.ath_curve);
  917. // LERP(ath_curve);
  918. p.ath_sensitivity = p.ath_sensitivity + x
  919. * (q.ath_sensitivity - p.ath_sensitivity);
  920. // LERP(ath_sensitivity);
  921. p.interch = p.interch + x * (q.interch - p.interch);
  922. // LERP(interch);
  923. // NOOP(safejoint);
  924. // NOOP(sfb21mod);
  925. p.msfix = p.msfix + x * (q.msfix - p.msfix);
  926. // LERP(msfix);
  927.  
  928. lame_set_VBR_q(gfp, set.vbr_q);
  929.  
  930. if (enforce != 0)
  931. gfp.quant_comp = set.quant_comp;
  932. else if (!(Math.abs(gfp.quant_comp - -1) > 0))
  933. gfp.quant_comp = set.quant_comp;
  934. // SET_OPTION(quant_comp, set.quant_comp, -1);
  935. if (enforce != 0)
  936. gfp.quant_comp_short = set.quant_comp_s;
  937. else if (!(Math.abs(gfp.quant_comp_short - -1) > 0))
  938. gfp.quant_comp_short = set.quant_comp_s;
  939. // SET_OPTION(quant_comp_short, set.quant_comp_s, -1);
  940. if (set.expY != 0) {
  941. gfp.experimentalY = set.expY != 0;
  942. }
  943. if (enforce != 0)
  944. gfp.internal_flags.nsPsy.attackthre = set.st_lrm;
  945. else if (!(Math.abs(gfp.internal_flags.nsPsy.attackthre - -1) > 0))
  946. gfp.internal_flags.nsPsy.attackthre = set.st_lrm;
  947. // SET_OPTION(short_threshold_lrm, set.st_lrm, -1);
  948. if (enforce != 0)
  949. gfp.internal_flags.nsPsy.attackthre_s = set.st_s;
  950. else if (!(Math.abs(gfp.internal_flags.nsPsy.attackthre_s - -1) > 0))
  951. gfp.internal_flags.nsPsy.attackthre_s = set.st_s;
  952. // SET_OPTION(short_threshold_s, set.st_s, -1);
  953. if (enforce != 0)
  954. gfp.maskingadjust = set.masking_adj;
  955. else if (!(Math.abs(gfp.maskingadjust - 0) > 0))
  956. gfp.maskingadjust = set.masking_adj;
  957. // SET_OPTION(maskingadjust, set.masking_adj, 0);
  958. if (enforce != 0)
  959. gfp.maskingadjust_short = set.masking_adj_short;
  960. else if (!(Math.abs(gfp.maskingadjust_short - 0) > 0))
  961. gfp.maskingadjust_short = set.masking_adj_short;
  962. // SET_OPTION(maskingadjust_short, set.masking_adj_short, 0);
  963. if (enforce != 0)
  964. gfp.ATHlower = -set.ath_lower / 10.0;
  965. else if (!(Math.abs((-gfp.ATHlower * 10.0) - 0) > 0))
  966. gfp.ATHlower = -set.ath_lower / 10.0;
  967. // SET_OPTION(ATHlower, set.ath_lower, 0);
  968. if (enforce != 0)
  969. gfp.ATHcurve = set.ath_curve;
  970. else if (!(Math.abs(gfp.ATHcurve - -1) > 0))
  971. gfp.ATHcurve = set.ath_curve;
  972. // SET_OPTION(ATHcurve, set.ath_curve, -1);
  973. if (enforce != 0)
  974. gfp.athaa_sensitivity = set.ath_sensitivity;
  975. else if (!(Math.abs(gfp.athaa_sensitivity - -1) > 0))
  976. gfp.athaa_sensitivity = set.ath_sensitivity;
  977. // SET_OPTION(athaa_sensitivity, set.ath_sensitivity, 0);
  978. if (set.interch > 0) {
  979. if (enforce != 0)
  980. gfp.interChRatio = set.interch;
  981. else if (!(Math.abs(gfp.interChRatio - -1) > 0))
  982. gfp.interChRatio = set.interch;
  983. // SET_OPTION(interChRatio, set.interch, -1);
  984. }
  985.  
  986. /* parameters for which there is no proper set/get interface */
  987. if (set.safejoint > 0) {
  988. gfp.exp_nspsytune = gfp.exp_nspsytune | set.safejoint;
  989. }
  990. if (set.sfb21mod > 0) {
  991. gfp.exp_nspsytune = gfp.exp_nspsytune | (set.sfb21mod << 20);
  992. }
  993. if (enforce != 0)
  994. gfp.msfix = set.msfix;
  995. else if (!(Math.abs(gfp.msfix - -1) > 0))
  996. gfp.msfix = set.msfix;
  997. // SET_OPTION(msfix, set.msfix, -1);
  998.  
  999. if (enforce == 0) {
  1000. gfp.VBR_q = a;
  1001. gfp.VBR_q_frac = x;
  1002. }
  1003. }
  1004.  
  1005. /**
  1006. * <PRE>
  1007. * Switch mappings for ABR mode
  1008. *
  1009. * kbps quant q_s safejoint nsmsfix st_lrm st_s ns-bass scale msk ath_lwr ath_curve interch , sfscale
  1010. * </PRE>
  1011. */
  1012. var abr_switch_map = [
  1013. new ABRPresets(8, 9, 9, 0, 0, 6.60, 145, 0, 0.95, 0, -30.0, 11, 0.0012, 1), /* 8, impossible to use in stereo */
  1014. new ABRPresets(16, 9, 9, 0, 0, 6.60, 145, 0, 0.95, 0, -25.0, 11, 0.0010, 1), /* 16 */
  1015. new ABRPresets(24, 9, 9, 0, 0, 6.60, 145, 0, 0.95, 0, -20.0, 11, 0.0010, 1), /* 24 */
  1016. new ABRPresets(32, 9, 9, 0, 0, 6.60, 145, 0, 0.95, 0, -15.0, 11, 0.0010, 1), /* 32 */
  1017. new ABRPresets(40, 9, 9, 0, 0, 6.60, 145, 0, 0.95, 0, -10.0, 11, 0.0009, 1), /* 40 */
  1018. new ABRPresets(48, 9, 9, 0, 0, 6.60, 145, 0, 0.95, 0, -10.0, 11, 0.0009, 1), /* 48 */
  1019. new ABRPresets(56, 9, 9, 0, 0, 6.60, 145, 0, 0.95, 0, -6.0, 11, 0.0008, 1), /* 56 */
  1020. new ABRPresets(64, 9, 9, 0, 0, 6.60, 145, 0, 0.95, 0, -2.0, 11, 0.0008, 1), /* 64 */
  1021. new ABRPresets(80, 9, 9, 0, 0, 6.60, 145, 0, 0.95, 0, .0, 8, 0.0007, 1), /* 80 */
  1022. new ABRPresets(96, 9, 9, 0, 2.50, 6.60, 145, 0, 0.95, 0, 1.0, 5.5, 0.0006, 1), /* 96 */
  1023. new ABRPresets(112, 9, 9, 0, 2.25, 6.60, 145, 0, 0.95, 0, 2.0, 4.5, 0.0005, 1), /* 112 */
  1024. new ABRPresets(128, 9, 9, 0, 1.95, 6.40, 140, 0, 0.95, 0, 3.0, 4, 0.0002, 1), /* 128 */
  1025. new ABRPresets(160, 9, 9, 1, 1.79, 6.00, 135, 0, 0.95, -2, 5.0, 3.5, 0, 1), /* 160 */
  1026. new ABRPresets(192, 9, 9, 1, 1.49, 5.60, 125, 0, 0.97, -4, 7.0, 3, 0, 0), /* 192 */
  1027. new ABRPresets(224, 9, 9, 1, 1.25, 5.20, 125, 0, 0.98, -6, 9.0, 2, 0, 0), /* 224 */
  1028. new ABRPresets(256, 9, 9, 1, 0.97, 5.20, 125, 0, 1.00, -8, 10.0, 1, 0, 0), /* 256 */
  1029. new ABRPresets(320, 9, 9, 1, 0.90, 5.20, 125, 0, 1.00, -10, 12.0, 0, 0, 0) /* 320 */
  1030. ];
  1031.  
  1032. function apply_abr_preset(gfp, preset, enforce) {
  1033. /* Variables for the ABR stuff */
  1034. var actual_bitrate = preset;
  1035.  
  1036. var r = lame.nearestBitrateFullIndex(preset);
  1037.  
  1038. gfp.VBR = VbrMode.vbr_abr;
  1039. gfp.VBR_mean_bitrate_kbps = actual_bitrate;
  1040. gfp.VBR_mean_bitrate_kbps = Math.min(gfp.VBR_mean_bitrate_kbps, 320);
  1041. gfp.VBR_mean_bitrate_kbps = Math.max(gfp.VBR_mean_bitrate_kbps, 8);
  1042. gfp.brate = gfp.VBR_mean_bitrate_kbps;
  1043. if (gfp.VBR_mean_bitrate_kbps > 320) {
  1044. gfp.disable_reservoir = true;
  1045. }
  1046.  
  1047. /* parameters for which there is no proper set/get interface */
  1048. if (abr_switch_map[r].safejoint > 0)
  1049. gfp.exp_nspsytune = gfp.exp_nspsytune | 2;
  1050. /* safejoint */
  1051.  
  1052. if (abr_switch_map[r].sfscale > 0) {
  1053. gfp.internal_flags.noise_shaping = 2;
  1054. }
  1055. /* ns-bass tweaks */
  1056. if (Math.abs(abr_switch_map[r].nsbass) > 0) {
  1057. var k = (int)(abr_switch_map[r].nsbass * 4);
  1058. if (k < 0)
  1059. k += 64;
  1060. gfp.exp_nspsytune = gfp.exp_nspsytune | (k << 2);
  1061. }
  1062.  
  1063. if (enforce != 0)
  1064. gfp.quant_comp = abr_switch_map[r].quant_comp;
  1065. else if (!(Math.abs(gfp.quant_comp - -1) > 0))
  1066. gfp.quant_comp = abr_switch_map[r].quant_comp;
  1067. // SET_OPTION(quant_comp, abr_switch_map[r].quant_comp, -1);
  1068. if (enforce != 0)
  1069. gfp.quant_comp_short = abr_switch_map[r].quant_comp_s;
  1070. else if (!(Math.abs(gfp.quant_comp_short - -1) > 0))
  1071. gfp.quant_comp_short = abr_switch_map[r].quant_comp_s;
  1072. // SET_OPTION(quant_comp_short, abr_switch_map[r].quant_comp_s, -1);
  1073.  
  1074. if (enforce != 0)
  1075. gfp.msfix = abr_switch_map[r].nsmsfix;
  1076. else if (!(Math.abs(gfp.msfix - -1) > 0))
  1077. gfp.msfix = abr_switch_map[r].nsmsfix;
  1078. // SET_OPTION(msfix, abr_switch_map[r].nsmsfix, -1);
  1079.  
  1080. if (enforce != 0)
  1081. gfp.internal_flags.nsPsy.attackthre = abr_switch_map[r].st_lrm;
  1082. else if (!(Math.abs(gfp.internal_flags.nsPsy.attackthre - -1) > 0))
  1083. gfp.internal_flags.nsPsy.attackthre = abr_switch_map[r].st_lrm;
  1084. // SET_OPTION(short_threshold_lrm, abr_switch_map[r].st_lrm, -1);
  1085. if (enforce != 0)
  1086. gfp.internal_flags.nsPsy.attackthre_s = abr_switch_map[r].st_s;
  1087. else if (!(Math.abs(gfp.internal_flags.nsPsy.attackthre_s - -1) > 0))
  1088. gfp.internal_flags.nsPsy.attackthre_s = abr_switch_map[r].st_s;
  1089. // SET_OPTION(short_threshold_s, abr_switch_map[r].st_s, -1);
  1090.  
  1091. /*
  1092. * ABR seems to have big problems with clipping, especially at low
  1093. * bitrates
  1094. */
  1095. /*
  1096. * so we compensate for that here by using a scale value depending on
  1097. * bitrate
  1098. */
  1099. if (enforce != 0)
  1100. gfp.scale = abr_switch_map[r].scale;
  1101. else if (!(Math.abs(gfp.scale - -1) > 0))
  1102. gfp.scale = abr_switch_map[r].scale;
  1103. // SET_OPTION(scale, abr_switch_map[r].scale, -1);
  1104.  
  1105. if (enforce != 0)
  1106. gfp.maskingadjust = abr_switch_map[r].masking_adj;
  1107. else if (!(Math.abs(gfp.maskingadjust - 0) > 0))
  1108. gfp.maskingadjust = abr_switch_map[r].masking_adj;
  1109. // SET_OPTION(maskingadjust, abr_switch_map[r].masking_adj, 0);
  1110. if (abr_switch_map[r].masking_adj > 0) {
  1111. if (enforce != 0)
  1112. gfp.maskingadjust_short = (abr_switch_map[r].masking_adj * .9);
  1113. else if (!(Math.abs(gfp.maskingadjust_short - 0) > 0))
  1114. gfp.maskingadjust_short = (abr_switch_map[r].masking_adj * .9);
  1115. // SET_OPTION(maskingadjust_short, abr_switch_map[r].masking_adj *
  1116. // .9, 0);
  1117. } else {
  1118. if (enforce != 0)
  1119. gfp.maskingadjust_short = (abr_switch_map[r].masking_adj * 1.1);
  1120. else if (!(Math.abs(gfp.maskingadjust_short - 0) > 0))
  1121. gfp.maskingadjust_short = (abr_switch_map[r].masking_adj * 1.1);
  1122. // SET_OPTION(maskingadjust_short, abr_switch_map[r].masking_adj *
  1123. // 1.1, 0);
  1124. }
  1125.  
  1126. if (enforce != 0)
  1127. gfp.ATHlower = -abr_switch_map[r].ath_lower / 10.;
  1128. else if (!(Math.abs((-gfp.ATHlower * 10.) - 0) > 0))
  1129. gfp.ATHlower = -abr_switch_map[r].ath_lower / 10.;
  1130. // SET_OPTION(ATHlower, abr_switch_map[r].ath_lower, 0);
  1131. if (enforce != 0)
  1132. gfp.ATHcurve = abr_switch_map[r].ath_curve;
  1133. else if (!(Math.abs(gfp.ATHcurve - -1) > 0))
  1134. gfp.ATHcurve = abr_switch_map[r].ath_curve;
  1135. // SET_OPTION(ATHcurve, abr_switch_map[r].ath_curve, -1);
  1136.  
  1137. if (enforce != 0)
  1138. gfp.interChRatio = abr_switch_map[r].interch;
  1139. else if (!(Math.abs(gfp.interChRatio - -1) > 0))
  1140. gfp.interChRatio = abr_switch_map[r].interch;
  1141. // SET_OPTION(interChRatio, abr_switch_map[r].interch, -1);
  1142.  
  1143. return preset;
  1144. }
  1145.  
  1146. this.apply_preset = function(gfp, preset, enforce) {
  1147. /* translate legacy presets */
  1148. switch (preset) {
  1149. case Lame.R3MIX:
  1150. {
  1151. preset = Lame.V3;
  1152. gfp.VBR = VbrMode.vbr_mtrh;
  1153. break;
  1154. }
  1155. case Lame.MEDIUM:
  1156. {
  1157. preset = Lame.V4;
  1158. gfp.VBR = VbrMode.vbr_rh;
  1159. break;
  1160. }
  1161. case Lame.MEDIUM_FAST:
  1162. {
  1163. preset = Lame.V4;
  1164. gfp.VBR = VbrMode.vbr_mtrh;
  1165. break;
  1166. }
  1167. case Lame.STANDARD:
  1168. {
  1169. preset = Lame.V2;
  1170. gfp.VBR = VbrMode.vbr_rh;
  1171. break;
  1172. }
  1173. case Lame.STANDARD_FAST:
  1174. {
  1175. preset = Lame.V2;
  1176. gfp.VBR = VbrMode.vbr_mtrh;
  1177. break;
  1178. }
  1179. case Lame.EXTREME:
  1180. {
  1181. preset = Lame.V0;
  1182. gfp.VBR = VbrMode.vbr_rh;
  1183. break;
  1184. }
  1185. case Lame.EXTREME_FAST:
  1186. {
  1187. preset = Lame.V0;
  1188. gfp.VBR = VbrMode.vbr_mtrh;
  1189. break;
  1190. }
  1191. case Lame.INSANE:
  1192. {
  1193. preset = 320;
  1194. gfp.preset = preset;
  1195. apply_abr_preset(gfp, preset, enforce);
  1196. gfp.VBR = VbrMode.vbr_off;
  1197. return preset;
  1198. }
  1199. }
  1200.  
  1201. gfp.preset = preset;
  1202. {
  1203. switch (preset) {
  1204. case Lame.V9:
  1205. apply_vbr_preset(gfp, 9, enforce);
  1206. return preset;
  1207. case Lame.V8:
  1208. apply_vbr_preset(gfp, 8, enforce);
  1209. return preset;
  1210. case Lame.V7:
  1211. apply_vbr_preset(gfp, 7, enforce);
  1212. return preset;
  1213. case Lame.V6:
  1214. apply_vbr_preset(gfp, 6, enforce);
  1215. return preset;
  1216. case Lame.V5:
  1217. apply_vbr_preset(gfp, 5, enforce);
  1218. return preset;
  1219. case Lame.V4:
  1220. apply_vbr_preset(gfp, 4, enforce);
  1221. return preset;
  1222. case Lame.V3:
  1223. apply_vbr_preset(gfp, 3, enforce);
  1224. return preset;
  1225. case Lame.V2:
  1226. apply_vbr_preset(gfp, 2, enforce);
  1227. return preset;
  1228. case Lame.V1:
  1229. apply_vbr_preset(gfp, 1, enforce);
  1230. return preset;
  1231. case Lame.V0:
  1232. apply_vbr_preset(gfp, 0, enforce);
  1233. return preset;
  1234. default:
  1235. break;
  1236. }
  1237. }
  1238. if (8 <= preset && preset <= 320) {
  1239. return apply_abr_preset(gfp, preset, enforce);
  1240. }
  1241.  
  1242. /* no corresponding preset found */
  1243. gfp.preset = 0;
  1244. return preset;
  1245. }
  1246.  
  1247. // Rest from getset.c:
  1248.  
  1249. /**
  1250. * VBR quality level.<BR>
  1251. * 0 = highest<BR>
  1252. * 9 = lowest
  1253. */
  1254. function lame_set_VBR_q(gfp, VBR_q) {
  1255. var ret = 0;
  1256.  
  1257. if (0 > VBR_q) {
  1258. /* Unknown VBR quality level! */
  1259. ret = -1;
  1260. VBR_q = 0;
  1261. }
  1262. if (9 < VBR_q) {
  1263. ret = -1;
  1264. VBR_q = 9;
  1265. }
  1266.  
  1267. gfp.VBR_q = VBR_q;
  1268. gfp.VBR_q_frac = 0;
  1269. return ret;
  1270. }
  1271.  
  1272. }
  1273.  
  1274. /*
  1275. * MP3 huffman table selecting and bit counting
  1276. *
  1277. * Copyright (c) 1999-2005 Takehiro TOMINAGA
  1278. * Copyright (c) 2002-2005 Gabriel Bouvigne
  1279. *
  1280. * This library is free software; you can redistribute it and/or
  1281. * modify it under the terms of the GNU Lesser General Public
  1282. * License as published by the Free Software Foundation; either
  1283. * version 2 of the License, or (at your option) any later version.
  1284. *
  1285. * This library is distributed in the hope that it will be useful,
  1286. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  1287. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  1288. * Library General Public License for more details.
  1289. *
  1290. * You should have received a copy of the GNU Lesser General Public
  1291. * License along with this library; if not, write to the
  1292. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  1293. * Boston, MA 02111-1307, USA.
  1294. */
  1295.  
  1296. /* $Id: Takehiro.java,v 1.26 2011/05/24 20:48:06 kenchis Exp $ */
  1297.  
  1298. //package mp3;
  1299.  
  1300. //import java.util.Arrays;
  1301.  
  1302.  
  1303.  
  1304. function Takehiro() {
  1305.  
  1306. var qupvt = null;
  1307. this.qupvt = null;
  1308.  
  1309. this.setModules = function (_qupvt) {
  1310. this.qupvt = _qupvt;
  1311. qupvt = _qupvt;
  1312. }
  1313.  
  1314. function Bits(b) {
  1315. this.bits = 0 | b;
  1316. }
  1317.  
  1318. var subdv_table = [[0, 0], /* 0 bands */
  1319. [0, 0], /* 1 bands */
  1320. [0, 0], /* 2 bands */
  1321. [0, 0], /* 3 bands */
  1322. [0, 0], /* 4 bands */
  1323. [0, 1], /* 5 bands */
  1324. [1, 1], /* 6 bands */
  1325. [1, 1], /* 7 bands */
  1326. [1, 2], /* 8 bands */
  1327. [2, 2], /* 9 bands */
  1328. [2, 3], /* 10 bands */
  1329. [2, 3], /* 11 bands */
  1330. [3, 4], /* 12 bands */
  1331. [3, 4], /* 13 bands */
  1332. [3, 4], /* 14 bands */
  1333. [4, 5], /* 15 bands */
  1334. [4, 5], /* 16 bands */
  1335. [4, 6], /* 17 bands */
  1336. [5, 6], /* 18 bands */
  1337. [5, 6], /* 19 bands */
  1338. [5, 7], /* 20 bands */
  1339. [6, 7], /* 21 bands */
  1340. [6, 7], /* 22 bands */
  1341. ];
  1342.  
  1343. /**
  1344. * nonlinear quantization of xr More accurate formula than the ISO formula.
  1345. * Takes into account the fact that we are quantizing xr . ix, but we want
  1346. * ix^4/3 to be as close as possible to x^4/3. (taking the nearest int would
  1347. * mean ix is as close as possible to xr, which is different.)
  1348. *
  1349. * From Segher Boessenkool <segher@eastsite.nl> 11/1999
  1350. *
  1351. * 09/2000: ASM code removed in favor of IEEE754 hack by Takehiro Tominaga.
  1352. * If you need the ASM code, check CVS circa Aug 2000.
  1353. *
  1354. * 01/2004: Optimizations by Gabriel Bouvigne
  1355. */
  1356. function quantize_lines_xrpow_01(l, istep, xr, xrPos, ix, ixPos) {
  1357. var compareval0 = (1.0 - 0.4054) / istep;
  1358.  
  1359. l = l >> 1;
  1360. while ((l--) != 0) {
  1361. ix[ixPos++] = (compareval0 > xr[xrPos++]) ? 0 : 1;
  1362. ix[ixPos++] = (compareval0 > xr[xrPos++]) ? 0 : 1;
  1363. }
  1364. }
  1365.  
  1366. /**
  1367. * XRPOW_FTOI is a macro to convert floats to ints.<BR>
  1368. * if XRPOW_FTOI(x) = nearest_int(x), then QUANTFAC(x)=adj43asm[x]<BR>
  1369. * ROUNDFAC= -0.0946<BR>
  1370. *
  1371. * if XRPOW_FTOI(x) = floor(x), then QUANTFAC(x)=asj43[x]<BR>
  1372. * ROUNDFAC=0.4054<BR>
  1373. *
  1374. * Note: using floor() or 0| is extremely slow. On machines where the
  1375. * TAKEHIRO_IEEE754_HACK code above does not work, it is worthwile to write
  1376. * some ASM for XRPOW_FTOI().
  1377. */
  1378. function quantize_lines_xrpow(l, istep, xr, xrPos, ix, ixPos) {
  1379.  
  1380. l = l >> 1;
  1381. var remaining = l % 2;
  1382. l = l >> 1;
  1383. while (l-- != 0) {
  1384. var x0, x1, x2, x3;
  1385. var rx0, rx1, rx2, rx3;
  1386.  
  1387. x0 = xr[xrPos++] * istep;
  1388. x1 = xr[xrPos++] * istep;
  1389. rx0 = 0 | x0;
  1390. x2 = xr[xrPos++] * istep;
  1391. rx1 = 0 | x1;
  1392. x3 = xr[xrPos++] * istep;
  1393. rx2 = 0 | x2;
  1394. x0 += qupvt.adj43[rx0];
  1395. rx3 = 0 | x3;
  1396. x1 += qupvt.adj43[rx1];
  1397. ix[ixPos++] = 0 | x0;
  1398. x2 += qupvt.adj43[rx2];
  1399. ix[ixPos++] = 0 | x1;
  1400. x3 += qupvt.adj43[rx3];
  1401. ix[ixPos++] = 0 | x2;
  1402. ix[ixPos++] = 0 | x3;
  1403. }
  1404. if (remaining != 0) {
  1405. var x0, x1;
  1406. var rx0, rx1;
  1407.  
  1408. x0 = xr[xrPos++] * istep;
  1409. x1 = xr[xrPos++] * istep;
  1410. rx0 = 0 | x0;
  1411. rx1 = 0 | x1;
  1412. x0 += qupvt.adj43[rx0];
  1413. x1 += qupvt.adj43[rx1];
  1414. ix[ixPos++] = 0 | x0;
  1415. ix[ixPos++] = 0 | x1;
  1416. }
  1417. }
  1418.  
  1419. /**
  1420. * Quantization function This function will select which lines to quantize
  1421. * and call the proper quantization function
  1422. */
  1423. function quantize_xrpow(xp, pi, istep, codInfo, prevNoise) {
  1424. /* quantize on xr^(3/4) instead of xr */
  1425. var sfb;
  1426. var sfbmax;
  1427. var j = 0;
  1428. var prev_data_use;
  1429. var accumulate = 0;
  1430. var accumulate01 = 0;
  1431. var xpPos = 0;
  1432. var iData = pi;
  1433. var iDataPos = 0;
  1434. var acc_iData = iData;
  1435. var acc_iDataPos = 0;
  1436. var acc_xp = xp;
  1437. var acc_xpPos = 0;
  1438.  
  1439. /*
  1440. * Reusing previously computed data does not seems to work if global
  1441. * gain is changed. Finding why it behaves this way would allow to use a
  1442. * cache of previously computed values (let's 10 cached values per sfb)
  1443. * that would probably provide a noticeable speedup
  1444. */
  1445. prev_data_use = (prevNoise != null && (codInfo.global_gain == prevNoise.global_gain));
  1446.  
  1447. if (codInfo.block_type == Encoder.SHORT_TYPE)
  1448. sfbmax = 38;
  1449. else
  1450. sfbmax = 21;
  1451.  
  1452. for (sfb = 0; sfb <= sfbmax; sfb++) {
  1453. var step = -1;
  1454.  
  1455. if (prev_data_use || codInfo.block_type == Encoder.NORM_TYPE) {
  1456. step = codInfo.global_gain
  1457. - ((codInfo.scalefac[sfb] + (codInfo.preflag != 0 ? qupvt.pretab[sfb]
  1458. : 0)) << (codInfo.scalefac_scale + 1))
  1459. - codInfo.subblock_gain[codInfo.window[sfb]] * 8;
  1460. }
  1461. if (prev_data_use && (prevNoise.step[sfb] == step)) {
  1462. /*
  1463. * do not recompute this part, but compute accumulated lines
  1464. */
  1465. if (accumulate != 0) {
  1466. quantize_lines_xrpow(accumulate, istep, acc_xp, acc_xpPos,
  1467. acc_iData, acc_iDataPos);
  1468. accumulate = 0;
  1469. }
  1470. if (accumulate01 != 0) {
  1471. quantize_lines_xrpow_01(accumulate01, istep, acc_xp,
  1472. acc_xpPos, acc_iData, acc_iDataPos);
  1473. accumulate01 = 0;
  1474. }
  1475. } else { /* should compute this part */
  1476. var l = codInfo.width[sfb];
  1477.  
  1478. if ((j + codInfo.width[sfb]) > codInfo.max_nonzero_coeff) {
  1479. /* do not compute upper zero part */
  1480. var usefullsize;
  1481. usefullsize = codInfo.max_nonzero_coeff - j + 1;
  1482. Arrays.fill(pi, codInfo.max_nonzero_coeff, 576, 0);
  1483. l = usefullsize;
  1484.  
  1485. if (l < 0) {
  1486. l = 0;
  1487. }
  1488.  
  1489. /* no need to compute higher sfb values */
  1490. sfb = sfbmax + 1;
  1491. }
  1492.  
  1493. /* accumulate lines to quantize */
  1494. if (0 == accumulate && 0 == accumulate01) {
  1495. acc_iData = iData;
  1496. acc_iDataPos = iDataPos;
  1497. acc_xp = xp;
  1498. acc_xpPos = xpPos;
  1499. }
  1500. if (prevNoise != null && prevNoise.sfb_count1 > 0
  1501. && sfb >= prevNoise.sfb_count1
  1502. && prevNoise.step[sfb] > 0
  1503. && step >= prevNoise.step[sfb]) {
  1504.  
  1505. if (accumulate != 0) {
  1506. quantize_lines_xrpow(accumulate, istep, acc_xp,
  1507. acc_xpPos, acc_iData, acc_iDataPos);
  1508. accumulate = 0;
  1509. acc_iData = iData;
  1510. acc_iDataPos = iDataPos;
  1511. acc_xp = xp;
  1512. acc_xpPos = xpPos;
  1513. }
  1514. accumulate01 += l;
  1515. } else {
  1516. if (accumulate01 != 0) {
  1517. quantize_lines_xrpow_01(accumulate01, istep, acc_xp,
  1518. acc_xpPos, acc_iData, acc_iDataPos);
  1519. accumulate01 = 0;
  1520. acc_iData = iData;
  1521. acc_iDataPos = iDataPos;
  1522. acc_xp = xp;
  1523. acc_xpPos = xpPos;
  1524. }
  1525. accumulate += l;
  1526. }
  1527.  
  1528. if (l <= 0) {
  1529. /*
  1530. * rh: 20040215 may happen due to "prev_data_use"
  1531. * optimization
  1532. */
  1533. if (accumulate01 != 0) {
  1534. quantize_lines_xrpow_01(accumulate01, istep, acc_xp,
  1535. acc_xpPos, acc_iData, acc_iDataPos);
  1536. accumulate01 = 0;
  1537. }
  1538. if (accumulate != 0) {
  1539. quantize_lines_xrpow(accumulate, istep, acc_xp,
  1540. acc_xpPos, acc_iData, acc_iDataPos);
  1541. accumulate = 0;
  1542. }
  1543.  
  1544. break;
  1545. /* ends for-loop */
  1546. }
  1547. }
  1548. if (sfb <= sfbmax) {
  1549. iDataPos += codInfo.width[sfb];
  1550. xpPos += codInfo.width[sfb];
  1551. j += codInfo.width[sfb];
  1552. }
  1553. }
  1554. if (accumulate != 0) { /* last data part */
  1555. quantize_lines_xrpow(accumulate, istep, acc_xp, acc_xpPos,
  1556. acc_iData, acc_iDataPos);
  1557. accumulate = 0;
  1558. }
  1559. if (accumulate01 != 0) { /* last data part */
  1560. quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_xpPos,
  1561. acc_iData, acc_iDataPos);
  1562. accumulate01 = 0;
  1563. }
  1564.  
  1565. }
  1566.  
  1567. /**
  1568. * ix_max
  1569. */
  1570. function ix_max(ix, ixPos, endPos) {
  1571. var max1 = 0, max2 = 0;
  1572.  
  1573. do {
  1574. var x1 = ix[ixPos++];
  1575. var x2 = ix[ixPos++];
  1576. if (max1 < x1)
  1577. max1 = x1;
  1578.  
  1579. if (max2 < x2)
  1580. max2 = x2;
  1581. } while (ixPos < endPos);
  1582. if (max1 < max2)
  1583. max1 = max2;
  1584. return max1;
  1585. }
  1586.  
  1587. function count_bit_ESC(ix, ixPos, end, t1, t2, s) {
  1588. /* ESC-table is used */
  1589. var linbits = Tables.ht[t1].xlen * 65536 + Tables.ht[t2].xlen;
  1590. var sum = 0, sum2;
  1591.  
  1592. do {
  1593. var x = ix[ixPos++];
  1594. var y = ix[ixPos++];
  1595.  
  1596. if (x != 0) {
  1597. if (x > 14) {
  1598. x = 15;
  1599. sum += linbits;
  1600. }
  1601. x *= 16;
  1602. }
  1603.  
  1604. if (y != 0) {
  1605. if (y > 14) {
  1606. y = 15;
  1607. sum += linbits;
  1608. }
  1609. x += y;
  1610. }
  1611.  
  1612. sum += Tables.largetbl[x];
  1613. } while (ixPos < end);
  1614.  
  1615. sum2 = sum & 0xffff;
  1616. sum >>= 16;
  1617.  
  1618. if (sum > sum2) {
  1619. sum = sum2;
  1620. t1 = t2;
  1621. }
  1622.  
  1623. s.bits += sum;
  1624. return t1;
  1625. }
  1626.  
  1627. function count_bit_noESC(ix, ixPos, end, s) {
  1628. /* No ESC-words */
  1629. var sum1 = 0;
  1630. var hlen1 = Tables.ht[1].hlen;
  1631.  
  1632. do {
  1633. var x = ix[ixPos + 0] * 2 + ix[ixPos + 1];
  1634. ixPos += 2;
  1635. sum1 += hlen1[x];
  1636. } while (ixPos < end);
  1637.  
  1638. s.bits += sum1;
  1639. return 1;
  1640. }
  1641.  
  1642. function count_bit_noESC_from2(ix, ixPos, end, t1, s) {
  1643. /* No ESC-words */
  1644. var sum = 0, sum2;
  1645. var xlen = Tables.ht[t1].xlen;
  1646. var hlen;
  1647. if (t1 == 2)
  1648. hlen = Tables.table23;
  1649. else
  1650. hlen = Tables.table56;
  1651.  
  1652. do {
  1653. var x = ix[ixPos + 0] * xlen + ix[ixPos + 1];
  1654. ixPos += 2;
  1655. sum += hlen[x];
  1656. } while (ixPos < end);
  1657.  
  1658. sum2 = sum & 0xffff;
  1659. sum >>= 16;
  1660.  
  1661. if (sum > sum2) {
  1662. sum = sum2;
  1663. t1++;
  1664. }
  1665.  
  1666. s.bits += sum;
  1667. return t1;
  1668. }
  1669.  
  1670. function count_bit_noESC_from3(ix, ixPos, end, t1, s) {
  1671. /* No ESC-words */
  1672. var sum1 = 0;
  1673. var sum2 = 0;
  1674. var sum3 = 0;
  1675. var xlen = Tables.ht[t1].xlen;
  1676. var hlen1 = Tables.ht[t1].hlen;
  1677. var hlen2 = Tables.ht[t1 + 1].hlen;
  1678. var hlen3 = Tables.ht[t1 + 2].hlen;
  1679.  
  1680. do {
  1681. var x = ix[ixPos + 0] * xlen + ix[ixPos + 1];
  1682. ixPos += 2;
  1683. sum1 += hlen1[x];
  1684. sum2 += hlen2[x];
  1685. sum3 += hlen3[x];
  1686. } while (ixPos < end);
  1687. var t = t1;
  1688. if (sum1 > sum2) {
  1689. sum1 = sum2;
  1690. t++;
  1691. }
  1692. if (sum1 > sum3) {
  1693. sum1 = sum3;
  1694. t = t1 + 2;
  1695. }
  1696. s.bits += sum1;
  1697.  
  1698. return t;
  1699. }
  1700.  
  1701. /*************************************************************************/
  1702. /* choose table */
  1703. /*************************************************************************/
  1704.  
  1705. var huf_tbl_noESC = [1, 2, 5, 7, 7, 10, 10, 13, 13,
  1706. 13, 13, 13, 13, 13, 13];
  1707.  
  1708. /**
  1709. * Choose the Huffman table that will encode ix[begin..end] with the fewest
  1710. * bits.
  1711. *
  1712. * Note: This code contains knowledge about the sizes and characteristics of
  1713. * the Huffman tables as defined in the IS (Table B.7), and will not work
  1714. * with any arbitrary tables.
  1715. */
  1716. function choose_table(ix, ixPos, endPos, s) {
  1717. var max = ix_max(ix, ixPos, endPos);
  1718.  
  1719. switch (max) {
  1720. case 0:
  1721. return max;
  1722.  
  1723. case 1:
  1724. return count_bit_noESC(ix, ixPos, endPos, s);
  1725.  
  1726. case 2:
  1727. case 3:
  1728. return count_bit_noESC_from2(ix, ixPos, endPos,
  1729. huf_tbl_noESC[max - 1], s);
  1730.  
  1731. case 4:
  1732. case 5:
  1733. case 6:
  1734. case 7:
  1735. case 8:
  1736. case 9:
  1737. case 10:
  1738. case 11:
  1739. case 12:
  1740. case 13:
  1741. case 14:
  1742. case 15:
  1743. return count_bit_noESC_from3(ix, ixPos, endPos,
  1744. huf_tbl_noESC[max - 1], s);
  1745.  
  1746. default:
  1747. /* try tables with linbits */
  1748. if (max > QuantizePVT.IXMAX_VAL) {
  1749. s.bits = QuantizePVT.LARGE_BITS;
  1750. return -1;
  1751. }
  1752. max -= 15;
  1753. var choice2;
  1754. for (choice2 = 24; choice2 < 32; choice2++) {
  1755. if (Tables.ht[choice2].linmax >= max) {
  1756. break;
  1757. }
  1758. }
  1759. var choice;
  1760. for (choice = choice2 - 8; choice < 24; choice++) {
  1761. if (Tables.ht[choice].linmax >= max) {
  1762. break;
  1763. }
  1764. }
  1765. return count_bit_ESC(ix, ixPos, endPos, choice, choice2, s);
  1766. }
  1767. }
  1768.  
  1769. /**
  1770. * count_bit
  1771. */
  1772. this.noquant_count_bits = function (gfc, gi, prev_noise) {
  1773. var ix = gi.l3_enc;
  1774. var i = Math.min(576, ((gi.max_nonzero_coeff + 2) >> 1) << 1);
  1775.  
  1776. if (prev_noise != null)
  1777. prev_noise.sfb_count1 = 0;
  1778.  
  1779. /* Determine count1 region */
  1780. for (; i > 1; i -= 2)
  1781. if ((ix[i - 1] | ix[i - 2]) != 0)
  1782. break;
  1783. gi.count1 = i;
  1784.  
  1785. /* Determines the number of bits to encode the quadruples. */
  1786. var a1 = 0;
  1787. var a2 = 0;
  1788. for (; i > 3; i -= 4) {
  1789. var p;
  1790. /* hack to check if all values <= 1 */
  1791. //throw "TODO: HACK if ((((long) ix[i - 1] | (long) ix[i - 2] | (long) ix[i - 3] | (long) ix[i - 4]) & 0xffffffffL) > 1L "
  1792. //if (true) {
  1793. if (((ix[i - 1] | ix[i - 2] | ix[i - 3] | ix[i - 4]) & 0x7fffffff) > 1) {
  1794. break;
  1795. }
  1796. p = ((ix[i - 4] * 2 + ix[i - 3]) * 2 + ix[i - 2]) * 2 + ix[i - 1];
  1797. a1 += Tables.t32l[p];
  1798. a2 += Tables.t33l[p];
  1799. }
  1800. var bits = a1;
  1801. gi.count1table_select = 0;
  1802. if (a1 > a2) {
  1803. bits = a2;
  1804. gi.count1table_select = 1;
  1805. }
  1806.  
  1807. gi.count1bits = bits;
  1808. gi.big_values = i;
  1809. if (i == 0)
  1810. return bits;
  1811.  
  1812. if (gi.block_type == Encoder.SHORT_TYPE) {
  1813. a1 = 3 * gfc.scalefac_band.s[3];
  1814. if (a1 > gi.big_values)
  1815. a1 = gi.big_values;
  1816. a2 = gi.big_values;
  1817.  
  1818. } else if (gi.block_type == Encoder.NORM_TYPE) {
  1819. /* bv_scf has 576 entries (0..575) */
  1820. a1 = gi.region0_count = gfc.bv_scf[i - 2];
  1821. a2 = gi.region1_count = gfc.bv_scf[i - 1];
  1822.  
  1823. a2 = gfc.scalefac_band.l[a1 + a2 + 2];
  1824. a1 = gfc.scalefac_band.l[a1 + 1];
  1825. if (a2 < i) {
  1826. var bi = new Bits(bits);
  1827. gi.table_select[2] = choose_table(ix, a2, i, bi);
  1828. bits = bi.bits;
  1829. }
  1830. } else {
  1831. gi.region0_count = 7;
  1832. /* gi.region1_count = SBPSY_l - 7 - 1; */
  1833. gi.region1_count = Encoder.SBMAX_l - 1 - 7 - 1;
  1834. a1 = gfc.scalefac_band.l[7 + 1];
  1835. a2 = i;
  1836. if (a1 > a2) {
  1837. a1 = a2;
  1838. }
  1839. }
  1840.  
  1841. /* have to allow for the case when bigvalues < region0 < region1 */
  1842. /* (and region0, region1 are ignored) */
  1843. a1 = Math.min(a1, i);
  1844. a2 = Math.min(a2, i);
  1845.  
  1846.  
  1847. /* Count the number of bits necessary to code the bigvalues region. */
  1848. if (0 < a1) {
  1849. var bi = new Bits(bits);
  1850. gi.table_select[0] = choose_table(ix, 0, a1, bi);
  1851. bits = bi.bits;
  1852. }
  1853. if (a1 < a2) {
  1854. var bi = new Bits(bits);
  1855. gi.table_select[1] = choose_table(ix, a1, a2, bi);
  1856. bits = bi.bits;
  1857. }
  1858. if (gfc.use_best_huffman == 2) {
  1859. gi.part2_3_length = bits;
  1860. best_huffman_divide(gfc, gi);
  1861. bits = gi.part2_3_length;
  1862. }
  1863.  
  1864. if (prev_noise != null) {
  1865. if (gi.block_type == Encoder.NORM_TYPE) {
  1866. var sfb = 0;
  1867. while (gfc.scalefac_band.l[sfb] < gi.big_values) {
  1868. sfb++;
  1869. }
  1870. prev_noise.sfb_count1 = sfb;
  1871. }
  1872. }
  1873.  
  1874. return bits;
  1875. }
  1876.  
  1877. this.count_bits = function (gfc, xr, gi, prev_noise) {
  1878. var ix = gi.l3_enc;
  1879.  
  1880. /* since quantize_xrpow uses table lookup, we need to check this first: */
  1881. var w = (QuantizePVT.IXMAX_VAL) / qupvt.IPOW20(gi.global_gain);
  1882.  
  1883. if (gi.xrpow_max > w)
  1884. return QuantizePVT.LARGE_BITS;
  1885.  
  1886. quantize_xrpow(xr, ix, qupvt.IPOW20(gi.global_gain), gi, prev_noise);
  1887.  
  1888. if ((gfc.substep_shaping & 2) != 0) {
  1889. var j = 0;
  1890. /* 0.634521682242439 = 0.5946*2**(.5*0.1875) */
  1891. var gain = gi.global_gain + gi.scalefac_scale;
  1892. var roundfac = 0.634521682242439 / qupvt.IPOW20(gain);
  1893. for (var sfb = 0; sfb < gi.sfbmax; sfb++) {
  1894. var width = gi.width[sfb];
  1895. if (0 == gfc.pseudohalf[sfb]) {
  1896. j += width;
  1897. } else {
  1898. var k;
  1899. for (k = j, j += width; k < j; ++k) {
  1900. ix[k] = (xr[k] >= roundfac) ? ix[k] : 0;
  1901. }
  1902. }
  1903. }
  1904. }
  1905. return this.noquant_count_bits(gfc, gi, prev_noise);
  1906. }
  1907.  
  1908. /**
  1909. * re-calculate the best scalefac_compress using scfsi the saved bits are
  1910. * kept in the bit reservoir.
  1911. */
  1912. function recalc_divide_init(gfc, cod_info, ix, r01_bits, r01_div, r0_tbl, r1_tbl) {
  1913. var bigv = cod_info.big_values;
  1914.  
  1915. for (var r0 = 0; r0 <= 7 + 15; r0++) {
  1916. r01_bits[r0] = QuantizePVT.LARGE_BITS;
  1917. }
  1918.  
  1919. for (var r0 = 0; r0 < 16; r0++) {
  1920. var a1 = gfc.scalefac_band.l[r0 + 1];
  1921. if (a1 >= bigv)
  1922. break;
  1923. var r0bits = 0;
  1924. var bi = new Bits(r0bits);
  1925. var r0t = choose_table(ix, 0, a1, bi);
  1926. r0bits = bi.bits;
  1927.  
  1928. for (var r1 = 0; r1 < 8; r1++) {
  1929. var a2 = gfc.scalefac_band.l[r0 + r1 + 2];
  1930. if (a2 >= bigv)
  1931. break;
  1932. var bits = r0bits;
  1933. bi = new Bits(bits);
  1934. var r1t = choose_table(ix, a1, a2, bi);
  1935. bits = bi.bits;
  1936. if (r01_bits[r0 + r1] > bits) {
  1937. r01_bits[r0 + r1] = bits;
  1938. r01_div[r0 + r1] = r0;
  1939. r0_tbl[r0 + r1] = r0t;
  1940. r1_tbl[r0 + r1] = r1t;
  1941. }
  1942. }
  1943. }
  1944. }
  1945.  
  1946. function recalc_divide_sub(gfc, cod_info2, gi, ix, r01_bits, r01_div, r0_tbl, r1_tbl) {
  1947. var bigv = cod_info2.big_values;
  1948.  
  1949. for (var r2 = 2; r2 < Encoder.SBMAX_l + 1; r2++) {
  1950. var a2 = gfc.scalefac_band.l[r2];
  1951. if (a2 >= bigv)
  1952. break;
  1953. var bits = r01_bits[r2 - 2] + cod_info2.count1bits;
  1954. if (gi.part2_3_length <= bits)
  1955. break;
  1956.  
  1957. var bi = new Bits(bits);
  1958. var r2t = choose_table(ix, a2, bigv, bi);
  1959. bits = bi.bits;
  1960. if (gi.part2_3_length <= bits)
  1961. continue;
  1962.  
  1963. gi.assign(cod_info2);
  1964. gi.part2_3_length = bits;
  1965. gi.region0_count = r01_div[r2 - 2];
  1966. gi.region1_count = r2 - 2 - r01_div[r2 - 2];
  1967. gi.table_select[0] = r0_tbl[r2 - 2];
  1968. gi.table_select[1] = r1_tbl[r2 - 2];
  1969. gi.table_select[2] = r2t;
  1970. }
  1971. }
  1972.  
  1973. this.best_huffman_divide = function (gfc, gi) {
  1974. var cod_info2 = new GrInfo();
  1975. var ix = gi.l3_enc;
  1976. var r01_bits = new_int(7 + 15 + 1);
  1977. var r01_div = new_int(7 + 15 + 1);
  1978. var r0_tbl = new_int(7 + 15 + 1);
  1979. var r1_tbl = new_int(7 + 15 + 1);
  1980.  
  1981. /* SHORT BLOCK stuff fails for MPEG2 */
  1982. if (gi.block_type == Encoder.SHORT_TYPE && gfc.mode_gr == 1)
  1983. return;
  1984.  
  1985. cod_info2.assign(gi);
  1986. if (gi.block_type == Encoder.NORM_TYPE) {
  1987. recalc_divide_init(gfc, gi, ix, r01_bits, r01_div, r0_tbl, r1_tbl);
  1988. recalc_divide_sub(gfc, cod_info2, gi, ix, r01_bits, r01_div,
  1989. r0_tbl, r1_tbl);
  1990. }
  1991. var i = cod_info2.big_values;
  1992. if (i == 0 || (ix[i - 2] | ix[i - 1]) > 1)
  1993. return;
  1994.  
  1995. i = gi.count1 + 2;
  1996. if (i > 576)
  1997. return;
  1998.  
  1999. /* Determines the number of bits to encode the quadruples. */
  2000. cod_info2.assign(gi);
  2001. cod_info2.count1 = i;
  2002. var a1 = 0;
  2003. var a2 = 0;
  2004.  
  2005.  
  2006. for (; i > cod_info2.big_values; i -= 4) {
  2007. var p = ((ix[i - 4] * 2 + ix[i - 3]) * 2 + ix[i - 2]) * 2
  2008. + ix[i - 1];
  2009. a1 += Tables.t32l[p];
  2010. a2 += Tables.t33l[p];
  2011. }
  2012. cod_info2.big_values = i;
  2013.  
  2014. cod_info2.count1table_select = 0;
  2015. if (a1 > a2) {
  2016. a1 = a2;
  2017. cod_info2.count1table_select = 1;
  2018. }
  2019.  
  2020. cod_info2.count1bits = a1;
  2021.  
  2022. if (cod_info2.block_type == Encoder.NORM_TYPE)
  2023. recalc_divide_sub(gfc, cod_info2, gi, ix, r01_bits, r01_div,
  2024. r0_tbl, r1_tbl);
  2025. else {
  2026. /* Count the number of bits necessary to code the bigvalues region. */
  2027. cod_info2.part2_3_length = a1;
  2028. a1 = gfc.scalefac_band.l[7 + 1];
  2029. if (a1 > i) {
  2030. a1 = i;
  2031. }
  2032. if (a1 > 0) {
  2033. var bi = new Bits(cod_info2.part2_3_length);
  2034. cod_info2.table_select[0] = choose_table(ix, 0, a1, bi);
  2035. cod_info2.part2_3_length = bi.bits;
  2036. }
  2037. if (i > a1) {
  2038. var bi = new Bits(cod_info2.part2_3_length);
  2039. cod_info2.table_select[1] = choose_table(ix, a1, i, bi);
  2040. cod_info2.part2_3_length = bi.bits;
  2041. }
  2042. if (gi.part2_3_length > cod_info2.part2_3_length)
  2043. gi.assign(cod_info2);
  2044. }
  2045. }
  2046.  
  2047. var slen1_n = [1, 1, 1, 1, 8, 2, 2, 2, 4, 4, 4, 8, 8, 8, 16, 16];
  2048. var slen2_n = [1, 2, 4, 8, 1, 2, 4, 8, 2, 4, 8, 2, 4, 8, 4, 8];
  2049. var slen1_tab = [0, 0, 0, 0, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4];
  2050. var slen2_tab = [0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 1, 2, 3, 2, 3];
  2051. Takehiro.slen1_tab = slen1_tab;
  2052. Takehiro.slen2_tab = slen2_tab;
  2053.  
  2054. function scfsi_calc(ch, l3_side) {
  2055. var sfb;
  2056. var gi = l3_side.tt[1][ch];
  2057. var g0 = l3_side.tt[0][ch];
  2058.  
  2059. for (var i = 0; i < Tables.scfsi_band.length - 1; i++) {
  2060. for (sfb = Tables.scfsi_band[i]; sfb < Tables.scfsi_band[i + 1]; sfb++) {
  2061. if (g0.scalefac[sfb] != gi.scalefac[sfb]
  2062. && gi.scalefac[sfb] >= 0)
  2063. break;
  2064. }
  2065. if (sfb == Tables.scfsi_band[i + 1]) {
  2066. for (sfb = Tables.scfsi_band[i]; sfb < Tables.scfsi_band[i + 1]; sfb++) {
  2067. gi.scalefac[sfb] = -1;
  2068. }
  2069. l3_side.scfsi[ch][i] = 1;
  2070. }
  2071. }
  2072. var s1 = 0;
  2073. var c1 = 0;
  2074. for (sfb = 0; sfb < 11; sfb++) {
  2075. if (gi.scalefac[sfb] == -1)
  2076. continue;
  2077. c1++;
  2078. if (s1 < gi.scalefac[sfb])
  2079. s1 = gi.scalefac[sfb];
  2080. }
  2081. var s2 = 0;
  2082. var c2 = 0;
  2083. for (; sfb < Encoder.SBPSY_l; sfb++) {
  2084. if (gi.scalefac[sfb] == -1)
  2085. continue;
  2086. c2++;
  2087. if (s2 < gi.scalefac[sfb])
  2088. s2 = gi.scalefac[sfb];
  2089. }
  2090.  
  2091. for (var i = 0; i < 16; i++) {
  2092. if (s1 < slen1_n[i] && s2 < slen2_n[i]) {
  2093. var c = slen1_tab[i] * c1 + slen2_tab[i] * c2;
  2094. if (gi.part2_length > c) {
  2095. gi.part2_length = c;
  2096. gi.scalefac_compress = i;
  2097. }
  2098. }
  2099. }
  2100. }
  2101.  
  2102. /**
  2103. * Find the optimal way to store the scalefactors. Only call this routine
  2104. * after final scalefactors have been chosen and the channel/granule will
  2105. * not be re-encoded.
  2106. */
  2107. this.best_scalefac_store = function (gfc, gr, ch, l3_side) {
  2108. /* use scalefac_scale if we can */
  2109. var gi = l3_side.tt[gr][ch];
  2110. var sfb, i, j, l;
  2111. var recalc = 0;
  2112.  
  2113. /*
  2114. * remove scalefacs from bands with ix=0. This idea comes from the AAC
  2115. * ISO docs. added mt 3/00
  2116. */
  2117. /* check if l3_enc=0 */
  2118. j = 0;
  2119. for (sfb = 0; sfb < gi.sfbmax; sfb++) {
  2120. var width = gi.width[sfb];
  2121. j += width;
  2122. for (l = -width; l < 0; l++) {
  2123. if (gi.l3_enc[l + j] != 0)
  2124. break;
  2125. }
  2126. if (l == 0)
  2127. gi.scalefac[sfb] = recalc = -2;
  2128. /* anything goes. */
  2129. /*
  2130. * only best_scalefac_store and calc_scfsi know--and only they
  2131. * should know--about the magic number -2.
  2132. */
  2133. }
  2134.  
  2135. if (0 == gi.scalefac_scale && 0 == gi.preflag) {
  2136. var s = 0;
  2137. for (sfb = 0; sfb < gi.sfbmax; sfb++)
  2138. if (gi.scalefac[sfb] > 0)
  2139. s |= gi.scalefac[sfb];
  2140.  
  2141. if (0 == (s & 1) && s != 0) {
  2142. for (sfb = 0; sfb < gi.sfbmax; sfb++)
  2143. if (gi.scalefac[sfb] > 0)
  2144. gi.scalefac[sfb] >>= 1;
  2145.  
  2146. gi.scalefac_scale = recalc = 1;
  2147. }
  2148. }
  2149.  
  2150. if (0 == gi.preflag && gi.block_type != Encoder.SHORT_TYPE
  2151. && gfc.mode_gr == 2) {
  2152. for (sfb = 11; sfb < Encoder.SBPSY_l; sfb++)
  2153. if (gi.scalefac[sfb] < qupvt.pretab[sfb]
  2154. && gi.scalefac[sfb] != -2)
  2155. break;
  2156. if (sfb == Encoder.SBPSY_l) {
  2157. for (sfb = 11; sfb < Encoder.SBPSY_l; sfb++)
  2158. if (gi.scalefac[sfb] > 0)
  2159. gi.scalefac[sfb] -= qupvt.pretab[sfb];
  2160.  
  2161. gi.preflag = recalc = 1;
  2162. }
  2163. }
  2164.  
  2165. for (i = 0; i < 4; i++)
  2166. l3_side.scfsi[ch][i] = 0;
  2167.  
  2168. if (gfc.mode_gr == 2 && gr == 1
  2169. && l3_side.tt[0][ch].block_type != Encoder.SHORT_TYPE
  2170. && l3_side.tt[1][ch].block_type != Encoder.SHORT_TYPE) {
  2171. scfsi_calc(ch, l3_side);
  2172. recalc = 0;
  2173. }
  2174. for (sfb = 0; sfb < gi.sfbmax; sfb++) {
  2175. if (gi.scalefac[sfb] == -2) {
  2176. gi.scalefac[sfb] = 0;
  2177. /* if anything goes, then 0 is a good choice */
  2178. }
  2179. }
  2180. if (recalc != 0) {
  2181. if (gfc.mode_gr == 2) {
  2182. this.scale_bitcount(gi);
  2183. } else {
  2184. this.scale_bitcount_lsf(gfc, gi);
  2185. }
  2186. }
  2187. }
  2188.  
  2189. function all_scalefactors_not_negative(scalefac, n) {
  2190. for (var i = 0; i < n; ++i) {
  2191. if (scalefac[i] < 0)
  2192. return false;
  2193. }
  2194. return true;
  2195. }
  2196.  
  2197. /**
  2198. * number of bits used to encode scalefacs.
  2199. *
  2200. * 18*slen1_tab[i] + 18*slen2_tab[i]
  2201. */
  2202. var scale_short = [0, 18, 36, 54, 54, 36, 54, 72,
  2203. 54, 72, 90, 72, 90, 108, 108, 126];
  2204.  
  2205. /**
  2206. * number of bits used to encode scalefacs.
  2207. *
  2208. * 17*slen1_tab[i] + 18*slen2_tab[i]
  2209. */
  2210. var scale_mixed = [0, 18, 36, 54, 51, 35, 53, 71,
  2211. 52, 70, 88, 69, 87, 105, 104, 122];
  2212.  
  2213. /**
  2214. * number of bits used to encode scalefacs.
  2215. *
  2216. * 11*slen1_tab[i] + 10*slen2_tab[i]
  2217. */
  2218. var scale_long = [0, 10, 20, 30, 33, 21, 31, 41, 32, 42,
  2219. 52, 43, 53, 63, 64, 74];
  2220.  
  2221. /**
  2222. * Also calculates the number of bits necessary to code the scalefactors.
  2223. */
  2224. this.scale_bitcount = function (cod_info) {
  2225. var k, sfb, max_slen1 = 0, max_slen2 = 0;
  2226.  
  2227. /* maximum values */
  2228. var tab;
  2229. var scalefac = cod_info.scalefac;
  2230.  
  2231.  
  2232. if (cod_info.block_type == Encoder.SHORT_TYPE) {
  2233. tab = scale_short;
  2234. if (cod_info.mixed_block_flag != 0)
  2235. tab = scale_mixed;
  2236. } else { /* block_type == 1,2,or 3 */
  2237. tab = scale_long;
  2238. if (0 == cod_info.preflag) {
  2239. for (sfb = 11; sfb < Encoder.SBPSY_l; sfb++)
  2240. if (scalefac[sfb] < qupvt.pretab[sfb])
  2241. break;
  2242.  
  2243. if (sfb == Encoder.SBPSY_l) {
  2244. cod_info.preflag = 1;
  2245. for (sfb = 11; sfb < Encoder.SBPSY_l; sfb++)
  2246. scalefac[sfb] -= qupvt.pretab[sfb];
  2247. }
  2248. }
  2249. }
  2250.  
  2251. for (sfb = 0; sfb < cod_info.sfbdivide; sfb++)
  2252. if (max_slen1 < scalefac[sfb])
  2253. max_slen1 = scalefac[sfb];
  2254.  
  2255. for (; sfb < cod_info.sfbmax; sfb++)
  2256. if (max_slen2 < scalefac[sfb])
  2257. max_slen2 = scalefac[sfb];
  2258.  
  2259. /*
  2260. * from Takehiro TOMINAGA <tominaga@isoternet.org> 10/99 loop over *all*
  2261. * posible values of scalefac_compress to find the one which uses the
  2262. * smallest number of bits. ISO would stop at first valid index
  2263. */
  2264. cod_info.part2_length = QuantizePVT.LARGE_BITS;
  2265. for (k = 0; k < 16; k++) {
  2266. if (max_slen1 < slen1_n[k] && max_slen2 < slen2_n[k]
  2267. && cod_info.part2_length > tab[k]) {
  2268. cod_info.part2_length = tab[k];
  2269. cod_info.scalefac_compress = k;
  2270. }
  2271. }
  2272. return cod_info.part2_length == QuantizePVT.LARGE_BITS;
  2273. }
  2274.  
  2275. /**
  2276. * table of largest scalefactor values for MPEG2
  2277. */
  2278. var max_range_sfac_tab = [[15, 15, 7, 7],
  2279. [15, 15, 7, 0], [7, 3, 0, 0], [15, 31, 31, 0],
  2280. [7, 7, 7, 0], [3, 3, 0, 0]];
  2281.  
  2282. /**
  2283. * Also counts the number of bits to encode the scalefacs but for MPEG 2
  2284. * Lower sampling frequencies (24, 22.05 and 16 kHz.)
  2285. *
  2286. * This is reverse-engineered from section 2.4.3.2 of the MPEG2 IS,
  2287. * "Audio Decoding Layer III"
  2288. */
  2289. this.scale_bitcount_lsf = function (gfc, cod_info) {
  2290. var table_number, row_in_table, partition, nr_sfb, window;
  2291. var over;
  2292. var i, sfb;
  2293. var max_sfac = new_int(4);
  2294. //var partition_table;
  2295. var scalefac = cod_info.scalefac;
  2296.  
  2297. /*
  2298. * Set partition table. Note that should try to use table one, but do
  2299. * not yet...
  2300. */
  2301. if (cod_info.preflag != 0)
  2302. table_number = 2;
  2303. else
  2304. table_number = 0;
  2305.  
  2306. for (i = 0; i < 4; i++)
  2307. max_sfac[i] = 0;
  2308.  
  2309. if (cod_info.block_type == Encoder.SHORT_TYPE) {
  2310. row_in_table = 1;
  2311. var partition_table = qupvt.nr_of_sfb_block[table_number][row_in_table];
  2312. for (sfb = 0, partition = 0; partition < 4; partition++) {
  2313. nr_sfb = partition_table[partition] / 3;
  2314. for (i = 0; i < nr_sfb; i++, sfb++)
  2315. for (window = 0; window < 3; window++)
  2316. if (scalefac[sfb * 3 + window] > max_sfac[partition])
  2317. max_sfac[partition] = scalefac[sfb * 3 + window];
  2318. }
  2319. } else {
  2320. row_in_table = 0;
  2321. var partition_table = qupvt.nr_of_sfb_block[table_number][row_in_table];
  2322. for (sfb = 0, partition = 0; partition < 4; partition++) {
  2323. nr_sfb = partition_table[partition];
  2324. for (i = 0; i < nr_sfb; i++, sfb++)
  2325. if (scalefac[sfb] > max_sfac[partition])
  2326. max_sfac[partition] = scalefac[sfb];
  2327. }
  2328. }
  2329.  
  2330. for (over = false, partition = 0; partition < 4; partition++) {
  2331. if (max_sfac[partition] > max_range_sfac_tab[table_number][partition])
  2332. over = true;
  2333. }
  2334. if (!over) {
  2335. var slen1, slen2, slen3, slen4;
  2336.  
  2337. cod_info.sfb_partition_table = qupvt.nr_of_sfb_block[table_number][row_in_table];
  2338. for (partition = 0; partition < 4; partition++)
  2339. cod_info.slen[partition] = log2tab[max_sfac[partition]];
  2340.  
  2341. /* set scalefac_compress */
  2342. slen1 = cod_info.slen[0];
  2343. slen2 = cod_info.slen[1];
  2344. slen3 = cod_info.slen[2];
  2345. slen4 = cod_info.slen[3];
  2346.  
  2347. switch (table_number) {
  2348. case 0:
  2349. cod_info.scalefac_compress = (((slen1 * 5) + slen2) << 4)
  2350. + (slen3 << 2) + slen4;
  2351. break;
  2352.  
  2353. case 1:
  2354. cod_info.scalefac_compress = 400 + (((slen1 * 5) + slen2) << 2)
  2355. + slen3;
  2356. break;
  2357.  
  2358. case 2:
  2359. cod_info.scalefac_compress = 500 + (slen1 * 3) + slen2;
  2360. break;
  2361.  
  2362. default:
  2363. System.err.printf("intensity stereo not implemented yet\n");
  2364. break;
  2365. }
  2366. }
  2367. if (!over) {
  2368. cod_info.part2_length = 0;
  2369. for (partition = 0; partition < 4; partition++)
  2370. cod_info.part2_length += cod_info.slen[partition]
  2371. * cod_info.sfb_partition_table[partition];
  2372. }
  2373. return over;
  2374. }
  2375.  
  2376. /*
  2377. * Since no bands have been over-amplified, we can set scalefac_compress and
  2378. * slen[] for the formatter
  2379. */
  2380. var log2tab = [0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4,
  2381. 4, 4, 4, 4];
  2382.  
  2383. this.huffman_init = function (gfc) {
  2384. for (var i = 2; i <= 576; i += 2) {
  2385. var scfb_anz = 0, bv_index;
  2386. while (gfc.scalefac_band.l[++scfb_anz] < i)
  2387. ;
  2388.  
  2389. bv_index = subdv_table[scfb_anz][0]; // .region0_count
  2390. while (gfc.scalefac_band.l[bv_index + 1] > i)
  2391. bv_index--;
  2392.  
  2393. if (bv_index < 0) {
  2394. /*
  2395. * this is an indication that everything is going to be encoded
  2396. * as region0: bigvalues < region0 < region1 so lets set
  2397. * region0, region1 to some value larger than bigvalues
  2398. */
  2399. bv_index = subdv_table[scfb_anz][0]; // .region0_count
  2400. }
  2401.  
  2402. gfc.bv_scf[i - 2] = bv_index;
  2403.  
  2404. bv_index = subdv_table[scfb_anz][1]; // .region1_count
  2405. while (gfc.scalefac_band.l[bv_index + gfc.bv_scf[i - 2] + 2] > i)
  2406. bv_index--;
  2407.  
  2408. if (bv_index < 0) {
  2409. bv_index = subdv_table[scfb_anz][1]; // .region1_count
  2410. }
  2411.  
  2412. gfc.bv_scf[i - 1] = bv_index;
  2413. }
  2414. }
  2415. }
  2416.  
  2417. /*
  2418. * bit reservoir source file
  2419. *
  2420. * Copyright (c) 1999-2000 Mark Taylor
  2421. *
  2422. * This library is free software; you can redistribute it and/or
  2423. * modify it under the terms of the GNU Lesser General Public
  2424. * License as published by the Free Software Foundation; either
  2425. * version 2 of the License, or (at your option) any later version.
  2426. *
  2427. * This library is distributed in the hope that it will be useful,
  2428. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  2429. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  2430. * Library General Public License for more details.
  2431. *
  2432. * You should have received a copy of the GNU Lesser General Public
  2433. * License along with this library; if not, write to the
  2434. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  2435. * Boston, MA 02111-1307, USA.
  2436. */
  2437.  
  2438. /* $Id: Reservoir.java,v 1.9 2011/05/24 20:48:06 kenchis Exp $ */
  2439.  
  2440. //package mp3;
  2441.  
  2442. /**
  2443. * ResvFrameBegin:<BR>
  2444. * Called (repeatedly) at the beginning of a frame. Updates the maximum size of
  2445. * the reservoir, and checks to make sure main_data_begin was set properly by
  2446. * the formatter<BR>
  2447. * Background information:
  2448. *
  2449. * This is the original text from the ISO standard. Because of sooo many bugs
  2450. * and irritations correcting comments are added in brackets []. A '^W' means
  2451. * you should remove the last word.
  2452. *
  2453. * <PRE>
  2454. * 1. The following rule can be used to calculate the maximum
  2455. * number of bits used for one granule [^W frame]:<BR>
  2456. * At the highest possible bitrate of Layer III (320 kbps
  2457. * per stereo signal [^W^W^W], 48 kHz) the frames must be of
  2458. * [^W^W^W are designed to have] constant length, i.e.
  2459. * one buffer [^W^W the frame] length is:<BR>
  2460. *
  2461. * 320 kbps * 1152/48 kHz = 7680 bit = 960 byte
  2462. *
  2463. * This value is used as the maximum buffer per channel [^W^W] at
  2464. * lower bitrates [than 320 kbps]. At 64 kbps mono or 128 kbps
  2465. * stereo the main granule length is 64 kbps * 576/48 kHz = 768 bit
  2466. * [per granule and channel] at 48 kHz sampling frequency.
  2467. * This means that there is a maximum deviation (short time buffer
  2468. * [= reservoir]) of 7680 - 2*2*768 = 4608 bits is allowed at 64 kbps.
  2469. * The actual deviation is equal to the number of bytes [with the
  2470. * meaning of octets] denoted by the main_data_end offset pointer.
  2471. * The actual maximum deviation is (2^9-1)*8 bit = 4088 bits
  2472. * [for MPEG-1 and (2^8-1)*8 bit for MPEG-2, both are hard limits].
  2473. * ... The xchange of buffer bits between the left and right channel
  2474. * is allowed without restrictions [exception: dual channel].
  2475. * Because of the [constructed] constraint on the buffer size
  2476. * main_data_end is always set to 0 in the case of bit_rate_index==14,
  2477. * i.e. data rate 320 kbps per stereo signal [^W^W^W]. In this case
  2478. * all data are allocated between adjacent header [^W sync] words
  2479. * [, i.e. there is no buffering at all].
  2480. * </PRE>
  2481. */
  2482.  
  2483.  
  2484. function Reservoir() {
  2485. var bs;
  2486.  
  2487. this.setModules = function(_bs) {
  2488. bs = _bs;
  2489. }
  2490.  
  2491. this.ResvFrameBegin = function(gfp, mean_bits) {
  2492. var gfc = gfp.internal_flags;
  2493. var maxmp3buf;
  2494. var l3_side = gfc.l3_side;
  2495.  
  2496. var frameLength = bs.getframebits(gfp);
  2497. mean_bits.bits = (frameLength - gfc.sideinfo_len * 8) / gfc.mode_gr;
  2498.  
  2499. /**
  2500. * <PRE>
  2501. * Meaning of the variables:
  2502. * resvLimit: (0, 8, ..., 8*255 (MPEG-2), 8*511 (MPEG-1))
  2503. * Number of bits can be stored in previous frame(s) due to
  2504. * counter size constaints
  2505. * maxmp3buf: ( ??? ... 8*1951 (MPEG-1 and 2), 8*2047 (MPEG-2.5))
  2506. * Number of bits allowed to encode one frame (you can take 8*511 bit
  2507. * from the bit reservoir and at most 8*1440 bit from the current
  2508. * frame (320 kbps, 32 kHz), so 8*1951 bit is the largest possible
  2509. * value for MPEG-1 and -2)
  2510. *
  2511. * maximum allowed granule/channel size times 4 = 8*2047 bits.,
  2512. * so this is the absolute maximum supported by the format.
  2513. *
  2514. *
  2515. * fullFrameBits: maximum number of bits available for encoding
  2516. * the current frame.
  2517. *
  2518. * mean_bits: target number of bits per granule.
  2519. *
  2520. * frameLength:
  2521. *
  2522. * gfc.ResvMax: maximum allowed reservoir
  2523. *
  2524. * gfc.ResvSize: current reservoir size
  2525. *
  2526. * l3_side.resvDrain_pre:
  2527. * ancillary data to be added to previous frame:
  2528. * (only usefull in VBR modes if it is possible to have
  2529. * maxmp3buf < fullFrameBits)). Currently disabled,
  2530. * see #define NEW_DRAIN
  2531. * 2010-02-13: RH now enabled, it seems to be needed for CBR too,
  2532. * as there exists one example, where the FhG decoder
  2533. * can't decode a -b320 CBR file anymore.
  2534. *
  2535. * l3_side.resvDrain_post:
  2536. * ancillary data to be added to this frame:
  2537. *
  2538. * </PRE>
  2539. */
  2540.  
  2541. /* main_data_begin has 9 bits in MPEG-1, 8 bits MPEG-2 */
  2542. var resvLimit = (8 * 256) * gfc.mode_gr - 8;
  2543.  
  2544. /*
  2545. * maximum allowed frame size. dont use more than this number of bits,
  2546. * even if the frame has the space for them:
  2547. */
  2548. if (gfp.brate > 320) {
  2549. /* in freeformat the buffer is constant */
  2550. maxmp3buf = 8 * ((int) ((gfp.brate * 1000)
  2551. / (gfp.out_samplerate / 1152) / 8 + .5));
  2552. } else {
  2553. /*
  2554. * all mp3 decoders should have enough buffer to handle this value:
  2555. * size of a 320kbps 32kHz frame
  2556. */
  2557. maxmp3buf = 8 * 1440;
  2558.  
  2559. /*
  2560. * Bouvigne suggests this more lax interpretation of the ISO doc
  2561. * instead of using 8*960.
  2562. */
  2563.  
  2564. if (gfp.strict_ISO) {
  2565. maxmp3buf = 8 * ((int) (320000 / (gfp.out_samplerate / 1152) / 8 + .5));
  2566. }
  2567. }
  2568.  
  2569. gfc.ResvMax = maxmp3buf - frameLength;
  2570. if (gfc.ResvMax > resvLimit)
  2571. gfc.ResvMax = resvLimit;
  2572. if (gfc.ResvMax < 0 || gfp.disable_reservoir)
  2573. gfc.ResvMax = 0;
  2574.  
  2575. var fullFrameBits = mean_bits.bits * gfc.mode_gr
  2576. + Math.min(gfc.ResvSize, gfc.ResvMax);
  2577.  
  2578. if (fullFrameBits > maxmp3buf)
  2579. fullFrameBits = maxmp3buf;
  2580.  
  2581.  
  2582. l3_side.resvDrain_pre = 0;
  2583.  
  2584. // frame analyzer code
  2585. if (gfc.pinfo != null) {
  2586. /*
  2587. * expected bits per channel per granule [is this also right for
  2588. * mono/stereo, MPEG-1/2 ?]
  2589. */
  2590. gfc.pinfo.mean_bits = mean_bits.bits / 2;
  2591. gfc.pinfo.resvsize = gfc.ResvSize;
  2592. }
  2593.  
  2594. return fullFrameBits;
  2595. }
  2596.  
  2597. /**
  2598. * returns targ_bits: target number of bits to use for 1 granule<BR>
  2599. * extra_bits: amount extra available from reservoir<BR>
  2600. * Mark Taylor 4/99
  2601. */
  2602. this.ResvMaxBits = function(gfp, mean_bits, targ_bits, cbr) {
  2603. var gfc = gfp.internal_flags;
  2604. var add_bits;
  2605. var ResvSize = gfc.ResvSize, ResvMax = gfc.ResvMax;
  2606.  
  2607. /* compensate the saved bits used in the 1st granule */
  2608. if (cbr != 0)
  2609. ResvSize += mean_bits;
  2610.  
  2611. if ((gfc.substep_shaping & 1) != 0)
  2612. ResvMax *= 0.9;
  2613.  
  2614. targ_bits.bits = mean_bits;
  2615.  
  2616. /* extra bits if the reservoir is almost full */
  2617. if (ResvSize * 10 > ResvMax * 9) {
  2618. add_bits = ResvSize - (ResvMax * 9) / 10;
  2619. targ_bits.bits += add_bits;
  2620. gfc.substep_shaping |= 0x80;
  2621. } else {
  2622. add_bits = 0;
  2623. gfc.substep_shaping &= 0x7f;
  2624. /*
  2625. * build up reservoir. this builds the reservoir a little slower
  2626. * than FhG. It could simple be mean_bits/15, but this was rigged to
  2627. * always produce 100 (the old value) at 128kbs
  2628. */
  2629. if (!gfp.disable_reservoir && 0 == (gfc.substep_shaping & 1))
  2630. targ_bits.bits -= .1 * mean_bits;
  2631. }
  2632.  
  2633. /* amount from the reservoir we are allowed to use. ISO says 6/10 */
  2634. var extra_bits = (ResvSize < (gfc.ResvMax * 6) / 10 ? ResvSize
  2635. : (gfc.ResvMax * 6) / 10);
  2636. extra_bits -= add_bits;
  2637.  
  2638. if (extra_bits < 0)
  2639. extra_bits = 0;
  2640. return extra_bits;
  2641. }
  2642.  
  2643. /**
  2644. * Called after a granule's bit allocation. Readjusts the size of the
  2645. * reservoir to reflect the granule's usage.
  2646. */
  2647. this.ResvAdjust = function(gfc, gi) {
  2648. gfc.ResvSize -= gi.part2_3_length + gi.part2_length;
  2649. }
  2650.  
  2651. /**
  2652. * Called after all granules in a frame have been allocated. Makes sure that
  2653. * the reservoir size is within limits, possibly by adding stuffing bits.
  2654. */
  2655. this.ResvFrameEnd = function(gfc, mean_bits) {
  2656. var over_bits;
  2657. var l3_side = gfc.l3_side;
  2658.  
  2659. gfc.ResvSize += mean_bits * gfc.mode_gr;
  2660. var stuffingBits = 0;
  2661. l3_side.resvDrain_post = 0;
  2662. l3_side.resvDrain_pre = 0;
  2663.  
  2664. /* we must be byte aligned */
  2665. if ((over_bits = gfc.ResvSize % 8) != 0)
  2666. stuffingBits += over_bits;
  2667.  
  2668. over_bits = (gfc.ResvSize - stuffingBits) - gfc.ResvMax;
  2669. if (over_bits > 0) {
  2670. stuffingBits += over_bits;
  2671. }
  2672.  
  2673. /*
  2674. * NOTE: enabling the NEW_DRAIN code fixes some problems with FhG
  2675. * decoder shipped with MS Windows operating systems. Using this, it is
  2676. * even possible to use Gabriel's lax buffer consideration again, which
  2677. * assumes, any decoder should have a buffer large enough for a 320 kbps
  2678. * frame at 32 kHz sample rate.
  2679. *
  2680. * old drain code: lame -b320 BlackBird.wav --. does not play with
  2681. * GraphEdit.exe using FhG decoder V1.5 Build 50
  2682. *
  2683. * new drain code: lame -b320 BlackBird.wav --. plays fine with
  2684. * GraphEdit.exe using FhG decoder V1.5 Build 50
  2685. *
  2686. * Robert Hegemann, 2010-02-13.
  2687. */
  2688. /*
  2689. * drain as many bits as possible into previous frame ancillary data In
  2690. * particular, in VBR mode ResvMax may have changed, and we have to make
  2691. * sure main_data_begin does not create a reservoir bigger than ResvMax
  2692. * mt 4/00
  2693. */
  2694. {
  2695. var mdb_bytes = Math.min(l3_side.main_data_begin * 8, stuffingBits) / 8;
  2696. l3_side.resvDrain_pre += 8 * mdb_bytes;
  2697. stuffingBits -= 8 * mdb_bytes;
  2698. gfc.ResvSize -= 8 * mdb_bytes;
  2699. l3_side.main_data_begin -= mdb_bytes;
  2700. }
  2701. /* drain the rest into this frames ancillary data */
  2702. l3_side.resvDrain_post += stuffingBits;
  2703. gfc.ResvSize -= stuffingBits;
  2704. }
  2705. }
  2706.  
  2707.  
  2708.  
  2709. BitStream.EQ = function (a, b) {
  2710. return (Math.abs(a) > Math.abs(b)) ? (Math.abs((a) - (b)) <= (Math
  2711. .abs(a) * 1e-6))
  2712. : (Math.abs((a) - (b)) <= (Math.abs(b) * 1e-6));
  2713. };
  2714.  
  2715. BitStream.NEQ = function (a, b) {
  2716. return !BitStream.EQ(a, b);
  2717. };
  2718.  
  2719. function BitStream() {
  2720. var self = this;
  2721. var CRC16_POLYNOMIAL = 0x8005;
  2722.  
  2723. /*
  2724. * we work with ints, so when doing bit manipulation, we limit ourselves to
  2725. * MAX_LENGTH-2 just to be on the safe side
  2726. */
  2727. var MAX_LENGTH = 32;
  2728.  
  2729. //GainAnalysis ga;
  2730. //MPGLib mpg;
  2731. //Version ver;
  2732. //VBRTag vbr;
  2733. var ga = null;
  2734. var mpg = null;
  2735. var ver = null;
  2736. var vbr = null;
  2737.  
  2738. //public final void setModules(GainAnalysis ga, MPGLib mpg, Version ver,
  2739. // VBRTag vbr) {
  2740.  
  2741. this.setModules = function (_ga, _mpg, _ver, _vbr) {
  2742. ga = _ga;
  2743. mpg = _mpg;
  2744. ver = _ver;
  2745. vbr = _vbr;
  2746. };
  2747.  
  2748. /**
  2749. * Bit stream buffer.
  2750. */
  2751. //private byte[] buf;
  2752. var buf = null;
  2753. /**
  2754. * Bit counter of bit stream.
  2755. */
  2756. var totbit = 0;
  2757. /**
  2758. * Pointer to top byte in buffer.
  2759. */
  2760. var bufByteIdx = 0;
  2761. /**
  2762. * Pointer to top bit of top byte in buffer.
  2763. */
  2764. var bufBitIdx = 0;
  2765.  
  2766. /**
  2767. * compute bitsperframe and mean_bits for a layer III frame
  2768. */
  2769. this.getframebits = function (gfp) {
  2770. var gfc = gfp.internal_flags;
  2771. var bit_rate;
  2772.  
  2773. /* get bitrate in kbps [?] */
  2774. if (gfc.bitrate_index != 0)
  2775. bit_rate = Tables.bitrate_table[gfp.version][gfc.bitrate_index];
  2776. else
  2777. bit_rate = gfp.brate;
  2778.  
  2779. /* main encoding routine toggles padding on and off */
  2780. /* one Layer3 Slot consists of 8 bits */
  2781. var bytes = 0 | (gfp.version + 1) * 72000 * bit_rate / gfp.out_samplerate + gfc.padding;
  2782. return 8 * bytes;
  2783. };
  2784.  
  2785. function putheader_bits(gfc) {
  2786. System.arraycopy(gfc.header[gfc.w_ptr].buf, 0, buf, bufByteIdx, gfc.sideinfo_len);
  2787. bufByteIdx += gfc.sideinfo_len;
  2788. totbit += gfc.sideinfo_len * 8;
  2789. gfc.w_ptr = (gfc.w_ptr + 1) & (LameInternalFlags.MAX_HEADER_BUF - 1);
  2790. }
  2791.  
  2792. /**
  2793. * write j bits into the bit stream
  2794. */
  2795. function putbits2(gfc, val, j) {
  2796.  
  2797. while (j > 0) {
  2798. var k;
  2799. if (bufBitIdx == 0) {
  2800. bufBitIdx = 8;
  2801. bufByteIdx++;
  2802. if (gfc.header[gfc.w_ptr].write_timing == totbit) {
  2803. putheader_bits(gfc);
  2804. }
  2805. buf[bufByteIdx] = 0;
  2806. }
  2807.  
  2808. k = Math.min(j, bufBitIdx);
  2809. j -= k;
  2810.  
  2811. bufBitIdx -= k;
  2812.  
  2813. /* 32 too large on 32 bit machines */
  2814.  
  2815. buf[bufByteIdx] |= ((val >> j) << bufBitIdx);
  2816. totbit += k;
  2817. }
  2818. }
  2819.  
  2820. /**
  2821. * write j bits into the bit stream, ignoring frame headers
  2822. */
  2823. function putbits_noheaders(gfc, val, j) {
  2824.  
  2825. while (j > 0) {
  2826. var k;
  2827. if (bufBitIdx == 0) {
  2828. bufBitIdx = 8;
  2829. bufByteIdx++;
  2830. buf[bufByteIdx] = 0;
  2831. }
  2832.  
  2833. k = Math.min(j, bufBitIdx);
  2834. j -= k;
  2835.  
  2836. bufBitIdx -= k;
  2837.  
  2838. /* 32 too large on 32 bit machines */
  2839.  
  2840. buf[bufByteIdx] |= ((val >> j) << bufBitIdx);
  2841. totbit += k;
  2842. }
  2843. }
  2844.  
  2845. /**
  2846. * Some combinations of bitrate, Fs, and stereo make it impossible to stuff
  2847. * out a frame using just main_data, due to the limited number of bits to
  2848. * indicate main_data_length. In these situations, we put stuffing bits into
  2849. * the ancillary data...
  2850. */
  2851. function drain_into_ancillary(gfp, remainingBits) {
  2852. var gfc = gfp.internal_flags;
  2853. var i;
  2854.  
  2855. if (remainingBits >= 8) {
  2856. putbits2(gfc, 0x4c, 8);
  2857. remainingBits -= 8;
  2858. }
  2859. if (remainingBits >= 8) {
  2860. putbits2(gfc, 0x41, 8);
  2861. remainingBits -= 8;
  2862. }
  2863. if (remainingBits >= 8) {
  2864. putbits2(gfc, 0x4d, 8);
  2865. remainingBits -= 8;
  2866. }
  2867. if (remainingBits >= 8) {
  2868. putbits2(gfc, 0x45, 8);
  2869. remainingBits -= 8;
  2870. }
  2871.  
  2872. if (remainingBits >= 32) {
  2873. var version = ver.getLameShortVersion();
  2874. if (remainingBits >= 32)
  2875. for (i = 0; i < version.length && remainingBits >= 8; ++i) {
  2876. remainingBits -= 8;
  2877. putbits2(gfc, version.charAt(i), 8);
  2878. }
  2879. }
  2880.  
  2881. for (; remainingBits >= 1; remainingBits -= 1) {
  2882. putbits2(gfc, gfc.ancillary_flag, 1);
  2883. gfc.ancillary_flag ^= (!gfp.disable_reservoir ? 1 : 0);
  2884. }
  2885.  
  2886.  
  2887. }
  2888.  
  2889. /**
  2890. * write N bits into the header
  2891. */
  2892. function writeheader(gfc, val, j) {
  2893. var ptr = gfc.header[gfc.h_ptr].ptr;
  2894.  
  2895. while (j > 0) {
  2896. var k = Math.min(j, 8 - (ptr & 7));
  2897. j -= k;
  2898. /* >> 32 too large for 32 bit machines */
  2899.  
  2900. gfc.header[gfc.h_ptr].buf[ptr >> 3] |= ((val >> j)) << (8 - (ptr & 7) - k);
  2901. ptr += k;
  2902. }
  2903. gfc.header[gfc.h_ptr].ptr = ptr;
  2904. }
  2905.  
  2906. function CRC_update(value, crc) {
  2907. value <<= 8;
  2908. for (var i = 0; i < 8; i++) {
  2909. value <<= 1;
  2910. crc <<= 1;
  2911.  
  2912. if ((((crc ^ value) & 0x10000) != 0))
  2913. crc ^= CRC16_POLYNOMIAL;
  2914. }
  2915. return crc;
  2916. }
  2917.  
  2918. this.CRC_writeheader = function (gfc, header) {
  2919. var crc = 0xffff;
  2920. /* (jo) init crc16 for error_protection */
  2921.  
  2922. crc = CRC_update(header[2] & 0xff, crc);
  2923. crc = CRC_update(header[3] & 0xff, crc);
  2924. for (var i = 6; i < gfc.sideinfo_len; i++) {
  2925. crc = CRC_update(header[i] & 0xff, crc);
  2926. }
  2927.  
  2928. header[4] = (byte)(crc >> 8);
  2929. header[5] = (byte)(crc & 255);
  2930. };
  2931.  
  2932. function encodeSideInfo2(gfp, bitsPerFrame) {
  2933. var gfc = gfp.internal_flags;
  2934. var l3_side;
  2935. var gr, ch;
  2936.  
  2937. l3_side = gfc.l3_side;
  2938. gfc.header[gfc.h_ptr].ptr = 0;
  2939. Arrays.fill(gfc.header[gfc.h_ptr].buf, 0, gfc.sideinfo_len, 0);
  2940. if (gfp.out_samplerate < 16000)
  2941. writeheader(gfc, 0xffe, 12);
  2942. else
  2943. writeheader(gfc, 0xfff, 12);
  2944. writeheader(gfc, (gfp.version), 1);
  2945. writeheader(gfc, 4 - 3, 2);
  2946. writeheader(gfc, (!gfp.error_protection ? 1 : 0), 1);
  2947. writeheader(gfc, (gfc.bitrate_index), 4);
  2948. writeheader(gfc, (gfc.samplerate_index), 2);
  2949. writeheader(gfc, (gfc.padding), 1);
  2950. writeheader(gfc, (gfp.extension), 1);
  2951. writeheader(gfc, (gfp.mode.ordinal()), 2);
  2952. writeheader(gfc, (gfc.mode_ext), 2);
  2953. writeheader(gfc, (gfp.copyright), 1);
  2954. writeheader(gfc, (gfp.original), 1);
  2955. writeheader(gfc, (gfp.emphasis), 2);
  2956. if (gfp.error_protection) {
  2957. writeheader(gfc, 0, 16);
  2958. /* dummy */
  2959. }
  2960.  
  2961. if (gfp.version == 1) {
  2962. /* MPEG1 */
  2963. writeheader(gfc, (l3_side.main_data_begin), 9);
  2964.  
  2965. if (gfc.channels_out == 2)
  2966. writeheader(gfc, l3_side.private_bits, 3);
  2967. else
  2968. writeheader(gfc, l3_side.private_bits, 5);
  2969.  
  2970. for (ch = 0; ch < gfc.channels_out; ch++) {
  2971. var band;
  2972. for (band = 0; band < 4; band++) {
  2973. writeheader(gfc, l3_side.scfsi[ch][band], 1);
  2974. }
  2975. }
  2976.  
  2977. for (gr = 0; gr < 2; gr++) {
  2978. for (ch = 0; ch < gfc.channels_out; ch++) {
  2979. var gi = l3_side.tt[gr][ch];
  2980. writeheader(gfc, gi.part2_3_length + gi.part2_length, 12);
  2981. writeheader(gfc, gi.big_values / 2, 9);
  2982. writeheader(gfc, gi.global_gain, 8);
  2983. writeheader(gfc, gi.scalefac_compress, 4);
  2984.  
  2985. if (gi.block_type != Encoder.NORM_TYPE) {
  2986. writeheader(gfc, 1, 1);
  2987. /* window_switching_flag */
  2988. writeheader(gfc, gi.block_type, 2);
  2989. writeheader(gfc, gi.mixed_block_flag, 1);
  2990.  
  2991. if (gi.table_select[0] == 14)
  2992. gi.table_select[0] = 16;
  2993. writeheader(gfc, gi.table_select[0], 5);
  2994. if (gi.table_select[1] == 14)
  2995. gi.table_select[1] = 16;
  2996. writeheader(gfc, gi.table_select[1], 5);
  2997.  
  2998. writeheader(gfc, gi.subblock_gain[0], 3);
  2999. writeheader(gfc, gi.subblock_gain[1], 3);
  3000. writeheader(gfc, gi.subblock_gain[2], 3);
  3001. } else {
  3002. writeheader(gfc, 0, 1);
  3003. /* window_switching_flag */
  3004. if (gi.table_select[0] == 14)
  3005. gi.table_select[0] = 16;
  3006. writeheader(gfc, gi.table_select[0], 5);
  3007. if (gi.table_select[1] == 14)
  3008. gi.table_select[1] = 16;
  3009. writeheader(gfc, gi.table_select[1], 5);
  3010. if (gi.table_select[2] == 14)
  3011. gi.table_select[2] = 16;
  3012. writeheader(gfc, gi.table_select[2], 5);
  3013.  
  3014. writeheader(gfc, gi.region0_count, 4);
  3015. writeheader(gfc, gi.region1_count, 3);
  3016. }
  3017. writeheader(gfc, gi.preflag, 1);
  3018. writeheader(gfc, gi.scalefac_scale, 1);
  3019. writeheader(gfc, gi.count1table_select, 1);
  3020. }
  3021. }
  3022. } else {
  3023. /* MPEG2 */
  3024. writeheader(gfc, (l3_side.main_data_begin), 8);
  3025. writeheader(gfc, l3_side.private_bits, gfc.channels_out);
  3026.  
  3027. gr = 0;
  3028. for (ch = 0; ch < gfc.channels_out; ch++) {
  3029. var gi = l3_side.tt[gr][ch];
  3030. writeheader(gfc, gi.part2_3_length + gi.part2_length, 12);
  3031. writeheader(gfc, gi.big_values / 2, 9);
  3032. writeheader(gfc, gi.global_gain, 8);
  3033. writeheader(gfc, gi.scalefac_compress, 9);
  3034.  
  3035. if (gi.block_type != Encoder.NORM_TYPE) {
  3036. writeheader(gfc, 1, 1);
  3037. /* window_switching_flag */
  3038. writeheader(gfc, gi.block_type, 2);
  3039. writeheader(gfc, gi.mixed_block_flag, 1);
  3040.  
  3041. if (gi.table_select[0] == 14)
  3042. gi.table_select[0] = 16;
  3043. writeheader(gfc, gi.table_select[0], 5);
  3044. if (gi.table_select[1] == 14)
  3045. gi.table_select[1] = 16;
  3046. writeheader(gfc, gi.table_select[1], 5);
  3047.  
  3048. writeheader(gfc, gi.subblock_gain[0], 3);
  3049. writeheader(gfc, gi.subblock_gain[1], 3);
  3050. writeheader(gfc, gi.subblock_gain[2], 3);
  3051. } else {
  3052. writeheader(gfc, 0, 1);
  3053. /* window_switching_flag */
  3054. if (gi.table_select[0] == 14)
  3055. gi.table_select[0] = 16;
  3056. writeheader(gfc, gi.table_select[0], 5);
  3057. if (gi.table_select[1] == 14)
  3058. gi.table_select[1] = 16;
  3059. writeheader(gfc, gi.table_select[1], 5);
  3060. if (gi.table_select[2] == 14)
  3061. gi.table_select[2] = 16;
  3062. writeheader(gfc, gi.table_select[2], 5);
  3063.  
  3064. writeheader(gfc, gi.region0_count, 4);
  3065. writeheader(gfc, gi.region1_count, 3);
  3066. }
  3067.  
  3068. writeheader(gfc, gi.scalefac_scale, 1);
  3069. writeheader(gfc, gi.count1table_select, 1);
  3070. }
  3071. }
  3072.  
  3073. if (gfp.error_protection) {
  3074. /* (jo) error_protection: add crc16 information to header */
  3075. CRC_writeheader(gfc, gfc.header[gfc.h_ptr].buf);
  3076. }
  3077.  
  3078. {
  3079. var old = gfc.h_ptr;
  3080.  
  3081. gfc.h_ptr = (old + 1) & (LameInternalFlags.MAX_HEADER_BUF - 1);
  3082. gfc.header[gfc.h_ptr].write_timing = gfc.header[old].write_timing
  3083. + bitsPerFrame;
  3084.  
  3085. if (gfc.h_ptr == gfc.w_ptr) {
  3086. /* yikes! we are out of header buffer space */
  3087. System.err
  3088. .println("Error: MAX_HEADER_BUF too small in bitstream.c \n");
  3089. }
  3090.  
  3091. }
  3092. }
  3093.  
  3094. function huffman_coder_count1(gfc, gi) {
  3095. /* Write count1 area */
  3096. var h = Tables.ht[gi.count1table_select + 32];
  3097. var i, bits = 0;
  3098.  
  3099. var ix = gi.big_values;
  3100. var xr = gi.big_values;
  3101.  
  3102. for (i = (gi.count1 - gi.big_values) / 4; i > 0; --i) {
  3103. var huffbits = 0;
  3104. var p = 0, v;
  3105.  
  3106. v = gi.l3_enc[ix + 0];
  3107. if (v != 0) {
  3108. p += 8;
  3109. if (gi.xr[xr + 0] < 0)
  3110. huffbits++;
  3111. }
  3112.  
  3113. v = gi.l3_enc[ix + 1];
  3114. if (v != 0) {
  3115. p += 4;
  3116. huffbits *= 2;
  3117. if (gi.xr[xr + 1] < 0)
  3118. huffbits++;
  3119. }
  3120.  
  3121. v = gi.l3_enc[ix + 2];
  3122. if (v != 0) {
  3123. p += 2;
  3124. huffbits *= 2;
  3125. if (gi.xr[xr + 2] < 0)
  3126. huffbits++;
  3127. }
  3128.  
  3129. v = gi.l3_enc[ix + 3];
  3130. if (v != 0) {
  3131. p++;
  3132. huffbits *= 2;
  3133. if (gi.xr[xr + 3] < 0)
  3134. huffbits++;
  3135. }
  3136.  
  3137. ix += 4;
  3138. xr += 4;
  3139. putbits2(gfc, huffbits + h.table[p], h.hlen[p]);
  3140. bits += h.hlen[p];
  3141. }
  3142. return bits;
  3143. }
  3144.  
  3145. /**
  3146. * Implements the pseudocode of page 98 of the IS
  3147. */
  3148. function Huffmancode(gfc, tableindex, start, end, gi) {
  3149. var h = Tables.ht[tableindex];
  3150. var bits = 0;
  3151.  
  3152. if (0 == tableindex)
  3153. return bits;
  3154.  
  3155. for (var i = start; i < end; i += 2) {
  3156. var cbits = 0;
  3157. var xbits = 0;
  3158. var linbits = h.xlen;
  3159. var xlen = h.xlen;
  3160. var ext = 0;
  3161. var x1 = gi.l3_enc[i];
  3162. var x2 = gi.l3_enc[i + 1];
  3163.  
  3164. if (x1 != 0) {
  3165. if (gi.xr[i] < 0)
  3166. ext++;
  3167. cbits--;
  3168. }
  3169.  
  3170. if (tableindex > 15) {
  3171. /* use ESC-words */
  3172. if (x1 > 14) {
  3173. var linbits_x1 = x1 - 15;
  3174. ext |= linbits_x1 << 1;
  3175. xbits = linbits;
  3176. x1 = 15;
  3177. }
  3178.  
  3179. if (x2 > 14) {
  3180. var linbits_x2 = x2 - 15;
  3181. ext <<= linbits;
  3182. ext |= linbits_x2;
  3183. xbits += linbits;
  3184. x2 = 15;
  3185. }
  3186. xlen = 16;
  3187. }
  3188.  
  3189. if (x2 != 0) {
  3190. ext <<= 1;
  3191. if (gi.xr[i + 1] < 0)
  3192. ext++;
  3193. cbits--;
  3194. }
  3195.  
  3196.  
  3197. x1 = x1 * xlen + x2;
  3198. xbits -= cbits;
  3199. cbits += h.hlen[x1];
  3200.  
  3201.  
  3202. putbits2(gfc, h.table[x1], cbits);
  3203. putbits2(gfc, ext, xbits);
  3204. bits += cbits + xbits;
  3205. }
  3206. return bits;
  3207. }
  3208.  
  3209. /**
  3210. * Note the discussion of huffmancodebits() on pages 28 and 29 of the IS, as
  3211. * well as the definitions of the side information on pages 26 and 27.
  3212. */
  3213. function ShortHuffmancodebits(gfc, gi) {
  3214. var region1Start = 3 * gfc.scalefac_band.s[3];
  3215. if (region1Start > gi.big_values)
  3216. region1Start = gi.big_values;
  3217.  
  3218. /* short blocks do not have a region2 */
  3219. var bits = Huffmancode(gfc, gi.table_select[0], 0, region1Start, gi);
  3220. bits += Huffmancode(gfc, gi.table_select[1], region1Start,
  3221. gi.big_values, gi);
  3222. return bits;
  3223. }
  3224.  
  3225. function LongHuffmancodebits(gfc, gi) {
  3226. var bigvalues, bits;
  3227. var region1Start, region2Start;
  3228.  
  3229. bigvalues = gi.big_values;
  3230.  
  3231. var i = gi.region0_count + 1;
  3232. region1Start = gfc.scalefac_band.l[i];
  3233. i += gi.region1_count + 1;
  3234. region2Start = gfc.scalefac_band.l[i];
  3235.  
  3236. if (region1Start > bigvalues)
  3237. region1Start = bigvalues;
  3238.  
  3239. if (region2Start > bigvalues)
  3240. region2Start = bigvalues;
  3241.  
  3242. bits = Huffmancode(gfc, gi.table_select[0], 0, region1Start, gi);
  3243. bits += Huffmancode(gfc, gi.table_select[1], region1Start,
  3244. region2Start, gi);
  3245. bits += Huffmancode(gfc, gi.table_select[2], region2Start, bigvalues,
  3246. gi);
  3247. return bits;
  3248. }
  3249.  
  3250. function writeMainData(gfp) {
  3251. var gr, ch, sfb, data_bits, tot_bits = 0;
  3252. var gfc = gfp.internal_flags;
  3253. var l3_side = gfc.l3_side;
  3254.  
  3255. if (gfp.version == 1) {
  3256. /* MPEG 1 */
  3257. for (gr = 0; gr < 2; gr++) {
  3258. for (ch = 0; ch < gfc.channels_out; ch++) {
  3259. var gi = l3_side.tt[gr][ch];
  3260. var slen1 = Takehiro.slen1_tab[gi.scalefac_compress];
  3261. var slen2 = Takehiro.slen2_tab[gi.scalefac_compress];
  3262. data_bits = 0;
  3263. for (sfb = 0; sfb < gi.sfbdivide; sfb++) {
  3264. if (gi.scalefac[sfb] == -1)
  3265. continue;
  3266. /* scfsi is used */
  3267. putbits2(gfc, gi.scalefac[sfb], slen1);
  3268. data_bits += slen1;
  3269. }
  3270. for (; sfb < gi.sfbmax; sfb++) {
  3271. if (gi.scalefac[sfb] == -1)
  3272. continue;
  3273. /* scfsi is used */
  3274. putbits2(gfc, gi.scalefac[sfb], slen2);
  3275. data_bits += slen2;
  3276. }
  3277.  
  3278. if (gi.block_type == Encoder.SHORT_TYPE) {
  3279. data_bits += ShortHuffmancodebits(gfc, gi);
  3280. } else {
  3281. data_bits += LongHuffmancodebits(gfc, gi);
  3282. }
  3283. data_bits += huffman_coder_count1(gfc, gi);
  3284. /* does bitcount in quantize.c agree with actual bit count? */
  3285. tot_bits += data_bits;
  3286. }
  3287. /* for ch */
  3288. }
  3289. /* for gr */
  3290. } else {
  3291. /* MPEG 2 */
  3292. gr = 0;
  3293. for (ch = 0; ch < gfc.channels_out; ch++) {
  3294. var gi = l3_side.tt[gr][ch];
  3295. var i, sfb_partition, scale_bits = 0;
  3296. data_bits = 0;
  3297. sfb = 0;
  3298. sfb_partition = 0;
  3299.  
  3300. if (gi.block_type == Encoder.SHORT_TYPE) {
  3301. for (; sfb_partition < 4; sfb_partition++) {
  3302. var sfbs = gi.sfb_partition_table[sfb_partition] / 3;
  3303. var slen = gi.slen[sfb_partition];
  3304. for (i = 0; i < sfbs; i++, sfb++) {
  3305. putbits2(gfc,
  3306. Math.max(gi.scalefac[sfb * 3 + 0], 0), slen);
  3307. putbits2(gfc,
  3308. Math.max(gi.scalefac[sfb * 3 + 1], 0), slen);
  3309. putbits2(gfc,
  3310. Math.max(gi.scalefac[sfb * 3 + 2], 0), slen);
  3311. scale_bits += 3 * slen;
  3312. }
  3313. }
  3314. data_bits += ShortHuffmancodebits(gfc, gi);
  3315. } else {
  3316. for (; sfb_partition < 4; sfb_partition++) {
  3317. var sfbs = gi.sfb_partition_table[sfb_partition];
  3318. var slen = gi.slen[sfb_partition];
  3319. for (i = 0; i < sfbs; i++, sfb++) {
  3320. putbits2(gfc, Math.max(gi.scalefac[sfb], 0), slen);
  3321. scale_bits += slen;
  3322. }
  3323. }
  3324. data_bits += LongHuffmancodebits(gfc, gi);
  3325. }
  3326. data_bits += huffman_coder_count1(gfc, gi);
  3327. /* does bitcount in quantize.c agree with actual bit count? */
  3328. tot_bits += scale_bits + data_bits;
  3329. }
  3330. /* for ch */
  3331. }
  3332. /* for gf */
  3333. return tot_bits;
  3334. }
  3335.  
  3336. /* main_data */
  3337.  
  3338. function TotalBytes() {
  3339. this.total = 0;
  3340. }
  3341.  
  3342. /*
  3343. * compute the number of bits required to flush all mp3 frames currently in
  3344. * the buffer. This should be the same as the reservoir size. Only call this
  3345. * routine between frames - i.e. only after all headers and data have been
  3346. * added to the buffer by format_bitstream().
  3347. *
  3348. * Also compute total_bits_output = size of mp3 buffer (including frame
  3349. * headers which may not have yet been send to the mp3 buffer) + number of
  3350. * bits needed to flush all mp3 frames.
  3351. *
  3352. * total_bytes_output is the size of the mp3 output buffer if
  3353. * lame_encode_flush_nogap() was called right now.
  3354. */
  3355. function compute_flushbits(gfp, total_bytes_output) {
  3356. var gfc = gfp.internal_flags;
  3357. var flushbits, remaining_headers;
  3358. var bitsPerFrame;
  3359. var last_ptr, first_ptr;
  3360. first_ptr = gfc.w_ptr;
  3361. /* first header to add to bitstream */
  3362. last_ptr = gfc.h_ptr - 1;
  3363. /* last header to add to bitstream */
  3364. if (last_ptr == -1)
  3365. last_ptr = LameInternalFlags.MAX_HEADER_BUF - 1;
  3366.  
  3367. /* add this many bits to bitstream so we can flush all headers */
  3368. flushbits = gfc.header[last_ptr].write_timing - totbit;
  3369. total_bytes_output.total = flushbits;
  3370.  
  3371. if (flushbits >= 0) {
  3372. /* if flushbits >= 0, some headers have not yet been written */
  3373. /* reduce flushbits by the size of the headers */
  3374. remaining_headers = 1 + last_ptr - first_ptr;
  3375. if (last_ptr < first_ptr)
  3376. remaining_headers = 1 + last_ptr - first_ptr
  3377. + LameInternalFlags.MAX_HEADER_BUF;
  3378. flushbits -= remaining_headers * 8 * gfc.sideinfo_len;
  3379. }
  3380.  
  3381. /*
  3382. * finally, add some bits so that the last frame is complete these bits
  3383. * are not necessary to decode the last frame, but some decoders will
  3384. * ignore last frame if these bits are missing
  3385. */
  3386. bitsPerFrame = self.getframebits(gfp);
  3387. flushbits += bitsPerFrame;
  3388. total_bytes_output.total += bitsPerFrame;
  3389. /* round up: */
  3390. if ((total_bytes_output.total % 8) != 0)
  3391. total_bytes_output.total = 1 + (total_bytes_output.total / 8);
  3392. else
  3393. total_bytes_output.total = (total_bytes_output.total / 8);
  3394. total_bytes_output.total += bufByteIdx + 1;
  3395.  
  3396. if (flushbits < 0) {
  3397. System.err.println("strange error flushing buffer ... \n");
  3398. }
  3399. return flushbits;
  3400. }
  3401.  
  3402. this.flush_bitstream = function (gfp) {
  3403. var gfc = gfp.internal_flags;
  3404. var l3_side;
  3405. var flushbits;
  3406. var last_ptr = gfc.h_ptr - 1;
  3407. /* last header to add to bitstream */
  3408. if (last_ptr == -1)
  3409. last_ptr = LameInternalFlags.MAX_HEADER_BUF - 1;
  3410. l3_side = gfc.l3_side;
  3411.  
  3412. if ((flushbits = compute_flushbits(gfp, new TotalBytes())) < 0)
  3413. return;
  3414. drain_into_ancillary(gfp, flushbits);
  3415.  
  3416. /* check that the 100% of the last frame has been written to bitstream */
  3417.  
  3418. /*
  3419. * we have padded out all frames with ancillary data, which is the same
  3420. * as filling the bitreservoir with ancillary data, so :
  3421. */
  3422. gfc.ResvSize = 0;
  3423. l3_side.main_data_begin = 0;
  3424.  
  3425. /* save the ReplayGain value */
  3426. if (gfc.findReplayGain) {
  3427. var RadioGain = ga.GetTitleGain(gfc.rgdata);
  3428. gfc.RadioGain = Math.floor(RadioGain * 10.0 + 0.5) | 0;
  3429. /* round to nearest */
  3430. }
  3431.  
  3432. /* find the gain and scale change required for no clipping */
  3433. if (gfc.findPeakSample) {
  3434. gfc.noclipGainChange = Math.ceil(Math
  3435. .log10(gfc.PeakSample / 32767.0) * 20.0 * 10.0) | 0;
  3436. /* round up */
  3437.  
  3438. if (gfc.noclipGainChange > 0) {
  3439. /* clipping occurs */
  3440. if (EQ(gfp.scale, 1.0) || EQ(gfp.scale, 0.0))
  3441. gfc.noclipScale = (Math
  3442. .floor((32767.0 / gfc.PeakSample) * 100.0) / 100.0);
  3443. /* round down */
  3444. else {
  3445. /*
  3446. * the user specified his own scaling factor. We could
  3447. * suggest the scaling factor of
  3448. * (32767.0/gfp.PeakSample)*(gfp.scale) but it's usually
  3449. * very inaccurate. So we'd rather not advice him on the
  3450. * scaling factor.
  3451. */
  3452. gfc.noclipScale = -1;
  3453. }
  3454. } else
  3455. /* no clipping */
  3456. gfc.noclipScale = -1;
  3457. }
  3458. };
  3459.  
  3460. this.add_dummy_byte = function (gfp, val, n) {
  3461. var gfc = gfp.internal_flags;
  3462. var i;
  3463.  
  3464. while (n-- > 0) {
  3465. putbits_noheaders(gfc, val, 8);
  3466.  
  3467. for (i = 0; i < LameInternalFlags.MAX_HEADER_BUF; ++i)
  3468. gfc.header[i].write_timing += 8;
  3469. }
  3470. };
  3471.  
  3472. /**
  3473. * This is called after a frame of audio has been quantized and coded. It
  3474. * will write the encoded audio to the bitstream. Note that from a layer3
  3475. * encoder's perspective the bit stream is primarily a series of main_data()
  3476. * blocks, with header and side information inserted at the proper locations
  3477. * to maintain framing. (See Figure A.7 in the IS).
  3478. */
  3479. this.format_bitstream = function (gfp) {
  3480. var gfc = gfp.internal_flags;
  3481. var l3_side;
  3482. l3_side = gfc.l3_side;
  3483.  
  3484. var bitsPerFrame = this.getframebits(gfp);
  3485. drain_into_ancillary(gfp, l3_side.resvDrain_pre);
  3486.  
  3487. encodeSideInfo2(gfp, bitsPerFrame);
  3488. var bits = 8 * gfc.sideinfo_len;
  3489. bits += writeMainData(gfp);
  3490. drain_into_ancillary(gfp, l3_side.resvDrain_post);
  3491. bits += l3_side.resvDrain_post;
  3492.  
  3493. l3_side.main_data_begin += (bitsPerFrame - bits) / 8;
  3494.  
  3495. /*
  3496. * compare number of bits needed to clear all buffered mp3 frames with
  3497. * what we think the resvsize is:
  3498. */
  3499. if (compute_flushbits(gfp, new TotalBytes()) != gfc.ResvSize) {
  3500. System.err.println("Internal buffer inconsistency. flushbits <> ResvSize");
  3501. }
  3502.  
  3503. /*
  3504. * compare main_data_begin for the next frame with what we think the
  3505. * resvsize is:
  3506. */
  3507. if ((l3_side.main_data_begin * 8) != gfc.ResvSize) {
  3508. System.err.printf("bit reservoir error: \n"
  3509. + "l3_side.main_data_begin: %d \n"
  3510. + "Resvoir size: %d \n"
  3511. + "resv drain (post) %d \n"
  3512. + "resv drain (pre) %d \n"
  3513. + "header and sideinfo: %d \n"
  3514. + "data bits: %d \n"
  3515. + "total bits: %d (remainder: %d) \n"
  3516. + "bitsperframe: %d \n",
  3517. 8 * l3_side.main_data_begin, gfc.ResvSize,
  3518. l3_side.resvDrain_post, l3_side.resvDrain_pre,
  3519. 8 * gfc.sideinfo_len, bits - l3_side.resvDrain_post - 8
  3520. * gfc.sideinfo_len, bits, bits % 8, bitsPerFrame);
  3521.  
  3522. System.err.println("This is a fatal error. It has several possible causes:");
  3523. System.err.println("90%% LAME compiled with buggy version of gcc using advanced optimizations");
  3524. System.err.println(" 9%% Your system is overclocked");
  3525. System.err.println(" 1%% bug in LAME encoding library");
  3526.  
  3527. gfc.ResvSize = l3_side.main_data_begin * 8;
  3528. }
  3529. //;
  3530.  
  3531. if (totbit > 1000000000) {
  3532. /*
  3533. * to avoid totbit overflow, (at 8h encoding at 128kbs) lets reset
  3534. * bit counter
  3535. */
  3536. var i;
  3537. for (i = 0; i < LameInternalFlags.MAX_HEADER_BUF; ++i)
  3538. gfc.header[i].write_timing -= totbit;
  3539. totbit = 0;
  3540. }
  3541.  
  3542. return 0;
  3543. };
  3544.  
  3545. /**
  3546. * <PRE>
  3547. * copy data out of the internal MP3 bit buffer into a user supplied
  3548. * unsigned char buffer.
  3549. *
  3550. * mp3data=0 indicates data in buffer is an id3tags and VBR tags
  3551. * mp3data=1 data is real mp3 frame data.
  3552. * </PRE>
  3553. */
  3554. this.copy_buffer = function (gfc, buffer, bufferPos, size, mp3data) {
  3555. var minimum = bufByteIdx + 1;
  3556. if (minimum <= 0)
  3557. return 0;
  3558. if (size != 0 && minimum > size) {
  3559. /* buffer is too small */
  3560. return -1;
  3561. }
  3562. System.arraycopy(buf, 0, buffer, bufferPos, minimum);
  3563. bufByteIdx = -1;
  3564. bufBitIdx = 0;
  3565.  
  3566. if (mp3data != 0) {
  3567. var crc = new_int(1);
  3568. crc[0] = gfc.nMusicCRC;
  3569. vbr.updateMusicCRC(crc, buffer, bufferPos, minimum);
  3570. gfc.nMusicCRC = crc[0];
  3571.  
  3572. /**
  3573. * sum number of bytes belonging to the mp3 stream this info will be
  3574. * written into the Xing/LAME header for seeking
  3575. */
  3576. if (minimum > 0) {
  3577. gfc.VBR_seek_table.nBytesWritten += minimum;
  3578. }
  3579.  
  3580. if (gfc.decode_on_the_fly) { /* decode the frame */
  3581. var pcm_buf = new_float_n([2, 1152]);
  3582. var mp3_in = minimum;
  3583. var samples_out = -1;
  3584. var i;
  3585.  
  3586. /* re-synthesis to pcm. Repeat until we get a samples_out=0 */
  3587. while (samples_out != 0) {
  3588.  
  3589. samples_out = mpg.hip_decode1_unclipped(gfc.hip, buffer,
  3590. bufferPos, mp3_in, pcm_buf[0], pcm_buf[1]);
  3591. /*
  3592. * samples_out = 0: need more data to decode samples_out =
  3593. * -1: error. Lets assume 0 pcm output samples_out = number
  3594. * of samples output
  3595. */
  3596.  
  3597. /*
  3598. * set the lenght of the mp3 input buffer to zero, so that
  3599. * in the next iteration of the loop we will be querying
  3600. * mpglib about buffered data
  3601. */
  3602. mp3_in = 0;
  3603.  
  3604. if (samples_out == -1) {
  3605. /*
  3606. * error decoding. Not fatal, but might screw up the
  3607. * ReplayGain tag. What should we do? Ignore for now
  3608. */
  3609. samples_out = 0;
  3610. }
  3611. if (samples_out > 0) {
  3612. /* process the PCM data */
  3613.  
  3614. /*
  3615. * this should not be possible, and indicates we have
  3616. * overflown the pcm_buf buffer
  3617. */
  3618.  
  3619. if (gfc.findPeakSample) {
  3620. for (i = 0; i < samples_out; i++) {
  3621. if (pcm_buf[0][i] > gfc.PeakSample)
  3622. gfc.PeakSample = pcm_buf[0][i];
  3623. else if (-pcm_buf[0][i] > gfc.PeakSample)
  3624. gfc.PeakSample = -pcm_buf[0][i];
  3625. }
  3626. if (gfc.channels_out > 1)
  3627. for (i = 0; i < samples_out; i++) {
  3628. if (pcm_buf[1][i] > gfc.PeakSample)
  3629. gfc.PeakSample = pcm_buf[1][i];
  3630. else if (-pcm_buf[1][i] > gfc.PeakSample)
  3631. gfc.PeakSample = -pcm_buf[1][i];
  3632. }
  3633. }
  3634.  
  3635. if (gfc.findReplayGain)
  3636. if (ga.AnalyzeSamples(gfc.rgdata, pcm_buf[0], 0,
  3637. pcm_buf[1], 0, samples_out,
  3638. gfc.channels_out) == GainAnalysis.GAIN_ANALYSIS_ERROR)
  3639. return -6;
  3640.  
  3641. }
  3642. /* if (samples_out>0) */
  3643. }
  3644. /* while (samples_out!=0) */
  3645. }
  3646. /* if (gfc.decode_on_the_fly) */
  3647.  
  3648. }
  3649. /* if (mp3data) */
  3650. return minimum;
  3651. };
  3652.  
  3653. this.init_bit_stream_w = function (gfc) {
  3654. buf = new_byte(Lame.LAME_MAXMP3BUFFER);
  3655.  
  3656. gfc.h_ptr = gfc.w_ptr = 0;
  3657. gfc.header[gfc.h_ptr].write_timing = 0;
  3658. bufByteIdx = -1;
  3659. bufBitIdx = 0;
  3660. totbit = 0;
  3661. };
  3662.  
  3663. // From machine.h
  3664.  
  3665.  
  3666. }
  3667.  
  3668.  
  3669. /**
  3670. * A Vbr header may be present in the ancillary data field of the first frame of
  3671. * an mp3 bitstream<BR>
  3672. * The Vbr header (optionally) contains
  3673. * <UL>
  3674. * <LI>frames total number of audio frames in the bitstream
  3675. * <LI>bytes total number of bytes in the bitstream
  3676. * <LI>toc table of contents
  3677. * </UL>
  3678. *
  3679. * toc (table of contents) gives seek points for random access.<BR>
  3680. * The ith entry determines the seek point for i-percent duration.<BR>
  3681. * seek point in bytes = (toc[i]/256.0) * total_bitstream_bytes<BR>
  3682. * e.g. half duration seek point = (toc[50]/256.0) * total_bitstream_bytes
  3683. */
  3684. VBRTag.NUMTOCENTRIES = 100;
  3685. VBRTag.MAXFRAMESIZE = 2880;
  3686.  
  3687. function VBRTag() {
  3688.  
  3689. var lame;
  3690. var bs;
  3691. var v;
  3692.  
  3693. this.setModules = function (_lame, _bs, _v) {
  3694. lame = _lame;
  3695. bs = _bs;
  3696. v = _v;
  3697. };
  3698.  
  3699. var FRAMES_FLAG = 0x0001;
  3700. var BYTES_FLAG = 0x0002;
  3701. var TOC_FLAG = 0x0004;
  3702. var VBR_SCALE_FLAG = 0x0008;
  3703.  
  3704. var NUMTOCENTRIES = VBRTag.NUMTOCENTRIES;
  3705.  
  3706. /**
  3707. * (0xB40) the max freeformat 640 32kHz framesize.
  3708. */
  3709. var MAXFRAMESIZE = VBRTag.MAXFRAMESIZE;
  3710.  
  3711. /**
  3712. * <PRE>
  3713. * 4 bytes for Header Tag
  3714. * 4 bytes for Header Flags
  3715. * 100 bytes for entry (toc)
  3716. * 4 bytes for frame size
  3717. * 4 bytes for stream size
  3718. * 4 bytes for VBR scale. a VBR quality indicator: 0=best 100=worst
  3719. * 20 bytes for LAME tag. for example, "LAME3.12 (beta 6)"
  3720. * ___________
  3721. * 140 bytes
  3722. * </PRE>
  3723. */
  3724. var VBRHEADERSIZE = (NUMTOCENTRIES + 4 + 4 + 4 + 4 + 4);
  3725.  
  3726. var LAMEHEADERSIZE = (VBRHEADERSIZE + 9 + 1 + 1 + 8
  3727. + 1 + 1 + 3 + 1 + 1 + 2 + 4 + 2 + 2);
  3728.  
  3729. /**
  3730. * The size of the Xing header MPEG-1, bit rate in kbps.
  3731. */
  3732. var XING_BITRATE1 = 128;
  3733. /**
  3734. * The size of the Xing header MPEG-2, bit rate in kbps.
  3735. */
  3736. var XING_BITRATE2 = 64;
  3737. /**
  3738. * The size of the Xing header MPEG-2.5, bit rate in kbps.
  3739. */
  3740. var XING_BITRATE25 = 32;
  3741.  
  3742. /**
  3743. * ISO-8859-1 charset for byte to string operations.
  3744. */
  3745. var ISO_8859_1 = null; //Charset.forName("ISO-8859-1");
  3746.  
  3747. /**
  3748. * VBR header magic string.
  3749. */
  3750. var VBRTag0 = "Xing";
  3751. /**
  3752. * VBR header magic string (VBR == VBRMode.vbr_off).
  3753. */
  3754. var VBRTag1 = "Info";
  3755.  
  3756. /**
  3757. * Lookup table for fast CRC-16 computation. Uses the polynomial
  3758. * x^16+x^15+x^2+1
  3759. */
  3760. var crc16Lookup = [0x0000, 0xC0C1, 0xC181, 0x0140,
  3761. 0xC301, 0x03C0, 0x0280, 0xC241, 0xC601, 0x06C0, 0x0780, 0xC741,
  3762. 0x0500, 0xC5C1, 0xC481, 0x0440, 0xCC01, 0x0CC0, 0x0D80, 0xCD41,
  3763. 0x0F00, 0xCFC1, 0xCE81, 0x0E40, 0x0A00, 0xCAC1, 0xCB81, 0x0B40,
  3764. 0xC901, 0x09C0, 0x0880, 0xC841, 0xD801, 0x18C0, 0x1980, 0xD941,
  3765. 0x1B00, 0xDBC1, 0xDA81, 0x1A40, 0x1E00, 0xDEC1, 0xDF81, 0x1F40,
  3766. 0xDD01, 0x1DC0, 0x1C80, 0xDC41, 0x1400, 0xD4C1, 0xD581, 0x1540,
  3767. 0xD701, 0x17C0, 0x1680, 0xD641, 0xD201, 0x12C0, 0x1380, 0xD341,
  3768. 0x1100, 0xD1C1, 0xD081, 0x1040, 0xF001, 0x30C0, 0x3180, 0xF141,
  3769. 0x3300, 0xF3C1, 0xF281, 0x3240, 0x3600, 0xF6C1, 0xF781, 0x3740,
  3770. 0xF501, 0x35C0, 0x3480, 0xF441, 0x3C00, 0xFCC1, 0xFD81, 0x3D40,
  3771. 0xFF01, 0x3FC0, 0x3E80, 0xFE41, 0xFA01, 0x3AC0, 0x3B80, 0xFB41,
  3772. 0x3900, 0xF9C1, 0xF881, 0x3840, 0x2800, 0xE8C1, 0xE981, 0x2940,
  3773. 0xEB01, 0x2BC0, 0x2A80, 0xEA41, 0xEE01, 0x2EC0, 0x2F80, 0xEF41,
  3774. 0x2D00, 0xEDC1, 0xEC81, 0x2C40, 0xE401, 0x24C0, 0x2580, 0xE541,
  3775. 0x2700, 0xE7C1, 0xE681, 0x2640, 0x2200, 0xE2C1, 0xE381, 0x2340,
  3776. 0xE101, 0x21C0, 0x2080, 0xE041, 0xA001, 0x60C0, 0x6180, 0xA141,
  3777. 0x6300, 0xA3C1, 0xA281, 0x6240, 0x6600, 0xA6C1, 0xA781, 0x6740,
  3778. 0xA501, 0x65C0, 0x6480, 0xA441, 0x6C00, 0xACC1, 0xAD81, 0x6D40,
  3779. 0xAF01, 0x6FC0, 0x6E80, 0xAE41, 0xAA01, 0x6AC0, 0x6B80, 0xAB41,
  3780. 0x6900, 0xA9C1, 0xA881, 0x6840, 0x7800, 0xB8C1, 0xB981, 0x7940,
  3781. 0xBB01, 0x7BC0, 0x7A80, 0xBA41, 0xBE01, 0x7EC0, 0x7F80, 0xBF41,
  3782. 0x7D00, 0xBDC1, 0xBC81, 0x7C40, 0xB401, 0x74C0, 0x7580, 0xB541,
  3783. 0x7700, 0xB7C1, 0xB681, 0x7640, 0x7200, 0xB2C1, 0xB381, 0x7340,
  3784. 0xB101, 0x71C0, 0x7080, 0xB041, 0x5000, 0x90C1, 0x9181, 0x5140,
  3785. 0x9301, 0x53C0, 0x5280, 0x9241, 0x9601, 0x56C0, 0x5780, 0x9741,
  3786. 0x5500, 0x95C1, 0x9481, 0x5440, 0x9C01, 0x5CC0, 0x5D80, 0x9D41,
  3787. 0x5F00, 0x9FC1, 0x9E81, 0x5E40, 0x5A00, 0x9AC1, 0x9B81, 0x5B40,
  3788. 0x9901, 0x59C0, 0x5880, 0x9841, 0x8801, 0x48C0, 0x4980, 0x8941,
  3789. 0x4B00, 0x8BC1, 0x8A81, 0x4A40, 0x4E00, 0x8EC1, 0x8F81, 0x4F40,
  3790. 0x8D01, 0x4DC0, 0x4C80, 0x8C41, 0x4400, 0x84C1, 0x8581, 0x4540,
  3791. 0x8701, 0x47C0, 0x4680, 0x8641, 0x8201, 0x42C0, 0x4380, 0x8341,
  3792. 0x4100, 0x81C1, 0x8081, 0x4040];
  3793.  
  3794. /***********************************************************************
  3795. * Robert Hegemann 2001-01-17
  3796. ***********************************************************************/
  3797.  
  3798. function addVbr(v, bitrate) {
  3799. v.nVbrNumFrames++;
  3800. v.sum += bitrate;
  3801. v.seen++;
  3802.  
  3803. if (v.seen < v.want) {
  3804. return;
  3805. }
  3806.  
  3807. if (v.pos < v.size) {
  3808. v.bag[v.pos] = v.sum;
  3809. v.pos++;
  3810. v.seen = 0;
  3811. }
  3812. if (v.pos == v.size) {
  3813. for (var i = 1; i < v.size; i += 2) {
  3814. v.bag[i / 2] = v.bag[i];
  3815. }
  3816. v.want *= 2;
  3817. v.pos /= 2;
  3818. }
  3819. }
  3820.  
  3821. function xingSeekTable(v, t) {
  3822. if (v.pos <= 0)
  3823. return;
  3824.  
  3825. for (var i = 1; i < NUMTOCENTRIES; ++i) {
  3826. var j = i / NUMTOCENTRIES, act, sum;
  3827. var indx = 0 | (Math.floor(j * v.pos));
  3828. if (indx > v.pos - 1)
  3829. indx = v.pos - 1;
  3830. act = v.bag[indx];
  3831. sum = v.sum;
  3832. var seek_point = 0 | (256. * act / sum);
  3833. if (seek_point > 255)
  3834. seek_point = 255;
  3835. t[i] = 0xff & seek_point;
  3836. }
  3837. }
  3838.  
  3839. /**
  3840. * Add VBR entry, used to fill the VBR TOC entries.
  3841. *
  3842. * @param gfp
  3843. * global flags
  3844. */
  3845. this.addVbrFrame = function (gfp) {
  3846. var gfc = gfp.internal_flags;
  3847. var kbps = Tables.bitrate_table[gfp.version][gfc.bitrate_index];
  3848. addVbr(gfc.VBR_seek_table, kbps);
  3849. }
  3850.  
  3851. /**
  3852. * Read big endian integer (4-bytes) from header.
  3853. *
  3854. * @param buf
  3855. * header containing the integer
  3856. * @param bufPos
  3857. * offset into the header
  3858. * @return extracted integer
  3859. */
  3860. function extractInteger(buf, bufPos) {
  3861. var x = buf[bufPos + 0] & 0xff;
  3862. x <<= 8;
  3863. x |= buf[bufPos + 1] & 0xff;
  3864. x <<= 8;
  3865. x |= buf[bufPos + 2] & 0xff;
  3866. x <<= 8;
  3867. x |= buf[bufPos + 3] & 0xff;
  3868. return x;
  3869. }
  3870.  
  3871. /**
  3872. * Write big endian integer (4-bytes) in the header.
  3873. *
  3874. * @param buf
  3875. * header to write the integer into
  3876. * @param bufPos
  3877. * offset into the header
  3878. * @param value
  3879. * integer value to write
  3880. */
  3881. function createInteger(buf, bufPos, value) {
  3882. buf[bufPos + 0] = 0xff & ((value >> 24) & 0xff);
  3883. buf[bufPos + 1] = 0xff & ((value >> 16) & 0xff);
  3884. buf[bufPos + 2] = 0xff & ((value >> 8) & 0xff);
  3885. buf[bufPos + 3] = 0xff & (value & 0xff);
  3886. }
  3887.  
  3888. /**
  3889. * Write big endian short (2-bytes) in the header.
  3890. *
  3891. * @param buf
  3892. * header to write the integer into
  3893. * @param bufPos
  3894. * offset into the header
  3895. * @param value
  3896. * integer value to write
  3897. */
  3898. function createShort(buf, bufPos, value) {
  3899. buf[bufPos + 0] = 0xff & ((value >> 8) & 0xff);
  3900. buf[bufPos + 1] = 0xff & (value & 0xff);
  3901. }
  3902.  
  3903. /**
  3904. * Check for magic strings (Xing/Info).
  3905. *
  3906. * @param buf
  3907. * header to check
  3908. * @param bufPos
  3909. * header offset to check
  3910. * @return magic string found
  3911. */
  3912. function isVbrTag(buf, bufPos) {
  3913. return new String(buf, bufPos, VBRTag0.length(), ISO_8859_1)
  3914. .equals(VBRTag0)
  3915. || new String(buf, bufPos, VBRTag1.length(), ISO_8859_1)
  3916. .equals(VBRTag1);
  3917. }
  3918.  
  3919. function shiftInBitsValue(x, n, v) {
  3920. return 0xff & ((x << n) | (v & ~(-1 << n)));
  3921. }
  3922.  
  3923. /**
  3924. * Construct the MP3 header using the settings of the global flags.
  3925. *
  3926. * <img src="1000px-Mp3filestructure.svg.png">
  3927. *
  3928. * @param gfp
  3929. * global flags
  3930. * @param buffer
  3931. * header
  3932. */
  3933. function setLameTagFrameHeader(gfp, buffer) {
  3934. var gfc = gfp.internal_flags;
  3935.  
  3936. // MP3 Sync Word
  3937. buffer[0] = shiftInBitsValue(buffer[0], 8, 0xff);
  3938.  
  3939. buffer[1] = shiftInBitsValue(buffer[1], 3, 7);
  3940. buffer[1] = shiftInBitsValue(buffer[1], 1,
  3941. (gfp.out_samplerate < 16000) ? 0 : 1);
  3942. // Version
  3943. buffer[1] = shiftInBitsValue(buffer[1], 1, gfp.version);
  3944. // 01 == Layer 3
  3945. buffer[1] = shiftInBitsValue(buffer[1], 2, 4 - 3);
  3946. // Error protection
  3947. buffer[1] = shiftInBitsValue(buffer[1], 1, (!gfp.error_protection) ? 1
  3948. : 0);
  3949.  
  3950. // Bit rate
  3951. buffer[2] = shiftInBitsValue(buffer[2], 4, gfc.bitrate_index);
  3952. // Frequency
  3953. buffer[2] = shiftInBitsValue(buffer[2], 2, gfc.samplerate_index);
  3954. // Pad. Bit
  3955. buffer[2] = shiftInBitsValue(buffer[2], 1, 0);
  3956. // Priv. Bit
  3957. buffer[2] = shiftInBitsValue(buffer[2], 1, gfp.extension);
  3958.  
  3959. // Mode
  3960. buffer[3] = shiftInBitsValue(buffer[3], 2, gfp.mode.ordinal());
  3961. // Mode extension (Used with Joint Stereo)
  3962. buffer[3] = shiftInBitsValue(buffer[3], 2, gfc.mode_ext);
  3963. // Copy
  3964. buffer[3] = shiftInBitsValue(buffer[3], 1, gfp.copyright);
  3965. // Original
  3966. buffer[3] = shiftInBitsValue(buffer[3], 1, gfp.original);
  3967. // Emphasis
  3968. buffer[3] = shiftInBitsValue(buffer[3], 2, gfp.emphasis);
  3969.  
  3970. /* the default VBR header. 48 kbps layer III, no padding, no crc */
  3971. /* but sampling freq, mode and copyright/copy protection taken */
  3972. /* from first valid frame */
  3973. buffer[0] = 0xff;
  3974. var abyte = 0xff & (buffer[1] & 0xf1);
  3975. var bitrate;
  3976. if (1 == gfp.version) {
  3977. bitrate = XING_BITRATE1;
  3978. } else {
  3979. if (gfp.out_samplerate < 16000)
  3980. bitrate = XING_BITRATE25;
  3981. else
  3982. bitrate = XING_BITRATE2;
  3983. }
  3984.  
  3985. if (gfp.VBR == VbrMode.vbr_off)
  3986. bitrate = gfp.brate;
  3987.  
  3988. var bbyte;
  3989. if (gfp.free_format)
  3990. bbyte = 0x00;
  3991. else
  3992. bbyte = 0xff & (16 * lame.BitrateIndex(bitrate, gfp.version,
  3993. gfp.out_samplerate));
  3994.  
  3995. /*
  3996. * Use as much of the info from the real frames in the Xing header:
  3997. * samplerate, channels, crc, etc...
  3998. */
  3999. if (gfp.version == 1) {
  4000. /* MPEG1 */
  4001. buffer[1] = 0xff & (abyte | 0x0a);
  4002. /* was 0x0b; */
  4003. abyte = 0xff & (buffer[2] & 0x0d);
  4004. /* AF keep also private bit */
  4005. buffer[2] = 0xff & (bbyte | abyte);
  4006. /* 64kbs MPEG1 frame */
  4007. } else {
  4008. /* MPEG2 */
  4009. buffer[1] = 0xff & (abyte | 0x02);
  4010. /* was 0x03; */
  4011. abyte = 0xff & (buffer[2] & 0x0d);
  4012. /* AF keep also private bit */
  4013. buffer[2] = 0xff & (bbyte | abyte);
  4014. /* 64kbs MPEG2 frame */
  4015. }
  4016. }
  4017.  
  4018. /**
  4019. * Get VBR tag information
  4020. *
  4021. * @param buf
  4022. * header to analyze
  4023. * @param bufPos
  4024. * offset into the header
  4025. * @return VBR tag data
  4026. */
  4027. this.getVbrTag = function (buf) {
  4028. var pTagData = new VBRTagData();
  4029. var bufPos = 0;
  4030.  
  4031. /* get Vbr header data */
  4032. pTagData.flags = 0;
  4033.  
  4034. /* get selected MPEG header data */
  4035. var hId = (buf[bufPos + 1] >> 3) & 1;
  4036. var hSrIndex = (buf[bufPos + 2] >> 2) & 3;
  4037. var hMode = (buf[bufPos + 3] >> 6) & 3;
  4038. var hBitrate = ((buf[bufPos + 2] >> 4) & 0xf);
  4039. hBitrate = Tables.bitrate_table[hId][hBitrate];
  4040.  
  4041. /* check for FFE syncword */
  4042. if ((buf[bufPos + 1] >> 4) == 0xE)
  4043. pTagData.samprate = Tables.samplerate_table[2][hSrIndex];
  4044. else
  4045. pTagData.samprate = Tables.samplerate_table[hId][hSrIndex];
  4046.  
  4047. /* determine offset of header */
  4048. if (hId != 0) {
  4049. /* mpeg1 */
  4050. if (hMode != 3)
  4051. bufPos += (32 + 4);
  4052. else
  4053. bufPos += (17 + 4);
  4054. } else {
  4055. /* mpeg2 */
  4056. if (hMode != 3)
  4057. bufPos += (17 + 4);
  4058. else
  4059. bufPos += (9 + 4);
  4060. }
  4061.  
  4062. if (!isVbrTag(buf, bufPos))
  4063. return null;
  4064.  
  4065. bufPos += 4;
  4066.  
  4067. pTagData.hId = hId;
  4068.  
  4069. /* get flags */
  4070. var head_flags = pTagData.flags = extractInteger(buf, bufPos);
  4071. bufPos += 4;
  4072.  
  4073. if ((head_flags & FRAMES_FLAG) != 0) {
  4074. pTagData.frames = extractInteger(buf, bufPos);
  4075. bufPos += 4;
  4076. }
  4077.  
  4078. if ((head_flags & BYTES_FLAG) != 0) {
  4079. pTagData.bytes = extractInteger(buf, bufPos);
  4080. bufPos += 4;
  4081. }
  4082.  
  4083. if ((head_flags & TOC_FLAG) != 0) {
  4084. if (pTagData.toc != null) {
  4085. for (var i = 0; i < NUMTOCENTRIES; i++)
  4086. pTagData.toc[i] = buf[bufPos + i];
  4087. }
  4088. bufPos += NUMTOCENTRIES;
  4089. }
  4090.  
  4091. pTagData.vbrScale = -1;
  4092.  
  4093. if ((head_flags & VBR_SCALE_FLAG) != 0) {
  4094. pTagData.vbrScale = extractInteger(buf, bufPos);
  4095. bufPos += 4;
  4096. }
  4097.  
  4098. pTagData.headersize = ((hId + 1) * 72000 * hBitrate)
  4099. / pTagData.samprate;
  4100.  
  4101. bufPos += 21;
  4102. var encDelay = buf[bufPos + 0] << 4;
  4103. encDelay += buf[bufPos + 1] >> 4;
  4104. var encPadding = (buf[bufPos + 1] & 0x0F) << 8;
  4105. encPadding += buf[bufPos + 2] & 0xff;
  4106. /* check for reasonable values (this may be an old Xing header, */
  4107. /* not a INFO tag) */
  4108. if (encDelay < 0 || encDelay > 3000)
  4109. encDelay = -1;
  4110. if (encPadding < 0 || encPadding > 3000)
  4111. encPadding = -1;
  4112.  
  4113. pTagData.encDelay = encDelay;
  4114. pTagData.encPadding = encPadding;
  4115.  
  4116. /* success */
  4117. return pTagData;
  4118. }
  4119.  
  4120. /**
  4121. * Initializes the header
  4122. *
  4123. * @param gfp
  4124. * global flags
  4125. */
  4126. this.InitVbrTag = function (gfp) {
  4127. var gfc = gfp.internal_flags;
  4128.  
  4129. /**
  4130. * <PRE>
  4131. * Xing VBR pretends to be a 48kbs layer III frame. (at 44.1kHz).
  4132. * (at 48kHz they use 56kbs since 48kbs frame not big enough for
  4133. * table of contents)
  4134. * let's always embed Xing header inside a 64kbs layer III frame.
  4135. * this gives us enough room for a LAME version string too.
  4136. * size determined by sampling frequency (MPEG1)
  4137. * 32kHz: 216 bytes@48kbs 288bytes@ 64kbs
  4138. * 44.1kHz: 156 bytes 208bytes@64kbs (+1 if padding = 1)
  4139. * 48kHz: 144 bytes 192
  4140. *
  4141. * MPEG 2 values are the same since the framesize and samplerate
  4142. * are each reduced by a factor of 2.
  4143. * </PRE>
  4144. */
  4145. var kbps_header;
  4146. if (1 == gfp.version) {
  4147. kbps_header = XING_BITRATE1;
  4148. } else {
  4149. if (gfp.out_samplerate < 16000)
  4150. kbps_header = XING_BITRATE25;
  4151. else
  4152. kbps_header = XING_BITRATE2;
  4153. }
  4154.  
  4155. if (gfp.VBR == VbrMode.vbr_off)
  4156. kbps_header = gfp.brate;
  4157.  
  4158. // make sure LAME Header fits into Frame
  4159. var totalFrameSize = ((gfp.version + 1) * 72000 * kbps_header)
  4160. / gfp.out_samplerate;
  4161. var headerSize = (gfc.sideinfo_len + LAMEHEADERSIZE);
  4162. gfc.VBR_seek_table.TotalFrameSize = totalFrameSize;
  4163. if (totalFrameSize < headerSize || totalFrameSize > MAXFRAMESIZE) {
  4164. /* disable tag, it wont fit */
  4165. gfp.bWriteVbrTag = false;
  4166. return;
  4167. }
  4168.  
  4169. gfc.VBR_seek_table.nVbrNumFrames = 0;
  4170. gfc.VBR_seek_table.nBytesWritten = 0;
  4171. gfc.VBR_seek_table.sum = 0;
  4172.  
  4173. gfc.VBR_seek_table.seen = 0;
  4174. gfc.VBR_seek_table.want = 1;
  4175. gfc.VBR_seek_table.pos = 0;
  4176.  
  4177. if (gfc.VBR_seek_table.bag == null) {
  4178. gfc.VBR_seek_table.bag = new int[400];
  4179. gfc.VBR_seek_table.size = 400;
  4180. }
  4181.  
  4182. // write dummy VBR tag of all 0's into bitstream
  4183. var buffer = new_byte(MAXFRAMESIZE);
  4184.  
  4185. setLameTagFrameHeader(gfp, buffer);
  4186. var n = gfc.VBR_seek_table.TotalFrameSize;
  4187. for (var i = 0; i < n; ++i) {
  4188. bs.add_dummy_byte(gfp, buffer[i] & 0xff, 1);
  4189. }
  4190. }
  4191.  
  4192. /**
  4193. * Fast CRC-16 computation (uses table crc16Lookup).
  4194. *
  4195. * @param value
  4196. * @param crc
  4197. * @return
  4198. */
  4199. function crcUpdateLookup(value, crc) {
  4200. var tmp = crc ^ value;
  4201. crc = (crc >> 8) ^ crc16Lookup[tmp & 0xff];
  4202. return crc;
  4203. }
  4204.  
  4205. this.updateMusicCRC = function (crc, buffer, bufferPos, size) {
  4206. for (var i = 0; i < size; ++i)
  4207. crc[0] = crcUpdateLookup(buffer[bufferPos + i], crc[0]);
  4208. }
  4209.  
  4210. /**
  4211. * Write LAME info: mini version + info on various switches used (Jonathan
  4212. * Dee 2001/08/31).
  4213. *
  4214. * @param gfp
  4215. * global flags
  4216. * @param musicLength
  4217. * music length
  4218. * @param streamBuffer
  4219. * pointer to output buffer
  4220. * @param streamBufferPos
  4221. * offset into the output buffer
  4222. * @param crc
  4223. * computation of CRC-16 of Lame Tag so far (starting at frame
  4224. * sync)
  4225. * @return number of bytes written to the stream
  4226. */
  4227. function putLameVBR(gfp, musicLength, streamBuffer, streamBufferPos, crc) {
  4228. var gfc = gfp.internal_flags;
  4229. var bytesWritten = 0;
  4230.  
  4231. /* encoder delay */
  4232. var encDelay = gfp.encoder_delay;
  4233. /* encoder padding */
  4234. var encPadding = gfp.encoder_padding;
  4235.  
  4236. /* recall: gfp.VBR_q is for example set by the switch -V */
  4237. /* gfp.quality by -q, -h, -f, etc */
  4238. var quality = (100 - 10 * gfp.VBR_q - gfp.quality);
  4239.  
  4240. var version = v.getLameVeryShortVersion();
  4241. var vbr;
  4242. var revision = 0x00;
  4243. var revMethod;
  4244. // numbering different in vbr_mode vs. Lame tag
  4245. var vbrTypeTranslator = [1, 5, 3, 2, 4, 0, 3];
  4246. var lowpass = 0 | (((gfp.lowpassfreq / 100.0) + .5) > 255 ? 255
  4247. : (gfp.lowpassfreq / 100.0) + .5);
  4248. var peakSignalAmplitude = 0;
  4249. var radioReplayGain = 0;
  4250. var audiophileReplayGain = 0;
  4251. var noiseShaping = gfp.internal_flags.noise_shaping;
  4252. var stereoMode = 0;
  4253. var nonOptimal = 0;
  4254. var sourceFreq = 0;
  4255. var misc = 0;
  4256. var musicCRC = 0;
  4257.  
  4258. // psy model type: Gpsycho or NsPsytune
  4259. var expNPsyTune = (gfp.exp_nspsytune & 1) != 0;
  4260. var safeJoint = (gfp.exp_nspsytune & 2) != 0;
  4261. var noGapMore = false;
  4262. var noGapPrevious = false;
  4263. var noGapCount = gfp.internal_flags.nogap_total;
  4264. var noGapCurr = gfp.internal_flags.nogap_current;
  4265.  
  4266. // 4 bits
  4267. var athType = gfp.ATHtype;
  4268. var flags = 0;
  4269.  
  4270. // vbr modes
  4271. var abrBitrate;
  4272. switch (gfp.VBR) {
  4273. case vbr_abr:
  4274. abrBitrate = gfp.VBR_mean_bitrate_kbps;
  4275. break;
  4276. case vbr_off:
  4277. abrBitrate = gfp.brate;
  4278. break;
  4279. default:
  4280. abrBitrate = gfp.VBR_min_bitrate_kbps;
  4281. }
  4282.  
  4283. // revision and vbr method
  4284. if (gfp.VBR.ordinal() < vbrTypeTranslator.length)
  4285. vbr = vbrTypeTranslator[gfp.VBR.ordinal()];
  4286. else
  4287. vbr = 0x00; // unknown
  4288.  
  4289. revMethod = 0x10 * revision + vbr;
  4290.  
  4291. // ReplayGain
  4292. if (gfc.findReplayGain) {
  4293. if (gfc.RadioGain > 0x1FE)
  4294. gfc.RadioGain = 0x1FE;
  4295. if (gfc.RadioGain < -0x1FE)
  4296. gfc.RadioGain = -0x1FE;
  4297.  
  4298. // set name code
  4299. radioReplayGain = 0x2000;
  4300. // set originator code to `determined automatically'
  4301. radioReplayGain |= 0xC00;
  4302.  
  4303. if (gfc.RadioGain >= 0) {
  4304. // set gain adjustment
  4305. radioReplayGain |= gfc.RadioGain;
  4306. } else {
  4307. // set the sign bit
  4308. radioReplayGain |= 0x200;
  4309. // set gain adjustment
  4310. radioReplayGain |= -gfc.RadioGain;
  4311. }
  4312. }
  4313.  
  4314. // peak sample
  4315. if (gfc.findPeakSample)
  4316. peakSignalAmplitude = Math
  4317. .abs(0 | ((( gfc.PeakSample) / 32767.0) * Math.pow(2, 23) + .5));
  4318.  
  4319. // nogap
  4320. if (noGapCount != -1) {
  4321. if (noGapCurr > 0)
  4322. noGapPrevious = true;
  4323.  
  4324. if (noGapCurr < noGapCount - 1)
  4325. noGapMore = true;
  4326. }
  4327.  
  4328. // flags
  4329. flags = athType + ((expNPsyTune ? 1 : 0) << 4)
  4330. + ((safeJoint ? 1 : 0) << 5) + ((noGapMore ? 1 : 0) << 6)
  4331. + ((noGapPrevious ? 1 : 0) << 7);
  4332.  
  4333. if (quality < 0)
  4334. quality = 0;
  4335.  
  4336. // stereo mode field (Intensity stereo is not implemented)
  4337. switch (gfp.mode) {
  4338. case MONO:
  4339. stereoMode = 0;
  4340. break;
  4341. case STEREO:
  4342. stereoMode = 1;
  4343. break;
  4344. case DUAL_CHANNEL:
  4345. stereoMode = 2;
  4346. break;
  4347. case JOINT_STEREO:
  4348. if (gfp.force_ms)
  4349. stereoMode = 4;
  4350. else
  4351. stereoMode = 3;
  4352. break;
  4353. case NOT_SET:
  4354. //$FALL-THROUGH$
  4355. default:
  4356. stereoMode = 7;
  4357. break;
  4358. }
  4359.  
  4360. if (gfp.in_samplerate <= 32000)
  4361. sourceFreq = 0x00;
  4362. else if (gfp.in_samplerate == 48000)
  4363. sourceFreq = 0x02;
  4364. else if (gfp.in_samplerate > 48000)
  4365. sourceFreq = 0x03;
  4366. else {
  4367. // default is 44100Hz
  4368. sourceFreq = 0x01;
  4369. }
  4370.  
  4371. // Check if the user overrided the default LAME behavior with some
  4372. // nasty options
  4373. if (gfp.short_blocks == ShortBlock.short_block_forced
  4374. || gfp.short_blocks == ShortBlock.short_block_dispensed
  4375. || ((gfp.lowpassfreq == -1) && (gfp.highpassfreq == -1)) || /* "-k" */
  4376. (gfp.scale_left < gfp.scale_right)
  4377. || (gfp.scale_left > gfp.scale_right)
  4378. || (gfp.disable_reservoir && gfp.brate < 320) || gfp.noATH
  4379. || gfp.ATHonly || (athType == 0) || gfp.in_samplerate <= 32000)
  4380. nonOptimal = 1;
  4381.  
  4382. misc = noiseShaping + (stereoMode << 2) + (nonOptimal << 5)
  4383. + (sourceFreq << 6);
  4384.  
  4385. musicCRC = gfc.nMusicCRC;
  4386.  
  4387. // Write all this information into the stream
  4388.  
  4389. createInteger(streamBuffer, streamBufferPos + bytesWritten, quality);
  4390. bytesWritten += 4;
  4391.  
  4392. for (var j = 0; j < 9; j++) {
  4393. streamBuffer[streamBufferPos + bytesWritten + j] = 0xff & version .charAt(j);
  4394. }
  4395. bytesWritten += 9;
  4396.  
  4397. streamBuffer[streamBufferPos + bytesWritten] = 0xff & revMethod;
  4398. bytesWritten++;
  4399.  
  4400. streamBuffer[streamBufferPos + bytesWritten] = 0xff & lowpass;
  4401. bytesWritten++;
  4402.  
  4403. createInteger(streamBuffer, streamBufferPos + bytesWritten,
  4404. peakSignalAmplitude);
  4405. bytesWritten += 4;
  4406.  
  4407. createShort(streamBuffer, streamBufferPos + bytesWritten,
  4408. radioReplayGain);
  4409. bytesWritten += 2;
  4410.  
  4411. createShort(streamBuffer, streamBufferPos + bytesWritten,
  4412. audiophileReplayGain);
  4413. bytesWritten += 2;
  4414.  
  4415. streamBuffer[streamBufferPos + bytesWritten] = 0xff & flags;
  4416. bytesWritten++;
  4417.  
  4418. if (abrBitrate >= 255)
  4419. streamBuffer[streamBufferPos + bytesWritten] = 0xFF;
  4420. else
  4421. streamBuffer[streamBufferPos + bytesWritten] = 0xff & abrBitrate;
  4422. bytesWritten++;
  4423.  
  4424. streamBuffer[streamBufferPos + bytesWritten] = 0xff & (encDelay >> 4);
  4425. streamBuffer[streamBufferPos + bytesWritten + 1] = 0xff & ((encDelay << 4) + (encPadding >> 8));
  4426. streamBuffer[streamBufferPos + bytesWritten + 2] = 0xff & encPadding;
  4427.  
  4428. bytesWritten += 3;
  4429.  
  4430. streamBuffer[streamBufferPos + bytesWritten] = 0xff & misc;
  4431. bytesWritten++;
  4432.  
  4433. // unused in rev0
  4434. streamBuffer[streamBufferPos + bytesWritten++] = 0;
  4435.  
  4436. createShort(streamBuffer, streamBufferPos + bytesWritten, gfp.preset);
  4437. bytesWritten += 2;
  4438.  
  4439. createInteger(streamBuffer, streamBufferPos + bytesWritten, musicLength);
  4440. bytesWritten += 4;
  4441.  
  4442. createShort(streamBuffer, streamBufferPos + bytesWritten, musicCRC);
  4443. bytesWritten += 2;
  4444.  
  4445. // Calculate tag CRC.... must be done here, since it includes previous
  4446. // information
  4447.  
  4448. for (var i = 0; i < bytesWritten; i++)
  4449. crc = crcUpdateLookup(streamBuffer[streamBufferPos + i], crc);
  4450.  
  4451. createShort(streamBuffer, streamBufferPos + bytesWritten, crc);
  4452. bytesWritten += 2;
  4453.  
  4454. return bytesWritten;
  4455. }
  4456.  
  4457. function skipId3v2(fpStream) {
  4458. // seek to the beginning of the stream
  4459. fpStream.seek(0);
  4460. // read 10 bytes in case there's an ID3 version 2 header here
  4461. var id3v2Header = new_byte(10);
  4462. fpStream.readFully(id3v2Header);
  4463. /* does the stream begin with the ID3 version 2 file identifier? */
  4464. var id3v2TagSize;
  4465. if (!new String(id3v2Header, "ISO-8859-1").startsWith("ID3")) {
  4466. /*
  4467. * the tag size (minus the 10-byte header) is encoded into four
  4468. * bytes where the most significant bit is clear in each byte
  4469. */
  4470. id3v2TagSize = (((id3v2Header[6] & 0x7f) << 21)
  4471. | ((id3v2Header[7] & 0x7f) << 14)
  4472. | ((id3v2Header[8] & 0x7f) << 7) | (id3v2Header[9] & 0x7f))
  4473. + id3v2Header.length;
  4474. } else {
  4475. /* no ID3 version 2 tag in this stream */
  4476. id3v2TagSize = 0;
  4477. }
  4478. return id3v2TagSize;
  4479. }
  4480.  
  4481. this.getLameTagFrame = function (gfp, buffer) {
  4482. var gfc = gfp.internal_flags;
  4483.  
  4484. if (!gfp.bWriteVbrTag) {
  4485. return 0;
  4486. }
  4487. if (gfc.Class_ID != Lame.LAME_ID) {
  4488. return 0;
  4489. }
  4490. if (gfc.VBR_seek_table.pos <= 0) {
  4491. return 0;
  4492. }
  4493. if (buffer.length < gfc.VBR_seek_table.TotalFrameSize) {
  4494. return gfc.VBR_seek_table.TotalFrameSize;
  4495. }
  4496.  
  4497. Arrays.fill(buffer, 0, gfc.VBR_seek_table.TotalFrameSize, 0);
  4498.  
  4499. // 4 bytes frame header
  4500. setLameTagFrameHeader(gfp, buffer);
  4501.  
  4502. // Create TOC entries
  4503. var toc = new_byte(NUMTOCENTRIES);
  4504.  
  4505. if (gfp.free_format) {
  4506. for (var i = 1; i < NUMTOCENTRIES; ++i)
  4507. toc[i] = 0xff & (255 * i / 100);
  4508. } else {
  4509. xingSeekTable(gfc.VBR_seek_table, toc);
  4510. }
  4511.  
  4512. // Start writing the tag after the zero frame
  4513. var streamIndex = gfc.sideinfo_len;
  4514. /**
  4515. * Note: Xing header specifies that Xing data goes in the ancillary data
  4516. * with NO ERROR PROTECTION. If error protecton in enabled, the Xing
  4517. * data still starts at the same offset, and now it is in sideinfo data
  4518. * block, and thus will not decode correctly by non-Xing tag aware
  4519. * players
  4520. */
  4521. if (gfp.error_protection)
  4522. streamIndex -= 2;
  4523.  
  4524. // Put Vbr tag
  4525. if (gfp.VBR == VbrMode.vbr_off) {
  4526. buffer[streamIndex++] = 0xff & VBRTag1.charAt(0);
  4527. buffer[streamIndex++] = 0xff & VBRTag1.charAt(1);
  4528. buffer[streamIndex++] = 0xff & VBRTag1.charAt(2);
  4529. buffer[streamIndex++] = 0xff & VBRTag1.charAt(3);
  4530.  
  4531. } else {
  4532. buffer[streamIndex++] = 0xff & VBRTag0.charAt(0);
  4533. buffer[streamIndex++] = 0xff & VBRTag0.charAt(1);
  4534. buffer[streamIndex++] = 0xff & VBRTag0.charAt(2);
  4535. buffer[streamIndex++] = 0xff & VBRTag0.charAt(3);
  4536. }
  4537.  
  4538. // Put header flags
  4539. createInteger(buffer, streamIndex, FRAMES_FLAG + BYTES_FLAG + TOC_FLAG
  4540. + VBR_SCALE_FLAG);
  4541. streamIndex += 4;
  4542.  
  4543. // Put Total Number of frames
  4544. createInteger(buffer, streamIndex, gfc.VBR_seek_table.nVbrNumFrames);
  4545. streamIndex += 4;
  4546.  
  4547. // Put total audio stream size, including Xing/LAME Header
  4548. var streamSize = (gfc.VBR_seek_table.nBytesWritten + gfc.VBR_seek_table.TotalFrameSize);
  4549. createInteger(buffer, streamIndex, 0 | streamSize);
  4550. streamIndex += 4;
  4551.  
  4552. /* Put TOC */
  4553. System.arraycopy(toc, 0, buffer, streamIndex, toc.length);
  4554. streamIndex += toc.length;
  4555.  
  4556. if (gfp.error_protection) {
  4557. // (jo) error_protection: add crc16 information to header
  4558. bs.CRC_writeheader(gfc, buffer);
  4559. }
  4560.  
  4561. // work out CRC so far: initially crc = 0
  4562. var crc = 0x00;
  4563. for (var i = 0; i < streamIndex; i++)
  4564. crc = crcUpdateLookup(buffer[i], crc);
  4565. // Put LAME VBR info
  4566. streamIndex += putLameVBR(gfp, streamSize, buffer, streamIndex, crc);
  4567.  
  4568. return gfc.VBR_seek_table.TotalFrameSize;
  4569. }
  4570.  
  4571. /**
  4572. * Write final VBR tag to the file.
  4573. *
  4574. * @param gfp
  4575. * global flags
  4576. * @param stream
  4577. * stream to add the VBR tag to
  4578. * @return 0 (OK), -1 else
  4579. * @throws IOException
  4580. * I/O error
  4581. */
  4582. this.putVbrTag = function (gfp, stream) {
  4583. var gfc = gfp.internal_flags;
  4584.  
  4585. if (gfc.VBR_seek_table.pos <= 0)
  4586. return -1;
  4587.  
  4588. // Seek to end of file
  4589. stream.seek(stream.length());
  4590.  
  4591. // Get file size, abort if file has zero length.
  4592. if (stream.length() == 0)
  4593. return -1;
  4594.  
  4595. // The VBR tag may NOT be located at the beginning of the stream. If an
  4596. // ID3 version 2 tag was added, then it must be skipped to write the VBR
  4597. // tag data.
  4598. var id3v2TagSize = skipId3v2(stream);
  4599.  
  4600. // Seek to the beginning of the stream
  4601. stream.seek(id3v2TagSize);
  4602.  
  4603. var buffer = new_byte(MAXFRAMESIZE);
  4604. var bytes = getLameTagFrame(gfp, buffer);
  4605. if (bytes > buffer.length) {
  4606. return -1;
  4607. }
  4608.  
  4609. if (bytes < 1) {
  4610. return 0;
  4611. }
  4612.  
  4613. // Put it all to disk again
  4614. stream.write(buffer, 0, bytes);
  4615. // success
  4616. return 0;
  4617. }
  4618.  
  4619. }
  4620.  
  4621. function HuffCodeTab(len, max, tab, hl) {
  4622. this.xlen = len;
  4623. this.linmax = max;
  4624. this.table = tab;
  4625. this.hlen = hl;
  4626. }
  4627.  
  4628. var Tables = {};
  4629.  
  4630.  
  4631. Tables.t1HB = [
  4632. 1, 1,
  4633. 1, 0
  4634. ];
  4635.  
  4636. Tables.t2HB = [
  4637. 1, 2, 1,
  4638. 3, 1, 1,
  4639. 3, 2, 0
  4640. ];
  4641.  
  4642. Tables.t3HB = [
  4643. 3, 2, 1,
  4644. 1, 1, 1,
  4645. 3, 2, 0
  4646. ];
  4647.  
  4648. Tables.t5HB = [
  4649. 1, 2, 6, 5,
  4650. 3, 1, 4, 4,
  4651. 7, 5, 7, 1,
  4652. 6, 1, 1, 0
  4653. ];
  4654.  
  4655. Tables.t6HB = [
  4656. 7, 3, 5, 1,
  4657. 6, 2, 3, 2,
  4658. 5, 4, 4, 1,
  4659. 3, 3, 2, 0
  4660. ];
  4661.  
  4662. Tables.t7HB = [
  4663. 1, 2, 10, 19, 16, 10,
  4664. 3, 3, 7, 10, 5, 3,
  4665. 11, 4, 13, 17, 8, 4,
  4666. 12, 11, 18, 15, 11, 2,
  4667. 7, 6, 9, 14, 3, 1,
  4668. 6, 4, 5, 3, 2, 0
  4669. ];
  4670.  
  4671. Tables.t8HB = [
  4672. 3, 4, 6, 18, 12, 5,
  4673. 5, 1, 2, 16, 9, 3,
  4674. 7, 3, 5, 14, 7, 3,
  4675. 19, 17, 15, 13, 10, 4,
  4676. 13, 5, 8, 11, 5, 1,
  4677. 12, 4, 4, 1, 1, 0
  4678. ];
  4679.  
  4680. Tables.t9HB = [
  4681. 7, 5, 9, 14, 15, 7,
  4682. 6, 4, 5, 5, 6, 7,
  4683. 7, 6, 8, 8, 8, 5,
  4684. 15, 6, 9, 10, 5, 1,
  4685. 11, 7, 9, 6, 4, 1,
  4686. 14, 4, 6, 2, 6, 0
  4687. ];
  4688.  
  4689. Tables.t10HB = [
  4690. 1, 2, 10, 23, 35, 30, 12, 17,
  4691. 3, 3, 8, 12, 18, 21, 12, 7,
  4692. 11, 9, 15, 21, 32, 40, 19, 6,
  4693. 14, 13, 22, 34, 46, 23, 18, 7,
  4694. 20, 19, 33, 47, 27, 22, 9, 3,
  4695. 31, 22, 41, 26, 21, 20, 5, 3,
  4696. 14, 13, 10, 11, 16, 6, 5, 1,
  4697. 9, 8, 7, 8, 4, 4, 2, 0
  4698. ];
  4699.  
  4700. Tables.t11HB = [
  4701. 3, 4, 10, 24, 34, 33, 21, 15,
  4702. 5, 3, 4, 10, 32, 17, 11, 10,
  4703. 11, 7, 13, 18, 30, 31, 20, 5,
  4704. 25, 11, 19, 59, 27, 18, 12, 5,
  4705. 35, 33, 31, 58, 30, 16, 7, 5,
  4706. 28, 26, 32, 19, 17, 15, 8, 14,
  4707. 14, 12, 9, 13, 14, 9, 4, 1,
  4708. 11, 4, 6, 6, 6, 3, 2, 0
  4709. ];
  4710.  
  4711. Tables.t12HB = [
  4712. 9, 6, 16, 33, 41, 39, 38, 26,
  4713. 7, 5, 6, 9, 23, 16, 26, 11,
  4714. 17, 7, 11, 14, 21, 30, 10, 7,
  4715. 17, 10, 15, 12, 18, 28, 14, 5,
  4716. 32, 13, 22, 19, 18, 16, 9, 5,
  4717. 40, 17, 31, 29, 17, 13, 4, 2,
  4718. 27, 12, 11, 15, 10, 7, 4, 1,
  4719. 27, 12, 8, 12, 6, 3, 1, 0
  4720. ];
  4721.  
  4722. Tables.t13HB = [
  4723. 1, 5, 14, 21, 34, 51, 46, 71, 42, 52, 68, 52, 67, 44, 43, 19,
  4724. 3, 4, 12, 19, 31, 26, 44, 33, 31, 24, 32, 24, 31, 35, 22, 14,
  4725. 15, 13, 23, 36, 59, 49, 77, 65, 29, 40, 30, 40, 27, 33, 42, 16,
  4726. 22, 20, 37, 61, 56, 79, 73, 64, 43, 76, 56, 37, 26, 31, 25, 14,
  4727. 35, 16, 60, 57, 97, 75, 114, 91, 54, 73, 55, 41, 48, 53, 23, 24,
  4728. 58, 27, 50, 96, 76, 70, 93, 84, 77, 58, 79, 29, 74, 49, 41, 17,
  4729. 47, 45, 78, 74, 115, 94, 90, 79, 69, 83, 71, 50, 59, 38, 36, 15,
  4730. 72, 34, 56, 95, 92, 85, 91, 90, 86, 73, 77, 65, 51, 44, 43, 42,
  4731. 43, 20, 30, 44, 55, 78, 72, 87, 78, 61, 46, 54, 37, 30, 20, 16,
  4732. 53, 25, 41, 37, 44, 59, 54, 81, 66, 76, 57, 54, 37, 18, 39, 11,
  4733. 35, 33, 31, 57, 42, 82, 72, 80, 47, 58, 55, 21, 22, 26, 38, 22,
  4734. 53, 25, 23, 38, 70, 60, 51, 36, 55, 26, 34, 23, 27, 14, 9, 7,
  4735. 34, 32, 28, 39, 49, 75, 30, 52, 48, 40, 52, 28, 18, 17, 9, 5,
  4736. 45, 21, 34, 64, 56, 50, 49, 45, 31, 19, 12, 15, 10, 7, 6, 3,
  4737. 48, 23, 20, 39, 36, 35, 53, 21, 16, 23, 13, 10, 6, 1, 4, 2,
  4738. 16, 15, 17, 27, 25, 20, 29, 11, 17, 12, 16, 8, 1, 1, 0, 1
  4739. ];
  4740.  
  4741. Tables.t15HB = [
  4742. 7, 12, 18, 53, 47, 76, 124, 108, 89, 123, 108, 119, 107, 81, 122, 63,
  4743. 13, 5, 16, 27, 46, 36, 61, 51, 42, 70, 52, 83, 65, 41, 59, 36,
  4744. 19, 17, 15, 24, 41, 34, 59, 48, 40, 64, 50, 78, 62, 80, 56, 33,
  4745. 29, 28, 25, 43, 39, 63, 55, 93, 76, 59, 93, 72, 54, 75, 50, 29,
  4746. 52, 22, 42, 40, 67, 57, 95, 79, 72, 57, 89, 69, 49, 66, 46, 27,
  4747. 77, 37, 35, 66, 58, 52, 91, 74, 62, 48, 79, 63, 90, 62, 40, 38,
  4748. 125, 32, 60, 56, 50, 92, 78, 65, 55, 87, 71, 51, 73, 51, 70, 30,
  4749. 109, 53, 49, 94, 88, 75, 66, 122, 91, 73, 56, 42, 64, 44, 21, 25,
  4750. 90, 43, 41, 77, 73, 63, 56, 92, 77, 66, 47, 67, 48, 53, 36, 20,
  4751. 71, 34, 67, 60, 58, 49, 88, 76, 67, 106, 71, 54, 38, 39, 23, 15,
  4752. 109, 53, 51, 47, 90, 82, 58, 57, 48, 72, 57, 41, 23, 27, 62, 9,
  4753. 86, 42, 40, 37, 70, 64, 52, 43, 70, 55, 42, 25, 29, 18, 11, 11,
  4754. 118, 68, 30, 55, 50, 46, 74, 65, 49, 39, 24, 16, 22, 13, 14, 7,
  4755. 91, 44, 39, 38, 34, 63, 52, 45, 31, 52, 28, 19, 14, 8, 9, 3,
  4756. 123, 60, 58, 53, 47, 43, 32, 22, 37, 24, 17, 12, 15, 10, 2, 1,
  4757. 71, 37, 34, 30, 28, 20, 17, 26, 21, 16, 10, 6, 8, 6, 2, 0
  4758. ];
  4759.  
  4760. Tables.t16HB = [
  4761. 1, 5, 14, 44, 74, 63, 110, 93, 172, 149, 138, 242, 225, 195, 376, 17,
  4762. 3, 4, 12, 20, 35, 62, 53, 47, 83, 75, 68, 119, 201, 107, 207, 9,
  4763. 15, 13, 23, 38, 67, 58, 103, 90, 161, 72, 127, 117, 110, 209, 206, 16,
  4764. 45, 21, 39, 69, 64, 114, 99, 87, 158, 140, 252, 212, 199, 387, 365, 26,
  4765. 75, 36, 68, 65, 115, 101, 179, 164, 155, 264, 246, 226, 395, 382, 362, 9,
  4766. 66, 30, 59, 56, 102, 185, 173, 265, 142, 253, 232, 400, 388, 378, 445, 16,
  4767. 111, 54, 52, 100, 184, 178, 160, 133, 257, 244, 228, 217, 385, 366, 715, 10,
  4768. 98, 48, 91, 88, 165, 157, 148, 261, 248, 407, 397, 372, 380, 889, 884, 8,
  4769. 85, 84, 81, 159, 156, 143, 260, 249, 427, 401, 392, 383, 727, 713, 708, 7,
  4770. 154, 76, 73, 141, 131, 256, 245, 426, 406, 394, 384, 735, 359, 710, 352, 11,
  4771. 139, 129, 67, 125, 247, 233, 229, 219, 393, 743, 737, 720, 885, 882, 439, 4,
  4772. 243, 120, 118, 115, 227, 223, 396, 746, 742, 736, 721, 712, 706, 223, 436, 6,
  4773. 202, 224, 222, 218, 216, 389, 386, 381, 364, 888, 443, 707, 440, 437, 1728, 4,
  4774. 747, 211, 210, 208, 370, 379, 734, 723, 714, 1735, 883, 877, 876, 3459, 865, 2,
  4775. 377, 369, 102, 187, 726, 722, 358, 711, 709, 866, 1734, 871, 3458, 870, 434, 0,
  4776. 12, 10, 7, 11, 10, 17, 11, 9, 13, 12, 10, 7, 5, 3, 1, 3
  4777. ];
  4778.  
  4779. Tables.t24HB = [
  4780. 15, 13, 46, 80, 146, 262, 248, 434, 426, 669, 653, 649, 621, 517, 1032, 88,
  4781. 14, 12, 21, 38, 71, 130, 122, 216, 209, 198, 327, 345, 319, 297, 279, 42,
  4782. 47, 22, 41, 74, 68, 128, 120, 221, 207, 194, 182, 340, 315, 295, 541, 18,
  4783. 81, 39, 75, 70, 134, 125, 116, 220, 204, 190, 178, 325, 311, 293, 271, 16,
  4784. 147, 72, 69, 135, 127, 118, 112, 210, 200, 188, 352, 323, 306, 285, 540, 14,
  4785. 263, 66, 129, 126, 119, 114, 214, 202, 192, 180, 341, 317, 301, 281, 262, 12,
  4786. 249, 123, 121, 117, 113, 215, 206, 195, 185, 347, 330, 308, 291, 272, 520, 10,
  4787. 435, 115, 111, 109, 211, 203, 196, 187, 353, 332, 313, 298, 283, 531, 381, 17,
  4788. 427, 212, 208, 205, 201, 193, 186, 177, 169, 320, 303, 286, 268, 514, 377, 16,
  4789. 335, 199, 197, 191, 189, 181, 174, 333, 321, 305, 289, 275, 521, 379, 371, 11,
  4790. 668, 184, 183, 179, 175, 344, 331, 314, 304, 290, 277, 530, 383, 373, 366, 10,
  4791. 652, 346, 171, 168, 164, 318, 309, 299, 287, 276, 263, 513, 375, 368, 362, 6,
  4792. 648, 322, 316, 312, 307, 302, 292, 284, 269, 261, 512, 376, 370, 364, 359, 4,
  4793. 620, 300, 296, 294, 288, 282, 273, 266, 515, 380, 374, 369, 365, 361, 357, 2,
  4794. 1033, 280, 278, 274, 267, 264, 259, 382, 378, 372, 367, 363, 360, 358, 356, 0,
  4795. 43, 20, 19, 17, 15, 13, 11, 9, 7, 6, 4, 7, 5, 3, 1, 3
  4796. ];
  4797.  
  4798. Tables.t32HB = [
  4799. 1 << 0, 5 << 1, 4 << 1, 5 << 2, 6 << 1, 5 << 2, 4 << 2, 4 << 3,
  4800. 7 << 1, 3 << 2, 6 << 2, 0 << 3, 7 << 2, 2 << 3, 3 << 3, 1 << 4
  4801. ];
  4802.  
  4803. Tables.t33HB = [
  4804. 15 << 0, 14 << 1, 13 << 1, 12 << 2, 11 << 1, 10 << 2, 9 << 2, 8 << 3,
  4805. 7 << 1, 6 << 2, 5 << 2, 4 << 3, 3 << 2, 2 << 3, 1 << 3, 0 << 4
  4806. ];
  4807.  
  4808. Tables.t1l = [
  4809. 1, 4,
  4810. 3, 5
  4811. ];
  4812.  
  4813. Tables.t2l = [
  4814. 1, 4, 7,
  4815. 4, 5, 7,
  4816. 6, 7, 8
  4817. ];
  4818.  
  4819. Tables.t3l = [
  4820. 2, 3, 7,
  4821. 4, 4, 7,
  4822. 6, 7, 8
  4823. ];
  4824.  
  4825. Tables.t5l = [
  4826. 1, 4, 7, 8,
  4827. 4, 5, 8, 9,
  4828. 7, 8, 9, 10,
  4829. 8, 8, 9, 10
  4830. ];
  4831.  
  4832. Tables.t6l = [
  4833. 3, 4, 6, 8,
  4834. 4, 4, 6, 7,
  4835. 5, 6, 7, 8,
  4836. 7, 7, 8, 9
  4837. ];
  4838.  
  4839. Tables.t7l = [
  4840. 1, 4, 7, 9, 9, 10,
  4841. 4, 6, 8, 9, 9, 10,
  4842. 7, 7, 9, 10, 10, 11,
  4843. 8, 9, 10, 11, 11, 11,
  4844. 8, 9, 10, 11, 11, 12,
  4845. 9, 10, 11, 12, 12, 12
  4846. ];
  4847.  
  4848. Tables.t8l = [
  4849. 2, 4, 7, 9, 9, 10,
  4850. 4, 4, 6, 10, 10, 10,
  4851. 7, 6, 8, 10, 10, 11,
  4852. 9, 10, 10, 11, 11, 12,
  4853. 9, 9, 10, 11, 12, 12,
  4854. 10, 10, 11, 11, 13, 13
  4855. ];
  4856.  
  4857. Tables.t9l = [
  4858. 3, 4, 6, 7, 9, 10,
  4859. 4, 5, 6, 7, 8, 10,
  4860. 5, 6, 7, 8, 9, 10,
  4861. 7, 7, 8, 9, 9, 10,
  4862. 8, 8, 9, 9, 10, 11,
  4863. 9, 9, 10, 10, 11, 11
  4864. ];
  4865.  
  4866. Tables.t10l = [
  4867. 1, 4, 7, 9, 10, 10, 10, 11,
  4868. 4, 6, 8, 9, 10, 11, 10, 10,
  4869. 7, 8, 9, 10, 11, 12, 11, 11,
  4870. 8, 9, 10, 11, 12, 12, 11, 12,
  4871. 9, 10, 11, 12, 12, 12, 12, 12,
  4872. 10, 11, 12, 12, 13, 13, 12, 13,
  4873. 9, 10, 11, 12, 12, 12, 13, 13,
  4874. 10, 10, 11, 12, 12, 13, 13, 13
  4875. ];
  4876.  
  4877. Tables.t11l = [
  4878. 2, 4, 6, 8, 9, 10, 9, 10,
  4879. 4, 5, 6, 8, 10, 10, 9, 10,
  4880. 6, 7, 8, 9, 10, 11, 10, 10,
  4881. 8, 8, 9, 11, 10, 12, 10, 11,
  4882. 9, 10, 10, 11, 11, 12, 11, 12,
  4883. 9, 10, 11, 12, 12, 13, 12, 13,
  4884. 9, 9, 9, 10, 11, 12, 12, 12,
  4885. 9, 9, 10, 11, 12, 12, 12, 12
  4886. ];
  4887.  
  4888. Tables.t12l = [
  4889. 4, 4, 6, 8, 9, 10, 10, 10,
  4890. 4, 5, 6, 7, 9, 9, 10, 10,
  4891. 6, 6, 7, 8, 9, 10, 9, 10,
  4892. 7, 7, 8, 8, 9, 10, 10, 10,
  4893. 8, 8, 9, 9, 10, 10, 10, 11,
  4894. 9, 9, 10, 10, 10, 11, 10, 11,
  4895. 9, 9, 9, 10, 10, 11, 11, 12,
  4896. 10, 10, 10, 11, 11, 11, 11, 12
  4897. ];
  4898.  
  4899. Tables.t13l = [
  4900. 1, 5, 7, 8, 9, 10, 10, 11, 10, 11, 12, 12, 13, 13, 14, 14,
  4901. 4, 6, 8, 9, 10, 10, 11, 11, 11, 11, 12, 12, 13, 14, 14, 14,
  4902. 7, 8, 9, 10, 11, 11, 12, 12, 11, 12, 12, 13, 13, 14, 15, 15,
  4903. 8, 9, 10, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 15, 15,
  4904. 9, 9, 11, 11, 12, 12, 13, 13, 12, 13, 13, 14, 14, 15, 15, 16,
  4905. 10, 10, 11, 12, 12, 12, 13, 13, 13, 13, 14, 13, 15, 15, 16, 16,
  4906. 10, 11, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 15, 15, 16, 16,
  4907. 11, 11, 12, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 16, 18, 18,
  4908. 10, 10, 11, 12, 12, 13, 13, 14, 14, 14, 14, 15, 15, 16, 17, 17,
  4909. 11, 11, 12, 12, 13, 13, 13, 15, 14, 15, 15, 16, 16, 16, 18, 17,
  4910. 11, 12, 12, 13, 13, 14, 14, 15, 14, 15, 16, 15, 16, 17, 18, 19,
  4911. 12, 12, 12, 13, 14, 14, 14, 14, 15, 15, 15, 16, 17, 17, 17, 18,
  4912. 12, 13, 13, 14, 14, 15, 14, 15, 16, 16, 17, 17, 17, 18, 18, 18,
  4913. 13, 13, 14, 15, 15, 15, 16, 16, 16, 16, 16, 17, 18, 17, 18, 18,
  4914. 14, 14, 14, 15, 15, 15, 17, 16, 16, 19, 17, 17, 17, 19, 18, 18,
  4915. 13, 14, 15, 16, 16, 16, 17, 16, 17, 17, 18, 18, 21, 20, 21, 18
  4916. ];
  4917.  
  4918. Tables.t15l = [
  4919. 3, 5, 6, 8, 8, 9, 10, 10, 10, 11, 11, 12, 12, 12, 13, 14,
  4920. 5, 5, 7, 8, 9, 9, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13,
  4921. 6, 7, 7, 8, 9, 9, 10, 10, 10, 11, 11, 12, 12, 13, 13, 13,
  4922. 7, 8, 8, 9, 9, 10, 10, 11, 11, 11, 12, 12, 12, 13, 13, 13,
  4923. 8, 8, 9, 9, 10, 10, 11, 11, 11, 11, 12, 12, 12, 13, 13, 13,
  4924. 9, 9, 9, 10, 10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 13, 14,
  4925. 10, 9, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 13, 13, 14, 14,
  4926. 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 14,
  4927. 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 14, 14, 14,
  4928. 10, 10, 11, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14,
  4929. 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 15, 14,
  4930. 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15,
  4931. 12, 12, 11, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 15, 15,
  4932. 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15,
  4933. 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 14, 15,
  4934. 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 15, 15, 15, 15
  4935. ];
  4936.  
  4937. Tables.t16_5l = [
  4938. 1, 5, 7, 9, 10, 10, 11, 11, 12, 12, 12, 13, 13, 13, 14, 11,
  4939. 4, 6, 8, 9, 10, 11, 11, 11, 12, 12, 12, 13, 14, 13, 14, 11,
  4940. 7, 8, 9, 10, 11, 11, 12, 12, 13, 12, 13, 13, 13, 14, 14, 12,
  4941. 9, 9, 10, 11, 11, 12, 12, 12, 13, 13, 14, 14, 14, 15, 15, 13,
  4942. 10, 10, 11, 11, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 12,
  4943. 10, 10, 11, 11, 12, 13, 13, 14, 13, 14, 14, 15, 15, 15, 16, 13,
  4944. 11, 11, 11, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 16, 13,
  4945. 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 15, 15, 17, 17, 13,
  4946. 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 15, 15, 16, 16, 16, 13,
  4947. 12, 12, 12, 13, 13, 14, 14, 15, 15, 15, 15, 16, 15, 16, 15, 14,
  4948. 12, 13, 12, 13, 14, 14, 14, 14, 15, 16, 16, 16, 17, 17, 16, 13,
  4949. 13, 13, 13, 13, 14, 14, 15, 16, 16, 16, 16, 16, 16, 15, 16, 14,
  4950. 13, 14, 14, 14, 14, 15, 15, 15, 15, 17, 16, 16, 16, 16, 18, 14,
  4951. 15, 14, 14, 14, 15, 15, 16, 16, 16, 18, 17, 17, 17, 19, 17, 14,
  4952. 14, 15, 13, 14, 16, 16, 15, 16, 16, 17, 18, 17, 19, 17, 16, 14,
  4953. 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 12
  4954. ];
  4955.  
  4956. Tables.t16l = [
  4957. 1, 5, 7, 9, 10, 10, 11, 11, 12, 12, 12, 13, 13, 13, 14, 10,
  4958. 4, 6, 8, 9, 10, 11, 11, 11, 12, 12, 12, 13, 14, 13, 14, 10,
  4959. 7, 8, 9, 10, 11, 11, 12, 12, 13, 12, 13, 13, 13, 14, 14, 11,
  4960. 9, 9, 10, 11, 11, 12, 12, 12, 13, 13, 14, 14, 14, 15, 15, 12,
  4961. 10, 10, 11, 11, 12, 12, 13, 13, 13, 14, 14, 14, 15, 15, 15, 11,
  4962. 10, 10, 11, 11, 12, 13, 13, 14, 13, 14, 14, 15, 15, 15, 16, 12,
  4963. 11, 11, 11, 12, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 16, 12,
  4964. 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 15, 15, 17, 17, 12,
  4965. 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 15, 15, 16, 16, 16, 12,
  4966. 12, 12, 12, 13, 13, 14, 14, 15, 15, 15, 15, 16, 15, 16, 15, 13,
  4967. 12, 13, 12, 13, 14, 14, 14, 14, 15, 16, 16, 16, 17, 17, 16, 12,
  4968. 13, 13, 13, 13, 14, 14, 15, 16, 16, 16, 16, 16, 16, 15, 16, 13,
  4969. 13, 14, 14, 14, 14, 15, 15, 15, 15, 17, 16, 16, 16, 16, 18, 13,
  4970. 15, 14, 14, 14, 15, 15, 16, 16, 16, 18, 17, 17, 17, 19, 17, 13,
  4971. 14, 15, 13, 14, 16, 16, 15, 16, 16, 17, 18, 17, 19, 17, 16, 13,
  4972. 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 10
  4973. ];
  4974.  
  4975. Tables.t24l = [
  4976. 4, 5, 7, 8, 9, 10, 10, 11, 11, 12, 12, 12, 12, 12, 13, 10,
  4977. 5, 6, 7, 8, 9, 10, 10, 11, 11, 11, 12, 12, 12, 12, 12, 10,
  4978. 7, 7, 8, 9, 9, 10, 10, 11, 11, 11, 11, 12, 12, 12, 13, 9,
  4979. 8, 8, 9, 9, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 9,
  4980. 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 12, 13, 9,
  4981. 10, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 12, 9,
  4982. 10, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 9,
  4983. 11, 10, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 10,
  4984. 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 10,
  4985. 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 10,
  4986. 12, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 10,
  4987. 12, 12, 11, 11, 11, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 10,
  4988. 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 10,
  4989. 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 10,
  4990. 13, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 10,
  4991. 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 6
  4992. ];
  4993.  
  4994. Tables.t32l = [
  4995. 1 + 0, 4 + 1, 4 + 1, 5 + 2, 4 + 1, 6 + 2, 5 + 2, 6 + 3,
  4996. 4 + 1, 5 + 2, 5 + 2, 6 + 3, 5 + 2, 6 + 3, 6 + 3, 6 + 4
  4997. ];
  4998.  
  4999. Tables.t33l = [
  5000. 4 + 0, 4 + 1, 4 + 1, 4 + 2, 4 + 1, 4 + 2, 4 + 2, 4 + 3,
  5001. 4 + 1, 4 + 2, 4 + 2, 4 + 3, 4 + 2, 4 + 3, 4 + 3, 4 + 4
  5002. ];
  5003.  
  5004. Tables.ht = [
  5005. /* xlen, linmax, table, hlen */
  5006. new HuffCodeTab(0, 0, null, null),
  5007. new HuffCodeTab(2, 0, Tables.t1HB, Tables.t1l),
  5008. new HuffCodeTab(3, 0, Tables.t2HB, Tables.t2l),
  5009. new HuffCodeTab(3, 0, Tables.t3HB, Tables.t3l),
  5010. new HuffCodeTab(0, 0, null, null), /* Apparently not used */
  5011. new HuffCodeTab(4, 0, Tables.t5HB, Tables.t5l),
  5012. new HuffCodeTab(4, 0, Tables.t6HB, Tables.t6l),
  5013. new HuffCodeTab(6, 0, Tables.t7HB, Tables.t7l),
  5014. new HuffCodeTab(6, 0, Tables.t8HB, Tables.t8l),
  5015. new HuffCodeTab(6, 0, Tables.t9HB, Tables.t9l),
  5016. new HuffCodeTab(8, 0, Tables.t10HB, Tables.t10l),
  5017. new HuffCodeTab(8, 0, Tables.t11HB, Tables.t11l),
  5018. new HuffCodeTab(8, 0, Tables.t12HB, Tables.t12l),
  5019. new HuffCodeTab(16, 0, Tables.t13HB, Tables.t13l),
  5020. new HuffCodeTab(0, 0, null, Tables.t16_5l), /* Apparently not used */
  5021. new HuffCodeTab(16, 0, Tables.t15HB, Tables.t15l),
  5022.  
  5023. new HuffCodeTab(1, 1, Tables.t16HB, Tables.t16l),
  5024. new HuffCodeTab(2, 3, Tables.t16HB, Tables.t16l),
  5025. new HuffCodeTab(3, 7, Tables.t16HB, Tables.t16l),
  5026. new HuffCodeTab(4, 15, Tables.t16HB, Tables.t16l),
  5027. new HuffCodeTab(6, 63, Tables.t16HB, Tables.t16l),
  5028. new HuffCodeTab(8, 255, Tables.t16HB, Tables.t16l),
  5029. new HuffCodeTab(10, 1023, Tables.t16HB, Tables.t16l),
  5030. new HuffCodeTab(13, 8191, Tables.t16HB, Tables.t16l),
  5031.  
  5032. new HuffCodeTab(4, 15, Tables.t24HB, Tables.t24l),
  5033. new HuffCodeTab(5, 31, Tables.t24HB, Tables.t24l),
  5034. new HuffCodeTab(6, 63, Tables.t24HB, Tables.t24l),
  5035. new HuffCodeTab(7, 127, Tables.t24HB, Tables.t24l),
  5036. new HuffCodeTab(8, 255, Tables.t24HB, Tables.t24l),
  5037. new HuffCodeTab(9, 511, Tables.t24HB, Tables.t24l),
  5038. new HuffCodeTab(11, 2047, Tables.t24HB, Tables.t24l),
  5039. new HuffCodeTab(13, 8191, Tables.t24HB, Tables.t24l),
  5040.  
  5041. new HuffCodeTab(0, 0, Tables.t32HB, Tables.t32l),
  5042. new HuffCodeTab(0, 0, Tables.t33HB, Tables.t33l),
  5043. ];
  5044.  
  5045. /**
  5046. * <CODE>
  5047. * for (i = 0; i < 16*16; i++) [
  5048. * largetbl[i] = ((ht[16].hlen[i]) << 16) + ht[24].hlen[i];
  5049. * ]
  5050. * </CODE>
  5051. *
  5052. */
  5053. Tables.largetbl = [
  5054. 0x010004, 0x050005, 0x070007, 0x090008, 0x0a0009, 0x0a000a, 0x0b000a, 0x0b000b,
  5055. 0x0c000b, 0x0c000c, 0x0c000c, 0x0d000c, 0x0d000c, 0x0d000c, 0x0e000d, 0x0a000a,
  5056. 0x040005, 0x060006, 0x080007, 0x090008, 0x0a0009, 0x0b000a, 0x0b000a, 0x0b000b,
  5057. 0x0c000b, 0x0c000b, 0x0c000c, 0x0d000c, 0x0e000c, 0x0d000c, 0x0e000c, 0x0a000a,
  5058. 0x070007, 0x080007, 0x090008, 0x0a0009, 0x0b0009, 0x0b000a, 0x0c000a, 0x0c000b,
  5059. 0x0d000b, 0x0c000b, 0x0d000b, 0x0d000c, 0x0d000c, 0x0e000c, 0x0e000d, 0x0b0009,
  5060. 0x090008, 0x090008, 0x0a0009, 0x0b0009, 0x0b000a, 0x0c000a, 0x0c000a, 0x0c000b,
  5061. 0x0d000b, 0x0d000b, 0x0e000b, 0x0e000c, 0x0e000c, 0x0f000c, 0x0f000c, 0x0c0009,
  5062. 0x0a0009, 0x0a0009, 0x0b0009, 0x0b000a, 0x0c000a, 0x0c000a, 0x0d000a, 0x0d000b,
  5063. 0x0d000b, 0x0e000b, 0x0e000c, 0x0e000c, 0x0f000c, 0x0f000c, 0x0f000d, 0x0b0009,
  5064. 0x0a000a, 0x0a0009, 0x0b000a, 0x0b000a, 0x0c000a, 0x0d000a, 0x0d000b, 0x0e000b,
  5065. 0x0d000b, 0x0e000b, 0x0e000c, 0x0f000c, 0x0f000c, 0x0f000c, 0x10000c, 0x0c0009,
  5066. 0x0b000a, 0x0b000a, 0x0b000a, 0x0c000a, 0x0d000a, 0x0d000b, 0x0d000b, 0x0d000b,
  5067. 0x0e000b, 0x0e000c, 0x0e000c, 0x0e000c, 0x0f000c, 0x0f000c, 0x10000d, 0x0c0009,
  5068. 0x0b000b, 0x0b000a, 0x0c000a, 0x0c000a, 0x0d000b, 0x0d000b, 0x0d000b, 0x0e000b,
  5069. 0x0e000c, 0x0f000c, 0x0f000c, 0x0f000c, 0x0f000c, 0x11000d, 0x11000d, 0x0c000a,
  5070. 0x0b000b, 0x0c000b, 0x0c000b, 0x0d000b, 0x0d000b, 0x0d000b, 0x0e000b, 0x0e000b,
  5071. 0x0f000b, 0x0f000c, 0x0f000c, 0x0f000c, 0x10000c, 0x10000d, 0x10000d, 0x0c000a,
  5072. 0x0c000b, 0x0c000b, 0x0c000b, 0x0d000b, 0x0d000b, 0x0e000b, 0x0e000b, 0x0f000c,
  5073. 0x0f000c, 0x0f000c, 0x0f000c, 0x10000c, 0x0f000d, 0x10000d, 0x0f000d, 0x0d000a,
  5074. 0x0c000c, 0x0d000b, 0x0c000b, 0x0d000b, 0x0e000b, 0x0e000c, 0x0e000c, 0x0e000c,
  5075. 0x0f000c, 0x10000c, 0x10000c, 0x10000d, 0x11000d, 0x11000d, 0x10000d, 0x0c000a,
  5076. 0x0d000c, 0x0d000c, 0x0d000b, 0x0d000b, 0x0e000b, 0x0e000c, 0x0f000c, 0x10000c,
  5077. 0x10000c, 0x10000c, 0x10000c, 0x10000d, 0x10000d, 0x0f000d, 0x10000d, 0x0d000a,
  5078. 0x0d000c, 0x0e000c, 0x0e000c, 0x0e000c, 0x0e000c, 0x0f000c, 0x0f000c, 0x0f000c,
  5079. 0x0f000c, 0x11000c, 0x10000d, 0x10000d, 0x10000d, 0x10000d, 0x12000d, 0x0d000a,
  5080. 0x0f000c, 0x0e000c, 0x0e000c, 0x0e000c, 0x0f000c, 0x0f000c, 0x10000c, 0x10000c,
  5081. 0x10000d, 0x12000d, 0x11000d, 0x11000d, 0x11000d, 0x13000d, 0x11000d, 0x0d000a,
  5082. 0x0e000d, 0x0f000c, 0x0d000c, 0x0e000c, 0x10000c, 0x10000c, 0x0f000c, 0x10000d,
  5083. 0x10000d, 0x11000d, 0x12000d, 0x11000d, 0x13000d, 0x11000d, 0x10000d, 0x0d000a,
  5084. 0x0a0009, 0x0a0009, 0x0a0009, 0x0b0009, 0x0b0009, 0x0c0009, 0x0c0009, 0x0c0009,
  5085. 0x0d0009, 0x0d0009, 0x0d0009, 0x0d000a, 0x0d000a, 0x0d000a, 0x0d000a, 0x0a0006
  5086. ];
  5087. /**
  5088. * <CODE>
  5089. * for (i = 0; i < 3*3; i++) [
  5090. * table23[i] = ((ht[2].hlen[i]) << 16) + ht[3].hlen[i];
  5091. * ]
  5092. * </CODE>
  5093. *
  5094. */
  5095. Tables.table23 = [
  5096. 0x010002, 0x040003, 0x070007,
  5097. 0x040004, 0x050004, 0x070007,
  5098. 0x060006, 0x070007, 0x080008
  5099. ];
  5100.  
  5101. /**
  5102. * <CODE>
  5103. * for (i = 0; i < 4*4; i++) [
  5104. * table56[i] = ((ht[5].hlen[i]) << 16) + ht[6].hlen[i];
  5105. * ]
  5106. * </CODE>
  5107. *
  5108. */
  5109. Tables.table56 = [
  5110. 0x010003, 0x040004, 0x070006, 0x080008, 0x040004, 0x050004, 0x080006, 0x090007,
  5111. 0x070005, 0x080006, 0x090007, 0x0a0008, 0x080007, 0x080007, 0x090008, 0x0a0009
  5112. ];
  5113.  
  5114. Tables.bitrate_table = [
  5115. [0, 8, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160, -1], /* MPEG 2 */
  5116. [0, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, -1], /* MPEG 1 */
  5117. [0, 8, 16, 24, 32, 40, 48, 56, 64, -1, -1, -1, -1, -1, -1, -1], /* MPEG 2.5 */
  5118. ];
  5119.  
  5120. /**
  5121. * MPEG 2, MPEG 1, MPEG 2.5.
  5122. */
  5123. Tables.samplerate_table = [
  5124. [22050, 24000, 16000, -1],
  5125. [44100, 48000, 32000, -1],
  5126. [11025, 12000, 8000, -1],
  5127. ];
  5128.  
  5129. /**
  5130. * This is the scfsi_band table from 2.4.2.7 of the IS.
  5131. */
  5132. Tables.scfsi_band = [0, 6, 11, 16, 21];
  5133.  
  5134. function MeanBits(meanBits) {
  5135. this.bits = meanBits;
  5136. }
  5137.  
  5138. function VBRQuantize() {
  5139. var qupvt;
  5140. var tak;
  5141.  
  5142. this.setModules = function (_qupvt, _tk) {
  5143. qupvt = _qupvt;
  5144. tak = _tk;
  5145. }
  5146. //TODO
  5147.  
  5148. }
  5149.  
  5150. //package mp3;
  5151.  
  5152. function CalcNoiseResult() {
  5153. /**
  5154. * sum of quantization noise > masking
  5155. */
  5156. this.over_noise = 0.;
  5157. /**
  5158. * sum of all quantization noise
  5159. */
  5160. this.tot_noise = 0.;
  5161. /**
  5162. * max quantization noise
  5163. */
  5164. this.max_noise = 0.;
  5165. /**
  5166. * number of quantization noise > masking
  5167. */
  5168. this.over_count = 0;
  5169. /**
  5170. * SSD-like cost of distorted bands
  5171. */
  5172. this.over_SSD = 0;
  5173. this.bits = 0;
  5174. }
  5175.  
  5176.  
  5177. function LameGlobalFlags() {
  5178.  
  5179. this.class_id = 0;
  5180.  
  5181. /* input description */
  5182.  
  5183. /**
  5184. * number of samples. default=-1
  5185. */
  5186. this.num_samples = 0;
  5187. /**
  5188. * input number of channels. default=2
  5189. */
  5190. this.num_channels = 0;
  5191. /**
  5192. * input_samp_rate in Hz. default=44.1 kHz
  5193. */
  5194. this.in_samplerate = 0;
  5195. /**
  5196. * output_samp_rate. default: LAME picks best value at least not used for
  5197. * MP3 decoding: Remember 44.1 kHz MP3s and AC97
  5198. */
  5199. this.out_samplerate = 0;
  5200. /**
  5201. * scale input by this amount before encoding at least not used for MP3
  5202. * decoding
  5203. */
  5204. this.scale = 0.;
  5205. /**
  5206. * scale input of channel 0 (left) by this amount before encoding
  5207. */
  5208. this.scale_left = 0.;
  5209. /**
  5210. * scale input of channel 1 (right) by this amount before encoding
  5211. */
  5212. this.scale_right = 0.;
  5213.  
  5214. /* general control params */
  5215. /**
  5216. * collect data for a MP3 frame analyzer?
  5217. */
  5218. this.analysis = false;
  5219. /**
  5220. * add Xing VBR tag?
  5221. */
  5222. this.bWriteVbrTag = false;
  5223.  
  5224. /**
  5225. * use lame/mpglib to convert mp3 to wav
  5226. */
  5227. this.decode_only = false;
  5228. /**
  5229. * quality setting 0=best, 9=worst default=5
  5230. */
  5231. this.quality = 0;
  5232. /**
  5233. * see enum default = LAME picks best value
  5234. */
  5235. this.mode = MPEGMode.STEREO;
  5236. /**
  5237. * force M/S mode. requires mode=1
  5238. */
  5239. this.force_ms = false;
  5240. /**
  5241. * use free format? default=0
  5242. */
  5243. this.free_format = false;
  5244. /**
  5245. * find the RG value? default=0
  5246. */
  5247. this.findReplayGain = false;
  5248. /**
  5249. * decode on the fly? default=0
  5250. */
  5251. this.decode_on_the_fly = false;
  5252. /**
  5253. * 1 (default) writes ID3 tags, 0 not
  5254. */
  5255. this.write_id3tag_automatic = false;
  5256.  
  5257. /*
  5258. * set either brate>0 or compression_ratio>0, LAME will compute the value of
  5259. * the variable not set. Default is compression_ratio = 11.025
  5260. */
  5261. /**
  5262. * bitrate
  5263. */
  5264. this.brate = 0;
  5265. /**
  5266. * sizeof(wav file)/sizeof(mp3 file)
  5267. */
  5268. this.compression_ratio = 0.;
  5269.  
  5270. /* frame params */
  5271. /**
  5272. * mark as copyright. default=0
  5273. */
  5274. this.copyright = 0;
  5275. /**
  5276. * mark as original. default=1
  5277. */
  5278. this.original = 0;
  5279. /**
  5280. * the MP3 'private extension' bit. Meaningless
  5281. */
  5282. this.extension = 0;
  5283. /**
  5284. * Input PCM is emphased PCM (for instance from one of the rarely emphased
  5285. * CDs), it is STRONGLY not recommended to use this, because psycho does not
  5286. * take it into account, and last but not least many decoders don't care
  5287. * about these bits
  5288. */
  5289. this.emphasis = 0;
  5290. /**
  5291. * use 2 bytes per frame for a CRC checksum. default=0
  5292. */
  5293. this.error_protection = 0;
  5294. /**
  5295. * enforce ISO spec as much as possible
  5296. */
  5297. this.strict_ISO = false;
  5298.  
  5299. /**
  5300. * use bit reservoir?
  5301. */
  5302. this.disable_reservoir = false;
  5303.  
  5304. /* quantization/noise shaping */
  5305. this.quant_comp = 0;
  5306. this.quant_comp_short = 0;
  5307. this.experimentalY = false;
  5308. this.experimentalZ = 0;
  5309. this.exp_nspsytune = 0;
  5310.  
  5311. this.preset = 0;
  5312.  
  5313. /* VBR control */
  5314. this.VBR = null;
  5315. /**
  5316. * Range [0,...,1[
  5317. */
  5318. this.VBR_q_frac = 0.;
  5319. /**
  5320. * Range [0,...,9]
  5321. */
  5322. this.VBR_q = 0;
  5323. this.VBR_mean_bitrate_kbps = 0;
  5324. this.VBR_min_bitrate_kbps = 0;
  5325. this.VBR_max_bitrate_kbps = 0;
  5326. /**
  5327. * strictly enforce VBR_min_bitrate normaly, it will be violated for analog
  5328. * silence
  5329. */
  5330. this.VBR_hard_min = 0;
  5331.  
  5332. /* resampling and filtering */
  5333.  
  5334. /**
  5335. * freq in Hz. 0=lame choses. -1=no filter
  5336. */
  5337. this.lowpassfreq = 0;
  5338. /**
  5339. * freq in Hz. 0=lame choses. -1=no filter
  5340. */
  5341. this.highpassfreq = 0;
  5342. /**
  5343. * freq width of filter, in Hz (default=15%)
  5344. */
  5345. this.lowpasswidth = 0;
  5346. /**
  5347. * freq width of filter, in Hz (default=15%)
  5348. */
  5349. this.highpasswidth = 0;
  5350.  
  5351. /*
  5352. * psycho acoustics and other arguments which you should not change unless
  5353. * you know what you are doing
  5354. */
  5355.  
  5356. this.maskingadjust = 0.;
  5357. this.maskingadjust_short = 0.;
  5358. /**
  5359. * only use ATH
  5360. */
  5361. this.ATHonly = false;
  5362. /**
  5363. * only use ATH for short blocks
  5364. */
  5365. this.ATHshort = false;
  5366. /**
  5367. * disable ATH
  5368. */
  5369. this.noATH = false;
  5370. /**
  5371. * select ATH formula
  5372. */
  5373. this.ATHtype = 0;
  5374. /**
  5375. * change ATH formula 4 shape
  5376. */
  5377. this.ATHcurve = 0.;
  5378. /**
  5379. * lower ATH by this many db
  5380. */
  5381. this.ATHlower = 0.;
  5382. /**
  5383. * select ATH auto-adjust scheme
  5384. */
  5385. this.athaa_type = 0;
  5386. /**
  5387. * select ATH auto-adjust loudness calc
  5388. */
  5389. this.athaa_loudapprox = 0;
  5390. /**
  5391. * dB, tune active region of auto-level
  5392. */
  5393. this.athaa_sensitivity = 0.;
  5394. this.short_blocks = null;
  5395. /**
  5396. * use temporal masking effect
  5397. */
  5398. this.useTemporal = false;
  5399. this.interChRatio = 0.;
  5400. /**
  5401. * Naoki's adjustment of Mid/Side maskings
  5402. */
  5403. this.msfix = 0.;
  5404.  
  5405. /**
  5406. * 0 off, 1 on
  5407. */
  5408. this.tune = false;
  5409. /**
  5410. * used to pass values for debugging and stuff
  5411. */
  5412. this.tune_value_a = 0.;
  5413.  
  5414. /************************************************************************/
  5415. /* internal variables, do not set... */
  5416. /* provided because they may be of use to calling application */
  5417. /************************************************************************/
  5418.  
  5419. /**
  5420. * 0=MPEG-2/2.5 1=MPEG-1
  5421. */
  5422. this.version = 0;
  5423. this.encoder_delay = 0;
  5424. /**
  5425. * number of samples of padding appended to input
  5426. */
  5427. this.encoder_padding = 0;
  5428. this.framesize = 0;
  5429. /**
  5430. * number of frames encoded
  5431. */
  5432. this.frameNum = 0;
  5433. /**
  5434. * is this struct owned by calling program or lame?
  5435. */
  5436. this.lame_allocated_gfp = 0;
  5437. /**************************************************************************/
  5438. /* more internal variables are stored in this structure: */
  5439. /**************************************************************************/
  5440. this.internal_flags = null;
  5441. }
  5442.  
  5443.  
  5444.  
  5445. function ReplayGain() {
  5446. this.linprebuf = new_float(GainAnalysis.MAX_ORDER * 2);
  5447. /**
  5448. * left input samples, with pre-buffer
  5449. */
  5450. this.linpre = 0;
  5451. this.lstepbuf = new_float(GainAnalysis.MAX_SAMPLES_PER_WINDOW + GainAnalysis.MAX_ORDER);
  5452. /**
  5453. * left "first step" (i.e. post first filter) samples
  5454. */
  5455. this.lstep = 0;
  5456. this.loutbuf = new_float(GainAnalysis.MAX_SAMPLES_PER_WINDOW + GainAnalysis.MAX_ORDER);
  5457. /**
  5458. * left "out" (i.e. post second filter) samples
  5459. */
  5460. this.lout = 0;
  5461. this.rinprebuf = new_float(GainAnalysis.MAX_ORDER * 2);
  5462. /**
  5463. * right input samples ...
  5464. */
  5465. this.rinpre = 0;
  5466. this.rstepbuf = new_float(GainAnalysis.MAX_SAMPLES_PER_WINDOW + GainAnalysis.MAX_ORDER);
  5467. this.rstep = 0;
  5468. this.routbuf = new_float(GainAnalysis.MAX_SAMPLES_PER_WINDOW + GainAnalysis.MAX_ORDER);
  5469. this.rout = 0;
  5470. /**
  5471. * number of samples required to reach number of milliseconds required
  5472. * for RMS window
  5473. */
  5474. this.sampleWindow = 0;
  5475. this.totsamp = 0;
  5476. this.lsum = 0.;
  5477. this.rsum = 0.;
  5478. this.freqindex = 0;
  5479. this.first = 0;
  5480. this.A = new_int(0 | (GainAnalysis.STEPS_per_dB * GainAnalysis.MAX_dB));
  5481. this.B = new_int(0 | (GainAnalysis.STEPS_per_dB * GainAnalysis.MAX_dB));
  5482.  
  5483. }
  5484.  
  5485.  
  5486.  
  5487. function CBRNewIterationLoop(_quantize) {
  5488. var quantize = _quantize;
  5489. this.quantize = quantize;
  5490. this.iteration_loop = function(gfp, pe, ms_ener_ratio, ratio) {
  5491. var gfc = gfp.internal_flags;
  5492. var l3_xmin = new_float(L3Side.SFBMAX);
  5493. var xrpow = new_float(576);
  5494. var targ_bits = new_int(2);
  5495. var mean_bits = 0, max_bits;
  5496. var l3_side = gfc.l3_side;
  5497.  
  5498. var mb = new MeanBits(mean_bits);
  5499. this.quantize.rv.ResvFrameBegin(gfp, mb);
  5500. mean_bits = mb.bits;
  5501.  
  5502. /* quantize! */
  5503. for (var gr = 0; gr < gfc.mode_gr; gr++) {
  5504.  
  5505. /*
  5506. * calculate needed bits
  5507. */
  5508. max_bits = this.quantize.qupvt.on_pe(gfp, pe, targ_bits, mean_bits,
  5509. gr, gr);
  5510.  
  5511. if (gfc.mode_ext == Encoder.MPG_MD_MS_LR) {
  5512. this.quantize.ms_convert(gfc.l3_side, gr);
  5513. this.quantize.qupvt.reduce_side(targ_bits, ms_ener_ratio[gr],
  5514. mean_bits, max_bits);
  5515. }
  5516.  
  5517. for (var ch = 0; ch < gfc.channels_out; ch++) {
  5518. var adjust, masking_lower_db;
  5519. var cod_info = l3_side.tt[gr][ch];
  5520.  
  5521. if (cod_info.block_type != Encoder.SHORT_TYPE) {
  5522. // NORM, START or STOP type
  5523. adjust = 0;
  5524. masking_lower_db = gfc.PSY.mask_adjust - adjust;
  5525. } else {
  5526. adjust = 0;
  5527. masking_lower_db = gfc.PSY.mask_adjust_short - adjust;
  5528. }
  5529. gfc.masking_lower = Math.pow(10.0,
  5530. masking_lower_db * 0.1);
  5531.  
  5532. /*
  5533. * init_outer_loop sets up cod_info, scalefac and xrpow
  5534. */
  5535. this.quantize.init_outer_loop(gfc, cod_info);
  5536. if (this.quantize.init_xrpow(gfc, cod_info, xrpow)) {
  5537. /*
  5538. * xr contains energy we will have to encode calculate the
  5539. * masking abilities find some good quantization in
  5540. * outer_loop
  5541. */
  5542. this.quantize.qupvt.calc_xmin(gfp, ratio[gr][ch], cod_info,
  5543. l3_xmin);
  5544. this.quantize.outer_loop(gfp, cod_info, l3_xmin, xrpow, ch,
  5545. targ_bits[ch]);
  5546. }
  5547.  
  5548. this.quantize.iteration_finish_one(gfc, gr, ch);
  5549. } /* for ch */
  5550. } /* for gr */
  5551.  
  5552. this.quantize.rv.ResvFrameEnd(gfc, mean_bits);
  5553. }
  5554. }
  5555.  
  5556.  
  5557. /**
  5558. * ATH related stuff, if something new ATH related has to be added, please plug
  5559. * it here into the ATH.
  5560. */
  5561. function ATH() {
  5562. /**
  5563. * Method for the auto adjustment.
  5564. */
  5565. this.useAdjust = 0;
  5566. /**
  5567. * factor for tuning the (sample power) point below which adaptive threshold
  5568. * of hearing adjustment occurs
  5569. */
  5570. this.aaSensitivityP = 0.;
  5571. /**
  5572. * Lowering based on peak volume, 1 = no lowering.
  5573. */
  5574. this.adjust = 0.;
  5575. /**
  5576. * Limit for dynamic ATH adjust.
  5577. */
  5578. this.adjustLimit = 0.;
  5579. /**
  5580. * Determined to lower x dB each second.
  5581. */
  5582. this.decay = 0.;
  5583. /**
  5584. * Lowest ATH value.
  5585. */
  5586. this.floor = 0.;
  5587. /**
  5588. * ATH for sfbs in long blocks.
  5589. */
  5590. this.l = new_float(Encoder.SBMAX_l);
  5591. /**
  5592. * ATH for sfbs in short blocks.
  5593. */
  5594. this.s = new_float(Encoder.SBMAX_s);
  5595. /**
  5596. * ATH for partitioned sfb21 in long blocks.
  5597. */
  5598. this.psfb21 = new_float(Encoder.PSFB21);
  5599. /**
  5600. * ATH for partitioned sfb12 in short blocks.
  5601. */
  5602. this.psfb12 = new_float(Encoder.PSFB12);
  5603. /**
  5604. * ATH for long block convolution bands.
  5605. */
  5606. this.cb_l = new_float(Encoder.CBANDS);
  5607. /**
  5608. * ATH for short block convolution bands.
  5609. */
  5610. this.cb_s = new_float(Encoder.CBANDS);
  5611. /**
  5612. * Equal loudness weights (based on ATH).
  5613. */
  5614. this.eql_w = new_float(Encoder.BLKSIZE / 2);
  5615. }
  5616.  
  5617. //package mp3;
  5618.  
  5619. /**
  5620. * Layer III side information.
  5621. *
  5622. * @author Ken
  5623. *
  5624. */
  5625.  
  5626.  
  5627.  
  5628. function ScaleFac(arrL, arrS, arr21, arr12) {
  5629.  
  5630. this.l = new_int(1 + Encoder.SBMAX_l);
  5631. this.s = new_int(1 + Encoder.SBMAX_s);
  5632. this.psfb21 = new_int(1 + Encoder.PSFB21);
  5633. this.psfb12 = new_int(1 + Encoder.PSFB12);
  5634. var l = this.l;
  5635. var s = this.s;
  5636.  
  5637. if (arguments.length == 4) {
  5638. //public ScaleFac(final int[] arrL, final int[] arrS, final int[] arr21,
  5639. // final int[] arr12) {
  5640. this.arrL = arguments[0];
  5641. this.arrS = arguments[1];
  5642. this.arr21 = arguments[2];
  5643. this.arr12 = arguments[3];
  5644.  
  5645. System.arraycopy(this.arrL, 0, l, 0, Math.min(this.arrL.length, this.l.length));
  5646. System.arraycopy(this.arrS, 0, s, 0, Math.min(this.arrS.length, this.s.length));
  5647. System.arraycopy(this.arr21, 0, this.psfb21, 0, Math.min(this.arr21.length, this.psfb21.length));
  5648. System.arraycopy(this.arr12, 0, this.psfb12, 0, Math.min(this.arr12.length, this.psfb12.length));
  5649. }
  5650. }
  5651.  
  5652. /*
  5653. * quantize_pvt source file
  5654. *
  5655. * Copyright (c) 1999-2002 Takehiro Tominaga
  5656. * Copyright (c) 2000-2002 Robert Hegemann
  5657. * Copyright (c) 2001 Naoki Shibata
  5658. * Copyright (c) 2002-2005 Gabriel Bouvigne
  5659. *
  5660. * This library is free software; you can redistribute it and/or
  5661. * modify it under the terms of the GNU Lesser General Public
  5662. * License as published by the Free Software Foundation; either
  5663. * version 2 of the License, or (at your option) any later version.
  5664. *
  5665. * This library is distributed in the hope that it will be useful,
  5666. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  5667. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  5668. * Library General Public License for more details.
  5669. *
  5670. * You should have received a copy of the GNU Lesser General Public
  5671. * License along with this library; if not, write to the
  5672. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  5673. * Boston, MA 02111-1307, USA.
  5674. */
  5675.  
  5676. /* $Id: QuantizePVT.java,v 1.24 2011/05/24 20:48:06 kenchis Exp $ */
  5677.  
  5678.  
  5679. QuantizePVT.Q_MAX = (256 + 1);
  5680. QuantizePVT.Q_MAX2 = 116;
  5681. QuantizePVT.LARGE_BITS = 100000;
  5682. QuantizePVT.IXMAX_VAL = 8206;
  5683.  
  5684. function QuantizePVT() {
  5685.  
  5686. var tak = null;
  5687. var rv = null;
  5688. var psy = null;
  5689.  
  5690. this.setModules = function (_tk, _rv, _psy) {
  5691. tak = _tk;
  5692. rv = _rv;
  5693. psy = _psy;
  5694. };
  5695.  
  5696. function POW20(x) {
  5697. return pow20[x + QuantizePVT.Q_MAX2];
  5698. }
  5699.  
  5700. this.IPOW20 = function (x) {
  5701. return ipow20[x];
  5702. }
  5703.  
  5704. /**
  5705. * smallest such that 1.0+DBL_EPSILON != 1.0
  5706. */
  5707. var DBL_EPSILON = 2.2204460492503131e-016;
  5708.  
  5709. /**
  5710. * ix always <= 8191+15. see count_bits()
  5711. */
  5712. var IXMAX_VAL = QuantizePVT.IXMAX_VAL;
  5713.  
  5714. var PRECALC_SIZE = (IXMAX_VAL + 2);
  5715.  
  5716. var Q_MAX = QuantizePVT.Q_MAX;
  5717.  
  5718.  
  5719. /**
  5720. * <CODE>
  5721. * minimum possible number of
  5722. * -cod_info.global_gain + ((scalefac[] + (cod_info.preflag ? pretab[sfb] : 0))
  5723. * << (cod_info.scalefac_scale + 1)) + cod_info.subblock_gain[cod_info.window[sfb]] * 8;
  5724. *
  5725. * for long block, 0+((15+3)<<2) = 18*4 = 72
  5726. * for short block, 0+(15<<2)+7*8 = 15*4+56 = 116
  5727. * </CODE>
  5728. */
  5729. var Q_MAX2 = QuantizePVT.Q_MAX2;
  5730.  
  5731. var LARGE_BITS = QuantizePVT.LARGE_BITS;
  5732.  
  5733.  
  5734. /**
  5735. * Assuming dynamic range=96dB, this value should be 92
  5736. */
  5737. var NSATHSCALE = 100;
  5738.  
  5739. /**
  5740. * The following table is used to implement the scalefactor partitioning for
  5741. * MPEG2 as described in section 2.4.3.2 of the IS. The indexing corresponds
  5742. * to the way the tables are presented in the IS:
  5743. *
  5744. * [table_number][row_in_table][column of nr_of_sfb]
  5745. */
  5746. this.nr_of_sfb_block = [
  5747. [[6, 5, 5, 5], [9, 9, 9, 9], [6, 9, 9, 9]],
  5748. [[6, 5, 7, 3], [9, 9, 12, 6], [6, 9, 12, 6]],
  5749. [[11, 10, 0, 0], [18, 18, 0, 0], [15, 18, 0, 0]],
  5750. [[7, 7, 7, 0], [12, 12, 12, 0], [6, 15, 12, 0]],
  5751. [[6, 6, 6, 3], [12, 9, 9, 6], [6, 12, 9, 6]],
  5752. [[8, 8, 5, 0], [15, 12, 9, 0], [6, 18, 9, 0]]];
  5753.  
  5754. /**
  5755. * Table B.6: layer3 preemphasis
  5756. */
  5757. var pretab = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
  5758. 2, 2, 3, 3, 3, 2, 0];
  5759. this.pretab = pretab;
  5760.  
  5761. /**
  5762. * Here are MPEG1 Table B.8 and MPEG2 Table B.1 -- Layer III scalefactor
  5763. * bands. <BR>
  5764. * Index into this using a method such as:<BR>
  5765. * idx = fr_ps.header.sampling_frequency + (fr_ps.header.version * 3)
  5766. */
  5767. this.sfBandIndex = [
  5768. // Table B.2.b: 22.05 kHz
  5769. new ScaleFac([0, 6, 12, 18, 24, 30, 36, 44, 54, 66, 80, 96, 116, 140, 168, 200, 238, 284, 336, 396, 464,
  5770. 522, 576],
  5771. [0, 4, 8, 12, 18, 24, 32, 42, 56, 74, 100, 132, 174, 192]
  5772. , [0, 0, 0, 0, 0, 0, 0] // sfb21 pseudo sub bands
  5773. , [0, 0, 0, 0, 0, 0, 0] // sfb12 pseudo sub bands
  5774. ),
  5775. /* Table B.2.c: 24 kHz */ /* docs: 332. mpg123(broken): 330 */
  5776. new ScaleFac([0, 6, 12, 18, 24, 30, 36, 44, 54, 66, 80, 96, 114, 136, 162, 194, 232, 278, 332, 394, 464,
  5777. 540, 576],
  5778. [0, 4, 8, 12, 18, 26, 36, 48, 62, 80, 104, 136, 180, 192]
  5779. , [0, 0, 0, 0, 0, 0, 0] /* sfb21 pseudo sub bands */
  5780. , [0, 0, 0, 0, 0, 0, 0] /* sfb12 pseudo sub bands */
  5781. ),
  5782. /* Table B.2.a: 16 kHz */
  5783. new ScaleFac([0, 6, 12, 18, 24, 30, 36, 44, 54, 66, 80, 96, 116, 140, 168, 200, 238, 284, 336, 396, 464,
  5784. 522, 576],
  5785. [0, 4, 8, 12, 18, 26, 36, 48, 62, 80, 104, 134, 174, 192]
  5786. , [0, 0, 0, 0, 0, 0, 0] /* sfb21 pseudo sub bands */
  5787. , [0, 0, 0, 0, 0, 0, 0] /* sfb12 pseudo sub bands */
  5788. ),
  5789. /* Table B.8.b: 44.1 kHz */
  5790. new ScaleFac([0, 4, 8, 12, 16, 20, 24, 30, 36, 44, 52, 62, 74, 90, 110, 134, 162, 196, 238, 288, 342, 418,
  5791. 576],
  5792. [0, 4, 8, 12, 16, 22, 30, 40, 52, 66, 84, 106, 136, 192]
  5793. , [0, 0, 0, 0, 0, 0, 0] /* sfb21 pseudo sub bands */
  5794. , [0, 0, 0, 0, 0, 0, 0] /* sfb12 pseudo sub bands */
  5795. ),
  5796. /* Table B.8.c: 48 kHz */
  5797. new ScaleFac([0, 4, 8, 12, 16, 20, 24, 30, 36, 42, 50, 60, 72, 88, 106, 128, 156, 190, 230, 276, 330, 384,
  5798. 576],
  5799. [0, 4, 8, 12, 16, 22, 28, 38, 50, 64, 80, 100, 126, 192]
  5800. , [0, 0, 0, 0, 0, 0, 0] /* sfb21 pseudo sub bands */
  5801. , [0, 0, 0, 0, 0, 0, 0] /* sfb12 pseudo sub bands */
  5802. ),
  5803. /* Table B.8.a: 32 kHz */
  5804. new ScaleFac([0, 4, 8, 12, 16, 20, 24, 30, 36, 44, 54, 66, 82, 102, 126, 156, 194, 240, 296, 364, 448, 550,
  5805. 576],
  5806. [0, 4, 8, 12, 16, 22, 30, 42, 58, 78, 104, 138, 180, 192]
  5807. , [0, 0, 0, 0, 0, 0, 0] /* sfb21 pseudo sub bands */
  5808. , [0, 0, 0, 0, 0, 0, 0] /* sfb12 pseudo sub bands */
  5809. ),
  5810. /* MPEG-2.5 11.025 kHz */
  5811. new ScaleFac([0, 6, 12, 18, 24, 30, 36, 44, 54, 66, 80, 96, 116, 140, 168, 200, 238, 284, 336, 396, 464,
  5812. 522, 576],
  5813. [0 / 3, 12 / 3, 24 / 3, 36 / 3, 54 / 3, 78 / 3, 108 / 3, 144 / 3, 186 / 3, 240 / 3, 312 / 3,
  5814. 402 / 3, 522 / 3, 576 / 3]
  5815. , [0, 0, 0, 0, 0, 0, 0] /* sfb21 pseudo sub bands */
  5816. , [0, 0, 0, 0, 0, 0, 0] /* sfb12 pseudo sub bands */
  5817. ),
  5818. /* MPEG-2.5 12 kHz */
  5819. new ScaleFac([0, 6, 12, 18, 24, 30, 36, 44, 54, 66, 80, 96, 116, 140, 168, 200, 238, 284, 336, 396, 464,
  5820. 522, 576],
  5821. [0 / 3, 12 / 3, 24 / 3, 36 / 3, 54 / 3, 78 / 3, 108 / 3, 144 / 3, 186 / 3, 240 / 3, 312 / 3,
  5822. 402 / 3, 522 / 3, 576 / 3]
  5823. , [0, 0, 0, 0, 0, 0, 0] /* sfb21 pseudo sub bands */
  5824. , [0, 0, 0, 0, 0, 0, 0] /* sfb12 pseudo sub bands */
  5825. ),
  5826. /* MPEG-2.5 8 kHz */
  5827. new ScaleFac([0, 12, 24, 36, 48, 60, 72, 88, 108, 132, 160, 192, 232, 280, 336, 400, 476, 566, 568, 570,
  5828. 572, 574, 576],
  5829. [0 / 3, 24 / 3, 48 / 3, 72 / 3, 108 / 3, 156 / 3, 216 / 3, 288 / 3, 372 / 3, 480 / 3, 486 / 3,
  5830. 492 / 3, 498 / 3, 576 / 3]
  5831. , [0, 0, 0, 0, 0, 0, 0] /* sfb21 pseudo sub bands */
  5832. , [0, 0, 0, 0, 0, 0, 0] /* sfb12 pseudo sub bands */
  5833. )
  5834. ];
  5835.  
  5836. var pow20 = new_float(Q_MAX + Q_MAX2 + 1);
  5837. var ipow20 = new_float(Q_MAX);
  5838. var pow43 = new_float(PRECALC_SIZE);
  5839.  
  5840. var adj43 = new_float(PRECALC_SIZE);
  5841. this.adj43 = adj43;
  5842.  
  5843. /**
  5844. * <PRE>
  5845. * compute the ATH for each scalefactor band cd range: 0..96db
  5846. *
  5847. * Input: 3.3kHz signal 32767 amplitude (3.3kHz is where ATH is smallest =
  5848. * -5db) longblocks: sfb=12 en0/bw=-11db max_en0 = 1.3db shortblocks: sfb=5
  5849. * -9db 0db
  5850. *
  5851. * Input: 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 (repeated) longblocks: amp=1
  5852. * sfb=12 en0/bw=-103 db max_en0 = -92db amp=32767 sfb=12 -12 db -1.4db
  5853. *
  5854. * Input: 1 1 1 1 1 1 1 -1 -1 -1 -1 -1 -1 -1 (repeated) shortblocks: amp=1
  5855. * sfb=5 en0/bw= -99 -86 amp=32767 sfb=5 -9 db 4db
  5856. *
  5857. *
  5858. * MAX energy of largest wave at 3.3kHz = 1db AVE energy of largest wave at
  5859. * 3.3kHz = -11db Let's take AVE: -11db = maximum signal in sfb=12. Dynamic
  5860. * range of CD: 96db. Therefor energy of smallest audible wave in sfb=12 =
  5861. * -11 - 96 = -107db = ATH at 3.3kHz.
  5862. *
  5863. * ATH formula for this wave: -5db. To adjust to LAME scaling, we need ATH =
  5864. * ATH_formula - 103 (db) ATH = ATH * 2.5e-10 (ener)
  5865. * </PRE>
  5866. */
  5867. function ATHmdct(gfp, f) {
  5868. var ath = psy.ATHformula(f, gfp);
  5869.  
  5870. ath -= NSATHSCALE;
  5871.  
  5872. /* modify the MDCT scaling for the ATH and convert to energy */
  5873. ath = Math.pow(10.0, ath / 10.0 + gfp.ATHlower);
  5874. return ath;
  5875. }
  5876.  
  5877. function compute_ath(gfp) {
  5878. var ATH_l = gfp.internal_flags.ATH.l;
  5879. var ATH_psfb21 = gfp.internal_flags.ATH.psfb21;
  5880. var ATH_s = gfp.internal_flags.ATH.s;
  5881. var ATH_psfb12 = gfp.internal_flags.ATH.psfb12;
  5882. var gfc = gfp.internal_flags;
  5883. var samp_freq = gfp.out_samplerate;
  5884.  
  5885. for (var sfb = 0; sfb < Encoder.SBMAX_l; sfb++) {
  5886. var start = gfc.scalefac_band.l[sfb];
  5887. var end = gfc.scalefac_band.l[sfb + 1];
  5888. ATH_l[sfb] = Float.MAX_VALUE;
  5889. for (var i = start; i < end; i++) {
  5890. var freq = i * samp_freq / (2 * 576);
  5891. var ATH_f = ATHmdct(gfp, freq);
  5892. /* freq in kHz */
  5893. ATH_l[sfb] = Math.min(ATH_l[sfb], ATH_f);
  5894. }
  5895. }
  5896.  
  5897. for (var sfb = 0; sfb < Encoder.PSFB21; sfb++) {
  5898. var start = gfc.scalefac_band.psfb21[sfb];
  5899. var end = gfc.scalefac_band.psfb21[sfb + 1];
  5900. ATH_psfb21[sfb] = Float.MAX_VALUE;
  5901. for (var i = start; i < end; i++) {
  5902. var freq = i * samp_freq / (2 * 576);
  5903. var ATH_f = ATHmdct(gfp, freq);
  5904. /* freq in kHz */
  5905. ATH_psfb21[sfb] = Math.min(ATH_psfb21[sfb], ATH_f);
  5906. }
  5907. }
  5908.  
  5909. for (var sfb = 0; sfb < Encoder.SBMAX_s; sfb++) {
  5910. var start = gfc.scalefac_band.s[sfb];
  5911. var end = gfc.scalefac_band.s[sfb + 1];
  5912. ATH_s[sfb] = Float.MAX_VALUE;
  5913. for (var i = start; i < end; i++) {
  5914. var freq = i * samp_freq / (2 * 192);
  5915. var ATH_f = ATHmdct(gfp, freq);
  5916. /* freq in kHz */
  5917. ATH_s[sfb] = Math.min(ATH_s[sfb], ATH_f);
  5918. }
  5919. ATH_s[sfb] *= (gfc.scalefac_band.s[sfb + 1] - gfc.scalefac_band.s[sfb]);
  5920. }
  5921.  
  5922. for (var sfb = 0; sfb < Encoder.PSFB12; sfb++) {
  5923. var start = gfc.scalefac_band.psfb12[sfb];
  5924. var end = gfc.scalefac_band.psfb12[sfb + 1];
  5925. ATH_psfb12[sfb] = Float.MAX_VALUE;
  5926. for (var i = start; i < end; i++) {
  5927. var freq = i * samp_freq / (2 * 192);
  5928. var ATH_f = ATHmdct(gfp, freq);
  5929. /* freq in kHz */
  5930. ATH_psfb12[sfb] = Math.min(ATH_psfb12[sfb], ATH_f);
  5931. }
  5932. /* not sure about the following */
  5933. ATH_psfb12[sfb] *= (gfc.scalefac_band.s[13] - gfc.scalefac_band.s[12]);
  5934. }
  5935.  
  5936. /*
  5937. * no-ATH mode: reduce ATH to -200 dB
  5938. */
  5939. if (gfp.noATH) {
  5940. for (var sfb = 0; sfb < Encoder.SBMAX_l; sfb++) {
  5941. ATH_l[sfb] = 1E-20;
  5942. }
  5943. for (var sfb = 0; sfb < Encoder.PSFB21; sfb++) {
  5944. ATH_psfb21[sfb] = 1E-20;
  5945. }
  5946. for (var sfb = 0; sfb < Encoder.SBMAX_s; sfb++) {
  5947. ATH_s[sfb] = 1E-20;
  5948. }
  5949. for (var sfb = 0; sfb < Encoder.PSFB12; sfb++) {
  5950. ATH_psfb12[sfb] = 1E-20;
  5951. }
  5952. }
  5953.  
  5954. /*
  5955. * work in progress, don't rely on it too much
  5956. */
  5957. gfc.ATH.floor = 10. * Math.log10(ATHmdct(gfp, -1.));
  5958. }
  5959.  
  5960. /**
  5961. * initialization for iteration_loop
  5962. */
  5963. this.iteration_init = function (gfp) {
  5964. var gfc = gfp.internal_flags;
  5965. var l3_side = gfc.l3_side;
  5966. var i;
  5967.  
  5968. if (gfc.iteration_init_init == 0) {
  5969. gfc.iteration_init_init = 1;
  5970.  
  5971. l3_side.main_data_begin = 0;
  5972. compute_ath(gfp);
  5973.  
  5974. pow43[0] = 0.0;
  5975. for (i = 1; i < PRECALC_SIZE; i++)
  5976. pow43[i] = Math.pow(i, 4.0 / 3.0);
  5977.  
  5978. for (i = 0; i < PRECALC_SIZE - 1; i++)
  5979. adj43[i] = ((i + 1) - Math.pow(
  5980. 0.5 * (pow43[i] + pow43[i + 1]), 0.75));
  5981. adj43[i] = 0.5;
  5982.  
  5983. for (i = 0; i < Q_MAX; i++)
  5984. ipow20[i] = Math.pow(2.0, (i - 210) * -0.1875);
  5985. for (i = 0; i <= Q_MAX + Q_MAX2; i++)
  5986. pow20[i] = Math.pow(2.0, (i - 210 - Q_MAX2) * 0.25);
  5987.  
  5988. tak.huffman_init(gfc);
  5989.  
  5990. {
  5991. var bass, alto, treble, sfb21;
  5992.  
  5993. i = (gfp.exp_nspsytune >> 2) & 63;
  5994. if (i >= 32)
  5995. i -= 64;
  5996. bass = Math.pow(10, i / 4.0 / 10.0);
  5997.  
  5998. i = (gfp.exp_nspsytune >> 8) & 63;
  5999. if (i >= 32)
  6000. i -= 64;
  6001. alto = Math.pow(10, i / 4.0 / 10.0);
  6002.  
  6003. i = (gfp.exp_nspsytune >> 14) & 63;
  6004. if (i >= 32)
  6005. i -= 64;
  6006. treble = Math.pow(10, i / 4.0 / 10.0);
  6007.  
  6008. /*
  6009. * to be compatible with Naoki's original code, the next 6 bits
  6010. * define only the amount of changing treble for sfb21
  6011. */
  6012. i = (gfp.exp_nspsytune >> 20) & 63;
  6013. if (i >= 32)
  6014. i -= 64;
  6015. sfb21 = treble * Math.pow(10, i / 4.0 / 10.0);
  6016. for (i = 0; i < Encoder.SBMAX_l; i++) {
  6017. var f;
  6018. if (i <= 6)
  6019. f = bass;
  6020. else if (i <= 13)
  6021. f = alto;
  6022. else if (i <= 20)
  6023. f = treble;
  6024. else
  6025. f = sfb21;
  6026.  
  6027. gfc.nsPsy.longfact[i] = f;
  6028. }
  6029. for (i = 0; i < Encoder.SBMAX_s; i++) {
  6030. var f;
  6031. if (i <= 5)
  6032. f = bass;
  6033. else if (i <= 10)
  6034. f = alto;
  6035. else if (i <= 11)
  6036. f = treble;
  6037. else
  6038. f = sfb21;
  6039.  
  6040. gfc.nsPsy.shortfact[i] = f;
  6041. }
  6042. }
  6043. }
  6044. }
  6045.  
  6046. /**
  6047. * allocate bits among 2 channels based on PE<BR>
  6048. * mt 6/99<BR>
  6049. * bugfixes rh 8/01: often allocated more than the allowed 4095 bits
  6050. */
  6051. this.on_pe = function (gfp, pe,
  6052. targ_bits, mean_bits, gr, cbr) {
  6053. var gfc = gfp.internal_flags;
  6054. var tbits = 0, bits;
  6055. var add_bits = new_int(2);
  6056. var ch;
  6057.  
  6058. /* allocate targ_bits for granule */
  6059. var mb = new MeanBits(tbits);
  6060. var extra_bits = rv.ResvMaxBits(gfp, mean_bits, mb, cbr);
  6061. tbits = mb.bits;
  6062. /* maximum allowed bits for this granule */
  6063. var max_bits = tbits + extra_bits;
  6064. if (max_bits > LameInternalFlags.MAX_BITS_PER_GRANULE) {
  6065. // hard limit per granule
  6066. max_bits = LameInternalFlags.MAX_BITS_PER_GRANULE;
  6067. }
  6068. for (bits = 0, ch = 0; ch < gfc.channels_out; ++ch) {
  6069. /******************************************************************
  6070. * allocate bits for each channel
  6071. ******************************************************************/
  6072. targ_bits[ch] = Math.min(LameInternalFlags.MAX_BITS_PER_CHANNEL,
  6073. tbits / gfc.channels_out);
  6074.  
  6075. add_bits[ch] = 0 | (targ_bits[ch] * pe[gr][ch] / 700.0 - targ_bits[ch]);
  6076.  
  6077. /* at most increase bits by 1.5*average */
  6078. if (add_bits[ch] > mean_bits * 3 / 4)
  6079. add_bits[ch] = mean_bits * 3 / 4;
  6080. if (add_bits[ch] < 0)
  6081. add_bits[ch] = 0;
  6082.  
  6083. if (add_bits[ch] + targ_bits[ch] > LameInternalFlags.MAX_BITS_PER_CHANNEL)
  6084. add_bits[ch] = Math.max(0,
  6085. LameInternalFlags.MAX_BITS_PER_CHANNEL - targ_bits[ch]);
  6086.  
  6087. bits += add_bits[ch];
  6088. }
  6089. if (bits > extra_bits) {
  6090. for (ch = 0; ch < gfc.channels_out; ++ch) {
  6091. add_bits[ch] = extra_bits * add_bits[ch] / bits;
  6092. }
  6093. }
  6094.  
  6095. for (ch = 0; ch < gfc.channels_out; ++ch) {
  6096. targ_bits[ch] += add_bits[ch];
  6097. extra_bits -= add_bits[ch];
  6098. }
  6099.  
  6100. for (bits = 0, ch = 0; ch < gfc.channels_out; ++ch) {
  6101. bits += targ_bits[ch];
  6102. }
  6103. if (bits > LameInternalFlags.MAX_BITS_PER_GRANULE) {
  6104. var sum = 0;
  6105. for (ch = 0; ch < gfc.channels_out; ++ch) {
  6106. targ_bits[ch] *= LameInternalFlags.MAX_BITS_PER_GRANULE;
  6107. targ_bits[ch] /= bits;
  6108. sum += targ_bits[ch];
  6109. }
  6110. }
  6111.  
  6112. return max_bits;
  6113. }
  6114.  
  6115. this.reduce_side = function (targ_bits, ms_ener_ratio, mean_bits, max_bits) {
  6116.  
  6117. /*
  6118. * ms_ener_ratio = 0: allocate 66/33 mid/side fac=.33 ms_ener_ratio =.5:
  6119. * allocate 50/50 mid/side fac= 0
  6120. */
  6121. /* 75/25 split is fac=.5 */
  6122. var fac = .33 * (.5 - ms_ener_ratio) / .5;
  6123. if (fac < 0)
  6124. fac = 0;
  6125. if (fac > .5)
  6126. fac = .5;
  6127.  
  6128. /* number of bits to move from side channel to mid channel */
  6129. /* move_bits = fac*targ_bits[1]; */
  6130. var move_bits = 0 | (fac * .5 * (targ_bits[0] + targ_bits[1]));
  6131.  
  6132. if (move_bits > LameInternalFlags.MAX_BITS_PER_CHANNEL - targ_bits[0]) {
  6133. move_bits = LameInternalFlags.MAX_BITS_PER_CHANNEL - targ_bits[0];
  6134. }
  6135. if (move_bits < 0)
  6136. move_bits = 0;
  6137.  
  6138. if (targ_bits[1] >= 125) {
  6139. /* dont reduce side channel below 125 bits */
  6140. if (targ_bits[1] - move_bits > 125) {
  6141.  
  6142. /* if mid channel already has 2x more than average, dont bother */
  6143. /* mean_bits = bits per granule (for both channels) */
  6144. if (targ_bits[0] < mean_bits)
  6145. targ_bits[0] += move_bits;
  6146. targ_bits[1] -= move_bits;
  6147. } else {
  6148. targ_bits[0] += targ_bits[1] - 125;
  6149. targ_bits[1] = 125;
  6150. }
  6151. }
  6152.  
  6153. move_bits = targ_bits[0] + targ_bits[1];
  6154. if (move_bits > max_bits) {
  6155. targ_bits[0] = (max_bits * targ_bits[0]) / move_bits;
  6156. targ_bits[1] = (max_bits * targ_bits[1]) / move_bits;
  6157. }
  6158. };
  6159.  
  6160. /**
  6161. * Robert Hegemann 2001-04-27:
  6162. * this adjusts the ATH, keeping the original noise floor
  6163. * affects the higher frequencies more than the lower ones
  6164. */
  6165. this.athAdjust = function (a, x, athFloor) {
  6166. /*
  6167. * work in progress
  6168. */
  6169. var o = 90.30873362;
  6170. var p = 94.82444863;
  6171. var u = Util.FAST_LOG10_X(x, 10.0);
  6172. var v = a * a;
  6173. var w = 0.0;
  6174. u -= athFloor;
  6175. /* undo scaling */
  6176. if (v > 1E-20)
  6177. w = 1. + Util.FAST_LOG10_X(v, 10.0 / o);
  6178. if (w < 0)
  6179. w = 0.;
  6180. u *= w;
  6181. u += athFloor + o - p;
  6182. /* redo scaling */
  6183.  
  6184. return Math.pow(10., 0.1 * u);
  6185. };
  6186.  
  6187. /**
  6188. * Calculate the allowed distortion for each scalefactor band, as determined
  6189. * by the psychoacoustic model. xmin(sb) = ratio(sb) * en(sb) / bw(sb)
  6190. *
  6191. * returns number of sfb's with energy > ATH
  6192. */
  6193. this.calc_xmin = function (gfp, ratio, cod_info, pxmin) {
  6194. var pxminPos = 0;
  6195. var gfc = gfp.internal_flags;
  6196. var gsfb, j = 0, ath_over = 0;
  6197. var ATH = gfc.ATH;
  6198. var xr = cod_info.xr;
  6199. var enable_athaa_fix = (gfp.VBR == VbrMode.vbr_mtrh) ? 1 : 0;
  6200. var masking_lower = gfc.masking_lower;
  6201.  
  6202. if (gfp.VBR == VbrMode.vbr_mtrh || gfp.VBR == VbrMode.vbr_mt) {
  6203. /* was already done in PSY-Model */
  6204. masking_lower = 1.0;
  6205. }
  6206.  
  6207. for (gsfb = 0; gsfb < cod_info.psy_lmax; gsfb++) {
  6208. var en0, xmin;
  6209. var rh1, rh2;
  6210. var width, l;
  6211.  
  6212. if (gfp.VBR == VbrMode.vbr_rh || gfp.VBR == VbrMode.vbr_mtrh)
  6213. xmin = athAdjust(ATH.adjust, ATH.l[gsfb], ATH.floor);
  6214. else
  6215. xmin = ATH.adjust * ATH.l[gsfb];
  6216.  
  6217. width = cod_info.width[gsfb];
  6218. rh1 = xmin / width;
  6219. rh2 = DBL_EPSILON;
  6220. l = width >> 1;
  6221. en0 = 0.0;
  6222. do {
  6223. var xa, xb;
  6224. xa = xr[j] * xr[j];
  6225. en0 += xa;
  6226. rh2 += (xa < rh1) ? xa : rh1;
  6227. j++;
  6228. xb = xr[j] * xr[j];
  6229. en0 += xb;
  6230. rh2 += (xb < rh1) ? xb : rh1;
  6231. j++;
  6232. } while (--l > 0);
  6233. if (en0 > xmin)
  6234. ath_over++;
  6235.  
  6236. if (gsfb == Encoder.SBPSY_l) {
  6237. var x = xmin * gfc.nsPsy.longfact[gsfb];
  6238. if (rh2 < x) {
  6239. rh2 = x;
  6240. }
  6241. }
  6242. if (enable_athaa_fix != 0) {
  6243. xmin = rh2;
  6244. }
  6245. if (!gfp.ATHonly) {
  6246. var e = ratio.en.l[gsfb];
  6247. if (e > 0.0) {
  6248. var x;
  6249. x = en0 * ratio.thm.l[gsfb] * masking_lower / e;
  6250. if (enable_athaa_fix != 0)
  6251. x *= gfc.nsPsy.longfact[gsfb];
  6252. if (xmin < x)
  6253. xmin = x;
  6254. }
  6255. }
  6256. if (enable_athaa_fix != 0)
  6257. pxmin[pxminPos++] = xmin;
  6258. else
  6259. pxmin[pxminPos++] = xmin * gfc.nsPsy.longfact[gsfb];
  6260. }
  6261. /* end of long block loop */
  6262.  
  6263. /* use this function to determine the highest non-zero coeff */
  6264. var max_nonzero = 575;
  6265. if (cod_info.block_type != Encoder.SHORT_TYPE) {
  6266. // NORM, START or STOP type, but not SHORT
  6267. var k = 576;
  6268. while (k-- != 0 && BitStream.EQ(xr[k], 0)) {
  6269. max_nonzero = k;
  6270. }
  6271. }
  6272. cod_info.max_nonzero_coeff = max_nonzero;
  6273.  
  6274. for (var sfb = cod_info.sfb_smin; gsfb < cod_info.psymax; sfb++, gsfb += 3) {
  6275. var width, b;
  6276. var tmpATH;
  6277. if (gfp.VBR == VbrMode.vbr_rh || gfp.VBR == VbrMode.vbr_mtrh)
  6278. tmpATH = athAdjust(ATH.adjust, ATH.s[sfb], ATH.floor);
  6279. else
  6280. tmpATH = ATH.adjust * ATH.s[sfb];
  6281.  
  6282. width = cod_info.width[gsfb];
  6283. for (b = 0; b < 3; b++) {
  6284. var en0 = 0.0, xmin;
  6285. var rh1, rh2;
  6286. var l = width >> 1;
  6287.  
  6288. rh1 = tmpATH / width;
  6289. rh2 = DBL_EPSILON;
  6290. do {
  6291. var xa, xb;
  6292. xa = xr[j] * xr[j];
  6293. en0 += xa;
  6294. rh2 += (xa < rh1) ? xa : rh1;
  6295. j++;
  6296. xb = xr[j] * xr[j];
  6297. en0 += xb;
  6298. rh2 += (xb < rh1) ? xb : rh1;
  6299. j++;
  6300. } while (--l > 0);
  6301. if (en0 > tmpATH)
  6302. ath_over++;
  6303. if (sfb == Encoder.SBPSY_s) {
  6304. var x = tmpATH * gfc.nsPsy.shortfact[sfb];
  6305. if (rh2 < x) {
  6306. rh2 = x;
  6307. }
  6308. }
  6309. if (enable_athaa_fix != 0)
  6310. xmin = rh2;
  6311. else
  6312. xmin = tmpATH;
  6313.  
  6314. if (!gfp.ATHonly && !gfp.ATHshort) {
  6315. var e = ratio.en.s[sfb][b];
  6316. if (e > 0.0) {
  6317. var x;
  6318. x = en0 * ratio.thm.s[sfb][b] * masking_lower / e;
  6319. if (enable_athaa_fix != 0)
  6320. x *= gfc.nsPsy.shortfact[sfb];
  6321. if (xmin < x)
  6322. xmin = x;
  6323. }
  6324. }
  6325. if (enable_athaa_fix != 0)
  6326. pxmin[pxminPos++] = xmin;
  6327. else
  6328. pxmin[pxminPos++] = xmin * gfc.nsPsy.shortfact[sfb];
  6329. }
  6330. /* b */
  6331. if (gfp.useTemporal) {
  6332. if (pxmin[pxminPos - 3] > pxmin[pxminPos - 3 + 1])
  6333. pxmin[pxminPos - 3 + 1] += (pxmin[pxminPos - 3] - pxmin[pxminPos - 3 + 1])
  6334. * gfc.decay;
  6335. if (pxmin[pxminPos - 3 + 1] > pxmin[pxminPos - 3 + 2])
  6336. pxmin[pxminPos - 3 + 2] += (pxmin[pxminPos - 3 + 1] - pxmin[pxminPos - 3 + 2])
  6337. * gfc.decay;
  6338. }
  6339. }
  6340. /* end of short block sfb loop */
  6341.  
  6342. return ath_over;
  6343. };
  6344.  
  6345. function StartLine(j) {
  6346. this.s = j;
  6347. }
  6348.  
  6349. this.calc_noise_core = function (cod_info, startline, l, step) {
  6350. var noise = 0;
  6351. var j = startline.s;
  6352. var ix = cod_info.l3_enc;
  6353.  
  6354. if (j > cod_info.count1) {
  6355. while ((l--) != 0) {
  6356. var temp;
  6357. temp = cod_info.xr[j];
  6358. j++;
  6359. noise += temp * temp;
  6360. temp = cod_info.xr[j];
  6361. j++;
  6362. noise += temp * temp;
  6363. }
  6364. } else if (j > cod_info.big_values) {
  6365. var ix01 = new_float(2);
  6366. ix01[0] = 0;
  6367. ix01[1] = step;
  6368. while ((l--) != 0) {
  6369. var temp;
  6370. temp = Math.abs(cod_info.xr[j]) - ix01[ix[j]];
  6371. j++;
  6372. noise += temp * temp;
  6373. temp = Math.abs(cod_info.xr[j]) - ix01[ix[j]];
  6374. j++;
  6375. noise += temp * temp;
  6376. }
  6377. } else {
  6378. while ((l--) != 0) {
  6379. var temp;
  6380. temp = Math.abs(cod_info.xr[j]) - pow43[ix[j]] * step;
  6381. j++;
  6382. noise += temp * temp;
  6383. temp = Math.abs(cod_info.xr[j]) - pow43[ix[j]] * step;
  6384. j++;
  6385. noise += temp * temp;
  6386. }
  6387. }
  6388.  
  6389. startline.s = j;
  6390. return noise;
  6391. }
  6392.  
  6393. /**
  6394. * <PRE>
  6395. * -oo dB => -1.00
  6396. * - 6 dB => -0.97
  6397. * - 3 dB => -0.80
  6398. * - 2 dB => -0.64
  6399. * - 1 dB => -0.38
  6400. * 0 dB => 0.00
  6401. * + 1 dB => +0.49
  6402. * + 2 dB => +1.06
  6403. * + 3 dB => +1.68
  6404. * + 6 dB => +3.69
  6405. * +10 dB => +6.45
  6406. * </PRE>
  6407. */
  6408. this.calc_noise = function (cod_info, l3_xmin, distort, res, prev_noise) {
  6409. var distortPos = 0;
  6410. var l3_xminPos = 0;
  6411. var sfb, l, over = 0;
  6412. var over_noise_db = 0;
  6413. /* 0 dB relative to masking */
  6414. var tot_noise_db = 0;
  6415. /* -200 dB relative to masking */
  6416. var max_noise = -20.0;
  6417. var j = 0;
  6418. var scalefac = cod_info.scalefac;
  6419. var scalefacPos = 0;
  6420.  
  6421. res.over_SSD = 0;
  6422.  
  6423. for (sfb = 0; sfb < cod_info.psymax; sfb++) {
  6424. var s = cod_info.global_gain
  6425. - (((scalefac[scalefacPos++]) + (cod_info.preflag != 0 ? pretab[sfb]
  6426. : 0)) << (cod_info.scalefac_scale + 1))
  6427. - cod_info.subblock_gain[cod_info.window[sfb]] * 8;
  6428. var noise = 0.0;
  6429.  
  6430. if (prev_noise != null && (prev_noise.step[sfb] == s)) {
  6431.  
  6432. /* use previously computed values */
  6433. noise = prev_noise.noise[sfb];
  6434. j += cod_info.width[sfb];
  6435. distort[distortPos++] = noise / l3_xmin[l3_xminPos++];
  6436.  
  6437. noise = prev_noise.noise_log[sfb];
  6438.  
  6439. } else {
  6440. var step = POW20(s);
  6441. l = cod_info.width[sfb] >> 1;
  6442.  
  6443. if ((j + cod_info.width[sfb]) > cod_info.max_nonzero_coeff) {
  6444. var usefullsize;
  6445. usefullsize = cod_info.max_nonzero_coeff - j + 1;
  6446.  
  6447. if (usefullsize > 0)
  6448. l = usefullsize >> 1;
  6449. else
  6450. l = 0;
  6451. }
  6452.  
  6453. var sl = new StartLine(j);
  6454. noise = this.calc_noise_core(cod_info, sl, l, step);
  6455. j = sl.s;
  6456.  
  6457. if (prev_noise != null) {
  6458. /* save noise values */
  6459. prev_noise.step[sfb] = s;
  6460. prev_noise.noise[sfb] = noise;
  6461. }
  6462.  
  6463. noise = distort[distortPos++] = noise / l3_xmin[l3_xminPos++];
  6464.  
  6465. /* multiplying here is adding in dB, but can overflow */
  6466. noise = Util.FAST_LOG10(Math.max(noise, 1E-20));
  6467.  
  6468. if (prev_noise != null) {
  6469. /* save noise values */
  6470. prev_noise.noise_log[sfb] = noise;
  6471. }
  6472. }
  6473.  
  6474. if (prev_noise != null) {
  6475. /* save noise values */
  6476. prev_noise.global_gain = cod_info.global_gain;
  6477. }
  6478.  
  6479. tot_noise_db += noise;
  6480.  
  6481. if (noise > 0.0) {
  6482. var tmp;
  6483.  
  6484. tmp = Math.max(0 | (noise * 10 + .5), 1);
  6485. res.over_SSD += tmp * tmp;
  6486.  
  6487. over++;
  6488. /* multiplying here is adding in dB -but can overflow */
  6489. /* over_noise *= noise; */
  6490. over_noise_db += noise;
  6491. }
  6492. max_noise = Math.max(max_noise, noise);
  6493.  
  6494. }
  6495.  
  6496. res.over_count = over;
  6497. res.tot_noise = tot_noise_db;
  6498. res.over_noise = over_noise_db;
  6499. res.max_noise = max_noise;
  6500.  
  6501. return over;
  6502. }
  6503.  
  6504. /**
  6505. * updates plotting data
  6506. *
  6507. * Mark Taylor 2000-??-??
  6508. *
  6509. * Robert Hegemann: moved noise/distortion calc into it
  6510. */
  6511. this.set_pinfo = function (gfp, cod_info, ratio, gr, ch) {
  6512. var gfc = gfp.internal_flags;
  6513. var sfb, sfb2;
  6514. var l;
  6515. var en0, en1;
  6516. var ifqstep = (cod_info.scalefac_scale == 0) ? .5 : 1.0;
  6517. var scalefac = cod_info.scalefac;
  6518.  
  6519. var l3_xmin = new_float(L3Side.SFBMAX);
  6520. var xfsf = new_float(L3Side.SFBMAX);
  6521. var noise = new CalcNoiseResult();
  6522.  
  6523. calc_xmin(gfp, ratio, cod_info, l3_xmin);
  6524. calc_noise(cod_info, l3_xmin, xfsf, noise, null);
  6525.  
  6526. var j = 0;
  6527. sfb2 = cod_info.sfb_lmax;
  6528. if (cod_info.block_type != Encoder.SHORT_TYPE
  6529. && 0 == cod_info.mixed_block_flag)
  6530. sfb2 = 22;
  6531. for (sfb = 0; sfb < sfb2; sfb++) {
  6532. var start = gfc.scalefac_band.l[sfb];
  6533. var end = gfc.scalefac_band.l[sfb + 1];
  6534. var bw = end - start;
  6535. for (en0 = 0.0; j < end; j++)
  6536. en0 += cod_info.xr[j] * cod_info.xr[j];
  6537. en0 /= bw;
  6538. /* convert to MDCT units */
  6539. /* scaling so it shows up on FFT plot */
  6540. en1 = 1e15;
  6541. gfc.pinfo.en[gr][ch][sfb] = en1 * en0;
  6542. gfc.pinfo.xfsf[gr][ch][sfb] = en1 * l3_xmin[sfb] * xfsf[sfb] / bw;
  6543.  
  6544. if (ratio.en.l[sfb] > 0 && !gfp.ATHonly)
  6545. en0 = en0 / ratio.en.l[sfb];
  6546. else
  6547. en0 = 0.0;
  6548.  
  6549. gfc.pinfo.thr[gr][ch][sfb] = en1
  6550. * Math.max(en0 * ratio.thm.l[sfb], gfc.ATH.l[sfb]);
  6551.  
  6552. /* there is no scalefactor bands >= SBPSY_l */
  6553. gfc.pinfo.LAMEsfb[gr][ch][sfb] = 0;
  6554. if (cod_info.preflag != 0 && sfb >= 11)
  6555. gfc.pinfo.LAMEsfb[gr][ch][sfb] = -ifqstep * pretab[sfb];
  6556.  
  6557. if (sfb < Encoder.SBPSY_l) {
  6558. /* scfsi should be decoded by caller side */
  6559. gfc.pinfo.LAMEsfb[gr][ch][sfb] -= ifqstep * scalefac[sfb];
  6560. }
  6561. }
  6562. /* for sfb */
  6563.  
  6564. if (cod_info.block_type == Encoder.SHORT_TYPE) {
  6565. sfb2 = sfb;
  6566. for (sfb = cod_info.sfb_smin; sfb < Encoder.SBMAX_s; sfb++) {
  6567. var start = gfc.scalefac_band.s[sfb];
  6568. var end = gfc.scalefac_band.s[sfb + 1];
  6569. var bw = end - start;
  6570. for (var i = 0; i < 3; i++) {
  6571. for (en0 = 0.0, l = start; l < end; l++) {
  6572. en0 += cod_info.xr[j] * cod_info.xr[j];
  6573. j++;
  6574. }
  6575. en0 = Math.max(en0 / bw, 1e-20);
  6576. /* convert to MDCT units */
  6577. /* scaling so it shows up on FFT plot */
  6578. en1 = 1e15;
  6579.  
  6580. gfc.pinfo.en_s[gr][ch][3 * sfb + i] = en1 * en0;
  6581. gfc.pinfo.xfsf_s[gr][ch][3 * sfb + i] = en1 * l3_xmin[sfb2]
  6582. * xfsf[sfb2] / bw;
  6583. if (ratio.en.s[sfb][i] > 0)
  6584. en0 = en0 / ratio.en.s[sfb][i];
  6585. else
  6586. en0 = 0.0;
  6587. if (gfp.ATHonly || gfp.ATHshort)
  6588. en0 = 0;
  6589.  
  6590. gfc.pinfo.thr_s[gr][ch][3 * sfb + i] = en1
  6591. * Math.max(en0 * ratio.thm.s[sfb][i],
  6592. gfc.ATH.s[sfb]);
  6593.  
  6594. /* there is no scalefactor bands >= SBPSY_s */
  6595. gfc.pinfo.LAMEsfb_s[gr][ch][3 * sfb + i] = -2.0
  6596. * cod_info.subblock_gain[i];
  6597. if (sfb < Encoder.SBPSY_s) {
  6598. gfc.pinfo.LAMEsfb_s[gr][ch][3 * sfb + i] -= ifqstep
  6599. * scalefac[sfb2];
  6600. }
  6601. sfb2++;
  6602. }
  6603. }
  6604. }
  6605. /* block type short */
  6606. gfc.pinfo.LAMEqss[gr][ch] = cod_info.global_gain;
  6607. gfc.pinfo.LAMEmainbits[gr][ch] = cod_info.part2_3_length
  6608. + cod_info.part2_length;
  6609. gfc.pinfo.LAMEsfbits[gr][ch] = cod_info.part2_length;
  6610.  
  6611. gfc.pinfo.over[gr][ch] = noise.over_count;
  6612. gfc.pinfo.max_noise[gr][ch] = noise.max_noise * 10.0;
  6613. gfc.pinfo.over_noise[gr][ch] = noise.over_noise * 10.0;
  6614. gfc.pinfo.tot_noise[gr][ch] = noise.tot_noise * 10.0;
  6615. gfc.pinfo.over_SSD[gr][ch] = noise.over_SSD;
  6616. }
  6617.  
  6618. /**
  6619. * updates plotting data for a whole frame
  6620. *
  6621. * Robert Hegemann 2000-10-21
  6622. */
  6623. function set_frame_pinfo(gfp, ratio) {
  6624. var gfc = gfp.internal_flags;
  6625.  
  6626. gfc.masking_lower = 1.0;
  6627.  
  6628. /*
  6629. * for every granule and channel patch l3_enc and set info
  6630. */
  6631. for (var gr = 0; gr < gfc.mode_gr; gr++) {
  6632. for (var ch = 0; ch < gfc.channels_out; ch++) {
  6633. var cod_info = gfc.l3_side.tt[gr][ch];
  6634. var scalefac_sav = new_int(L3Side.SFBMAX);
  6635. System.arraycopy(cod_info.scalefac, 0, scalefac_sav, 0,
  6636. scalefac_sav.length);
  6637.  
  6638. /*
  6639. * reconstruct the scalefactors in case SCFSI was used
  6640. */
  6641. if (gr == 1) {
  6642. var sfb;
  6643. for (sfb = 0; sfb < cod_info.sfb_lmax; sfb++) {
  6644. if (cod_info.scalefac[sfb] < 0) /* scfsi */
  6645. cod_info.scalefac[sfb] = gfc.l3_side.tt[0][ch].scalefac[sfb];
  6646. }
  6647. }
  6648.  
  6649. set_pinfo(gfp, cod_info, ratio[gr][ch], gr, ch);
  6650. System.arraycopy(scalefac_sav, 0, cod_info.scalefac, 0,
  6651. scalefac_sav.length);
  6652. }
  6653. /* for ch */
  6654. }
  6655. /* for gr */
  6656. }
  6657.  
  6658. }
  6659.  
  6660.  
  6661. function CalcNoiseData() {
  6662. this.global_gain = 0;
  6663. this.sfb_count1 = 0;
  6664. this.step = new_int(39);
  6665. this.noise = new_float(39);
  6666. this.noise_log = new_float(39);
  6667. }
  6668.  
  6669. //package mp3;
  6670.  
  6671.  
  6672. function GrInfo() {
  6673. //float xr[] = new float[576];
  6674. this.xr = new_float(576);
  6675. //int l3_enc[] = new int[576];
  6676. this.l3_enc = new_int(576);
  6677. //int scalefac[] = new int[L3Side.SFBMAX];
  6678. this.scalefac = new_int(L3Side.SFBMAX);
  6679. this.xrpow_max = 0.;
  6680.  
  6681. this.part2_3_length = 0;
  6682. this.big_values = 0;
  6683. this.count1 = 0;
  6684. this.global_gain = 0;
  6685. this.scalefac_compress = 0;
  6686. this.block_type = 0;
  6687. this.mixed_block_flag = 0;
  6688. this.table_select = new_int(3);
  6689. this.subblock_gain = new_int(3 + 1);
  6690. this.region0_count = 0;
  6691. this.region1_count = 0;
  6692. this.preflag = 0;
  6693. this.scalefac_scale = 0;
  6694. this.count1table_select = 0;
  6695.  
  6696. this.part2_length = 0;
  6697. this.sfb_lmax = 0;
  6698. this.sfb_smin = 0;
  6699. this.psy_lmax = 0;
  6700. this.sfbmax = 0;
  6701. this.psymax = 0;
  6702. this.sfbdivide = 0;
  6703. this.width = new_int(L3Side.SFBMAX);
  6704. this.window = new_int(L3Side.SFBMAX);
  6705. this.count1bits = 0;
  6706. /**
  6707. * added for LSF
  6708. */
  6709. this.sfb_partition_table = null;
  6710. this.slen = new_int(4);
  6711.  
  6712. this.max_nonzero_coeff = 0;
  6713.  
  6714. var self = this;
  6715. function clone_int(array) {
  6716. return new Int32Array(array);
  6717. }
  6718. function clone_float(array) {
  6719. return new Float32Array(array);
  6720. }
  6721. this.assign = function (other) {
  6722. self.xr = clone_float(other.xr); //.slice(0); //clone();
  6723. self.l3_enc = clone_int(other.l3_enc); //.slice(0); //clone();
  6724. self.scalefac = clone_int(other.scalefac);//.slice(0); //clone();
  6725. self.xrpow_max = other.xrpow_max;
  6726.  
  6727. self.part2_3_length = other.part2_3_length;
  6728. self.big_values = other.big_values;
  6729. self.count1 = other.count1;
  6730. self.global_gain = other.global_gain;
  6731. self.scalefac_compress = other.scalefac_compress;
  6732. self.block_type = other.block_type;
  6733. self.mixed_block_flag = other.mixed_block_flag;
  6734. self.table_select = clone_int(other.table_select);//.slice(0); //clone();
  6735. self.subblock_gain = clone_int(other.subblock_gain); //.slice(0); //.clone();
  6736. self.region0_count = other.region0_count;
  6737. self.region1_count = other.region1_count;
  6738. self.preflag = other.preflag;
  6739. self.scalefac_scale = other.scalefac_scale;
  6740. self.count1table_select = other.count1table_select;
  6741.  
  6742. self.part2_length = other.part2_length;
  6743. self.sfb_lmax = other.sfb_lmax;
  6744. self.sfb_smin = other.sfb_smin;
  6745. self.psy_lmax = other.psy_lmax;
  6746. self.sfbmax = other.sfbmax;
  6747. self.psymax = other.psymax;
  6748. self.sfbdivide = other.sfbdivide;
  6749. self.width = clone_int(other.width); //.slice(0); //.clone();
  6750. self.window = clone_int(other.window); //.slice(0); //.clone();
  6751. self.count1bits = other.count1bits;
  6752.  
  6753. self.sfb_partition_table = other.sfb_partition_table.slice(0); //.clone();
  6754. self.slen = clone_int(other.slen); //.slice(0); //.clone();
  6755. self.max_nonzero_coeff = other.max_nonzero_coeff;
  6756. }
  6757. }
  6758.  
  6759.  
  6760. var L3Side = {};
  6761.  
  6762.  
  6763. /**
  6764. * max scalefactor band, max(SBMAX_l, SBMAX_s*3, (SBMAX_s-3)*3+8)
  6765. */
  6766. L3Side.SFBMAX = (Encoder.SBMAX_s * 3);
  6767.  
  6768. /*
  6769. * MP3 quantization
  6770. *
  6771. * Copyright (c) 1999-2000 Mark Taylor
  6772. * Copyright (c) 1999-2003 Takehiro Tominaga
  6773. * Copyright (c) 2000-2007 Robert Hegemann
  6774. * Copyright (c) 2001-2005 Gabriel Bouvigne
  6775. *
  6776. * This library is free software; you can redistribute it and/or
  6777. * modify it under the terms of the GNU Lesser General Public
  6778. * License as published by the Free Software Foundation; either
  6779. * version 2 of the License, or (at your option) any later version.
  6780. *
  6781. * This library is distributed in the hope that it will be useful,
  6782. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  6783. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  6784. * Library General Public License for more details.
  6785. *
  6786. * You should have received a copy of the GNU Lesser General Public
  6787. * License along with this library; if not, write to the
  6788. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  6789. * Boston, MA 02111-1307, USA.
  6790. */
  6791.  
  6792. /* $Id: Quantize.java,v 1.24 2011/05/24 20:48:06 kenchis Exp $ */
  6793.  
  6794. //package mp3;
  6795.  
  6796. //import java.util.Arrays;
  6797.  
  6798.  
  6799. function Quantize() {
  6800. var bs;
  6801. this.rv = null;
  6802. var rv;
  6803. this.qupvt = null;
  6804. var qupvt;
  6805.  
  6806. var vbr = new VBRQuantize();
  6807. var tk;
  6808.  
  6809. this.setModules = function (_bs, _rv, _qupvt, _tk) {
  6810. bs = _bs;
  6811. rv = _rv;
  6812. this.rv = _rv;
  6813. qupvt = _qupvt;
  6814. this.qupvt = _qupvt;
  6815. tk = _tk;
  6816. vbr.setModules(qupvt, tk);
  6817. }
  6818.  
  6819. /**
  6820. * convert from L/R <. Mid/Side
  6821. */
  6822. this.ms_convert = function (l3_side, gr) {
  6823. for (var i = 0; i < 576; ++i) {
  6824. var l = l3_side.tt[gr][0].xr[i];
  6825. var r = l3_side.tt[gr][1].xr[i];
  6826. l3_side.tt[gr][0].xr[i] = (l + r) * (Util.SQRT2 * 0.5);
  6827. l3_side.tt[gr][1].xr[i] = (l - r) * (Util.SQRT2 * 0.5);
  6828. }
  6829. };
  6830.  
  6831. /**
  6832. * mt 6/99
  6833. *
  6834. * initializes cod_info, scalefac and xrpow
  6835. *
  6836. * returns 0 if all energies in xr are zero, else 1
  6837. */
  6838. function init_xrpow_core(cod_info, xrpow, upper, sum) {
  6839. sum = 0;
  6840. for (var i = 0; i <= upper; ++i) {
  6841. var tmp = Math.abs(cod_info.xr[i]);
  6842. sum += tmp;
  6843. xrpow[i] = Math.sqrt(tmp * Math.sqrt(tmp));
  6844.  
  6845. if (xrpow[i] > cod_info.xrpow_max)
  6846. cod_info.xrpow_max = xrpow[i];
  6847. }
  6848. return sum;
  6849. }
  6850.  
  6851. this.init_xrpow = function (gfc, cod_info, xrpow) {
  6852. var sum = 0;
  6853. var upper = 0 | cod_info.max_nonzero_coeff;
  6854.  
  6855. cod_info.xrpow_max = 0;
  6856.  
  6857. /*
  6858. * check if there is some energy we have to quantize and calculate xrpow
  6859. * matching our fresh scalefactors
  6860. */
  6861.  
  6862. Arrays.fill(xrpow, upper, 576, 0);
  6863.  
  6864. sum = init_xrpow_core(cod_info, xrpow, upper, sum);
  6865.  
  6866. /*
  6867. * return 1 if we have something to quantize, else 0
  6868. */
  6869. if (sum > 1E-20) {
  6870. var j = 0;
  6871. if ((gfc.substep_shaping & 2) != 0)
  6872. j = 1;
  6873.  
  6874. for (var i = 0; i < cod_info.psymax; i++)
  6875. gfc.pseudohalf[i] = j;
  6876.  
  6877. return true;
  6878. }
  6879.  
  6880. Arrays.fill(cod_info.l3_enc, 0, 576, 0);
  6881. return false;
  6882. }
  6883.  
  6884. /**
  6885. * Gabriel Bouvigne feb/apr 2003<BR>
  6886. * Analog silence detection in partitionned sfb21 or sfb12 for short blocks
  6887. *
  6888. * From top to bottom of sfb, changes to 0 coeffs which are below ath. It
  6889. * stops on the first coeff higher than ath.
  6890. */
  6891. function psfb21_analogsilence(gfc, cod_info) {
  6892. var ath = gfc.ATH;
  6893. var xr = cod_info.xr;
  6894.  
  6895. if (cod_info.block_type != Encoder.SHORT_TYPE) {
  6896. /* NORM, START or STOP type, but not SHORT blocks */
  6897. var stop = false;
  6898. for (var gsfb = Encoder.PSFB21 - 1; gsfb >= 0 && !stop; gsfb--) {
  6899. var start = gfc.scalefac_band.psfb21[gsfb];
  6900. var end = gfc.scalefac_band.psfb21[gsfb + 1];
  6901. var ath21 = qupvt.athAdjust(ath.adjust, ath.psfb21[gsfb],
  6902. ath.floor);
  6903.  
  6904. if (gfc.nsPsy.longfact[21] > 1e-12)
  6905. ath21 *= gfc.nsPsy.longfact[21];
  6906.  
  6907. for (var j = end - 1; j >= start; j--) {
  6908. if (Math.abs(xr[j]) < ath21)
  6909. xr[j] = 0;
  6910. else {
  6911. stop = true;
  6912. break;
  6913. }
  6914. }
  6915. }
  6916. } else {
  6917. /* note: short blocks coeffs are reordered */
  6918. for (var block = 0; block < 3; block++) {
  6919. var stop = false;
  6920. for (var gsfb = Encoder.PSFB12 - 1; gsfb >= 0 && !stop; gsfb--) {
  6921. var start = gfc.scalefac_band.s[12]
  6922. * 3
  6923. + (gfc.scalefac_band.s[13] - gfc.scalefac_band.s[12])
  6924. * block
  6925. + (gfc.scalefac_band.psfb12[gsfb] - gfc.scalefac_band.psfb12[0]);
  6926. var end = start
  6927. + (gfc.scalefac_band.psfb12[gsfb + 1] - gfc.scalefac_band.psfb12[gsfb]);
  6928. var ath12 = qupvt.athAdjust(ath.adjust, ath.psfb12[gsfb],
  6929. ath.floor);
  6930.  
  6931. if (gfc.nsPsy.shortfact[12] > 1e-12)
  6932. ath12 *= gfc.nsPsy.shortfact[12];
  6933.  
  6934. for (var j = end - 1; j >= start; j--) {
  6935. if (Math.abs(xr[j]) < ath12)
  6936. xr[j] = 0;
  6937. else {
  6938. stop = true;
  6939. break;
  6940. }
  6941. }
  6942. }
  6943. }
  6944. }
  6945.  
  6946. }
  6947.  
  6948. this.init_outer_loop = function (gfc, cod_info) {
  6949. /*
  6950. * initialize fresh cod_info
  6951. */
  6952. cod_info.part2_3_length = 0;
  6953. cod_info.big_values = 0;
  6954. cod_info.count1 = 0;
  6955. cod_info.global_gain = 210;
  6956. cod_info.scalefac_compress = 0;
  6957. /* mixed_block_flag, block_type was set in psymodel.c */
  6958. cod_info.table_select[0] = 0;
  6959. cod_info.table_select[1] = 0;
  6960. cod_info.table_select[2] = 0;
  6961. cod_info.subblock_gain[0] = 0;
  6962. cod_info.subblock_gain[1] = 0;
  6963. cod_info.subblock_gain[2] = 0;
  6964. cod_info.subblock_gain[3] = 0;
  6965. /* this one is always 0 */
  6966. cod_info.region0_count = 0;
  6967. cod_info.region1_count = 0;
  6968. cod_info.preflag = 0;
  6969. cod_info.scalefac_scale = 0;
  6970. cod_info.count1table_select = 0;
  6971. cod_info.part2_length = 0;
  6972. cod_info.sfb_lmax = Encoder.SBPSY_l;
  6973. cod_info.sfb_smin = Encoder.SBPSY_s;
  6974. cod_info.psy_lmax = gfc.sfb21_extra ? Encoder.SBMAX_l : Encoder.SBPSY_l;
  6975. cod_info.psymax = cod_info.psy_lmax;
  6976. cod_info.sfbmax = cod_info.sfb_lmax;
  6977. cod_info.sfbdivide = 11;
  6978. for (var sfb = 0; sfb < Encoder.SBMAX_l; sfb++) {
  6979. cod_info.width[sfb] = gfc.scalefac_band.l[sfb + 1]
  6980. - gfc.scalefac_band.l[sfb];
  6981. /* which is always 0. */
  6982. cod_info.window[sfb] = 3;
  6983. }
  6984. if (cod_info.block_type == Encoder.SHORT_TYPE) {
  6985. var ixwork = new_float(576);
  6986.  
  6987. cod_info.sfb_smin = 0;
  6988. cod_info.sfb_lmax = 0;
  6989. if (cod_info.mixed_block_flag != 0) {
  6990. /*
  6991. * MPEG-1: sfbs 0-7 long block, 3-12 short blocks MPEG-2(.5):
  6992. * sfbs 0-5 long block, 3-12 short blocks
  6993. */
  6994. cod_info.sfb_smin = 3;
  6995. cod_info.sfb_lmax = gfc.mode_gr * 2 + 4;
  6996. }
  6997. cod_info.psymax = cod_info.sfb_lmax
  6998. + 3
  6999. * ((gfc.sfb21_extra ? Encoder.SBMAX_s : Encoder.SBPSY_s) - cod_info.sfb_smin);
  7000. cod_info.sfbmax = cod_info.sfb_lmax + 3
  7001. * (Encoder.SBPSY_s - cod_info.sfb_smin);
  7002. cod_info.sfbdivide = cod_info.sfbmax - 18;
  7003. cod_info.psy_lmax = cod_info.sfb_lmax;
  7004. /* re-order the short blocks, for more efficient encoding below */
  7005. /* By Takehiro TOMINAGA */
  7006. /*
  7007. * Within each scalefactor band, data is given for successive time
  7008. * windows, beginning with window 0 and ending with window 2. Within
  7009. * each window, the quantized values are then arranged in order of
  7010. * increasing frequency...
  7011. */
  7012. var ix = gfc.scalefac_band.l[cod_info.sfb_lmax];
  7013. System.arraycopy(cod_info.xr, 0, ixwork, 0, 576);
  7014. for (var sfb = cod_info.sfb_smin; sfb < Encoder.SBMAX_s; sfb++) {
  7015. var start = gfc.scalefac_band.s[sfb];
  7016. var end = gfc.scalefac_band.s[sfb + 1];
  7017. for (var window = 0; window < 3; window++) {
  7018. for (var l = start; l < end; l++) {
  7019. cod_info.xr[ix++] = ixwork[3 * l + window];
  7020. }
  7021. }
  7022. }
  7023.  
  7024. var j = cod_info.sfb_lmax;
  7025. for (var sfb = cod_info.sfb_smin; sfb < Encoder.SBMAX_s; sfb++) {
  7026. cod_info.width[j] = cod_info.width[j + 1] = cod_info.width[j + 2] = gfc.scalefac_band.s[sfb + 1]
  7027. - gfc.scalefac_band.s[sfb];
  7028. cod_info.window[j] = 0;
  7029. cod_info.window[j + 1] = 1;
  7030. cod_info.window[j + 2] = 2;
  7031. j += 3;
  7032. }
  7033. }
  7034.  
  7035. cod_info.count1bits = 0;
  7036. cod_info.sfb_partition_table = qupvt.nr_of_sfb_block[0][0];
  7037. cod_info.slen[0] = 0;
  7038. cod_info.slen[1] = 0;
  7039. cod_info.slen[2] = 0;
  7040. cod_info.slen[3] = 0;
  7041.  
  7042. cod_info.max_nonzero_coeff = 575;
  7043.  
  7044. /*
  7045. * fresh scalefactors are all zero
  7046. */
  7047. Arrays.fill(cod_info.scalefac, 0);
  7048.  
  7049. psfb21_analogsilence(gfc, cod_info);
  7050. };
  7051.  
  7052. function BinSearchDirection(ordinal) {
  7053. this.ordinal = ordinal;
  7054. }
  7055.  
  7056. BinSearchDirection.BINSEARCH_NONE = new BinSearchDirection(0);
  7057. BinSearchDirection.BINSEARCH_UP = new BinSearchDirection(1);
  7058. BinSearchDirection.BINSEARCH_DOWN = new BinSearchDirection(2);
  7059.  
  7060. /**
  7061. * author/date??
  7062. *
  7063. * binary step size search used by outer_loop to get a quantizer step size
  7064. * to start with
  7065. */
  7066. function bin_search_StepSize(gfc, cod_info, desired_rate, ch, xrpow) {
  7067. var nBits;
  7068. var CurrentStep = gfc.CurrentStep[ch];
  7069. var flagGoneOver = false;
  7070. var start = gfc.OldValue[ch];
  7071. var Direction = BinSearchDirection.BINSEARCH_NONE;
  7072. cod_info.global_gain = start;
  7073. desired_rate -= cod_info.part2_length;
  7074.  
  7075. for (; ;) {
  7076. var step;
  7077. nBits = tk.count_bits(gfc, xrpow, cod_info, null);
  7078.  
  7079. if (CurrentStep == 1 || nBits == desired_rate)
  7080. break;
  7081. /* nothing to adjust anymore */
  7082.  
  7083. if (nBits > desired_rate) {
  7084. /* increase Quantize_StepSize */
  7085. if (Direction == BinSearchDirection.BINSEARCH_DOWN)
  7086. flagGoneOver = true;
  7087.  
  7088. if (flagGoneOver)
  7089. CurrentStep /= 2;
  7090. Direction = BinSearchDirection.BINSEARCH_UP;
  7091. step = CurrentStep;
  7092. } else {
  7093. /* decrease Quantize_StepSize */
  7094. if (Direction == BinSearchDirection.BINSEARCH_UP)
  7095. flagGoneOver = true;
  7096.  
  7097. if (flagGoneOver)
  7098. CurrentStep /= 2;
  7099. Direction = BinSearchDirection.BINSEARCH_DOWN;
  7100. step = -CurrentStep;
  7101. }
  7102. cod_info.global_gain += step;
  7103. if (cod_info.global_gain < 0) {
  7104. cod_info.global_gain = 0;
  7105. flagGoneOver = true;
  7106. }
  7107. if (cod_info.global_gain > 255) {
  7108. cod_info.global_gain = 255;
  7109. flagGoneOver = true;
  7110. }
  7111. }
  7112.  
  7113.  
  7114. while (nBits > desired_rate && cod_info.global_gain < 255) {
  7115. cod_info.global_gain++;
  7116. nBits = tk.count_bits(gfc, xrpow, cod_info, null);
  7117. }
  7118. gfc.CurrentStep[ch] = (start - cod_info.global_gain >= 4) ? 4 : 2;
  7119. gfc.OldValue[ch] = cod_info.global_gain;
  7120. cod_info.part2_3_length = nBits;
  7121. return nBits;
  7122. }
  7123.  
  7124. this.trancate_smallspectrums = function (gfc, gi, l3_xmin, work) {
  7125. var distort = new_float(L3Side.SFBMAX);
  7126.  
  7127. if ((0 == (gfc.substep_shaping & 4) && gi.block_type == Encoder.SHORT_TYPE)
  7128. || (gfc.substep_shaping & 0x80) != 0)
  7129. return;
  7130. qupvt.calc_noise(gi, l3_xmin, distort, new CalcNoiseResult(), null);
  7131. for (var j = 0; j < 576; j++) {
  7132. var xr = 0.0;
  7133. if (gi.l3_enc[j] != 0)
  7134. xr = Math.abs(gi.xr[j]);
  7135. work[j] = xr;
  7136. }
  7137.  
  7138. var j = 0;
  7139. var sfb = 8;
  7140. if (gi.block_type == Encoder.SHORT_TYPE)
  7141. sfb = 6;
  7142. do {
  7143. var allowedNoise, trancateThreshold;
  7144. var nsame, start;
  7145.  
  7146. var width = gi.width[sfb];
  7147. j += width;
  7148. if (distort[sfb] >= 1.0)
  7149. continue;
  7150.  
  7151. Arrays.sort(work, j - width, width);
  7152. if (BitStream.EQ(work[j - 1], 0.0))
  7153. continue;
  7154. /* all zero sfb */
  7155.  
  7156. allowedNoise = (1.0 - distort[sfb]) * l3_xmin[sfb];
  7157. trancateThreshold = 0.0;
  7158. start = 0;
  7159. do {
  7160. var noise;
  7161. for (nsame = 1; start + nsame < width; nsame++)
  7162. if (BitStream.NEQ(work[start + j - width], work[start + j
  7163. + nsame - width]))
  7164. break;
  7165.  
  7166. noise = work[start + j - width] * work[start + j - width]
  7167. * nsame;
  7168. if (allowedNoise < noise) {
  7169. if (start != 0)
  7170. trancateThreshold = work[start + j - width - 1];
  7171. break;
  7172. }
  7173. allowedNoise -= noise;
  7174. start += nsame;
  7175. } while (start < width);
  7176. if (BitStream.EQ(trancateThreshold, 0.0))
  7177. continue;
  7178.  
  7179. do {
  7180. if (Math.abs(gi.xr[j - width]) <= trancateThreshold)
  7181. gi.l3_enc[j - width] = 0;
  7182. } while (--width > 0);
  7183. } while (++sfb < gi.psymax);
  7184.  
  7185. gi.part2_3_length = tk.noquant_count_bits(gfc, gi, null);
  7186. };
  7187.  
  7188. /**
  7189. * author/date??
  7190. *
  7191. * Function: Returns zero if there is a scalefac which has not been
  7192. * amplified. Otherwise it returns one.
  7193. */
  7194. function loop_break(cod_info) {
  7195. for (var sfb = 0; sfb < cod_info.sfbmax; sfb++)
  7196. if (cod_info.scalefac[sfb]
  7197. + cod_info.subblock_gain[cod_info.window[sfb]] == 0)
  7198. return false;
  7199.  
  7200. return true;
  7201. }
  7202.  
  7203. /* mt 5/99: Function: Improved calc_noise for a single channel */
  7204.  
  7205. function penalties(noise) {
  7206. return Util.FAST_LOG10((0.368 + 0.632 * noise * noise * noise));
  7207. }
  7208.  
  7209. /**
  7210. * author/date??
  7211. *
  7212. * several different codes to decide which quantization is better
  7213. */
  7214. function get_klemm_noise(distort, gi) {
  7215. var klemm_noise = 1E-37;
  7216. for (var sfb = 0; sfb < gi.psymax; sfb++)
  7217. klemm_noise += penalties(distort[sfb]);
  7218.  
  7219. return Math.max(1e-20, klemm_noise);
  7220. }
  7221.  
  7222. function quant_compare(quant_comp, best, calc, gi, distort) {
  7223. /**
  7224. * noise is given in decibels (dB) relative to masking thesholds.<BR>
  7225. *
  7226. * over_noise: ??? (the previous comment is fully wrong)<BR>
  7227. * tot_noise: ??? (the previous comment is fully wrong)<BR>
  7228. * max_noise: max quantization noise
  7229. */
  7230. var better;
  7231.  
  7232. switch (quant_comp) {
  7233. default:
  7234. case 9:
  7235. {
  7236. if (best.over_count > 0) {
  7237. /* there are distorted sfb */
  7238. better = calc.over_SSD <= best.over_SSD;
  7239. if (calc.over_SSD == best.over_SSD)
  7240. better = calc.bits < best.bits;
  7241. } else {
  7242. /* no distorted sfb */
  7243. better = ((calc.max_noise < 0) && ((calc.max_noise * 10 + calc.bits) <= (best.max_noise * 10 + best.bits)));
  7244. }
  7245. break;
  7246. }
  7247.  
  7248. case 0:
  7249. better = calc.over_count < best.over_count
  7250. || (calc.over_count == best.over_count && calc.over_noise < best.over_noise)
  7251. || (calc.over_count == best.over_count
  7252. && BitStream.EQ(calc.over_noise, best.over_noise) && calc.tot_noise < best.tot_noise);
  7253. break;
  7254.  
  7255. case 8:
  7256. calc.max_noise = get_klemm_noise(distort, gi);
  7257. //$FALL-THROUGH$
  7258. case 1:
  7259. better = calc.max_noise < best.max_noise;
  7260. break;
  7261. case 2:
  7262. better = calc.tot_noise < best.tot_noise;
  7263. break;
  7264. case 3:
  7265. better = (calc.tot_noise < best.tot_noise)
  7266. && (calc.max_noise < best.max_noise);
  7267. break;
  7268. case 4:
  7269. better = (calc.max_noise <= 0.0 && best.max_noise > 0.2)
  7270. || (calc.max_noise <= 0.0 && best.max_noise < 0.0
  7271. && best.max_noise > calc.max_noise - 0.2 && calc.tot_noise < best.tot_noise)
  7272. || (calc.max_noise <= 0.0 && best.max_noise > 0.0
  7273. && best.max_noise > calc.max_noise - 0.2 && calc.tot_noise < best.tot_noise
  7274. + best.over_noise)
  7275. || (calc.max_noise > 0.0 && best.max_noise > -0.05
  7276. && best.max_noise > calc.max_noise - 0.1 && calc.tot_noise
  7277. + calc.over_noise < best.tot_noise
  7278. + best.over_noise)
  7279. || (calc.max_noise > 0.0 && best.max_noise > -0.1
  7280. && best.max_noise > calc.max_noise - 0.15 && calc.tot_noise
  7281. + calc.over_noise + calc.over_noise < best.tot_noise
  7282. + best.over_noise + best.over_noise);
  7283. break;
  7284. case 5:
  7285. better = calc.over_noise < best.over_noise
  7286. || (BitStream.EQ(calc.over_noise, best.over_noise) && calc.tot_noise < best.tot_noise);
  7287. break;
  7288. case 6:
  7289. better = calc.over_noise < best.over_noise
  7290. || (BitStream.EQ(calc.over_noise, best.over_noise) && (calc.max_noise < best.max_noise || (BitStream
  7291. .EQ(calc.max_noise, best.max_noise) && calc.tot_noise <= best.tot_noise)));
  7292. break;
  7293. case 7:
  7294. better = calc.over_count < best.over_count
  7295. || calc.over_noise < best.over_noise;
  7296. break;
  7297. }
  7298.  
  7299. if (best.over_count == 0) {
  7300. /*
  7301. * If no distorted bands, only use this quantization if it is
  7302. * better, and if it uses less bits. Unfortunately, part2_3_length
  7303. * is sometimes a poor estimator of the final size at low bitrates.
  7304. */
  7305. better = better && calc.bits < best.bits;
  7306. }
  7307.  
  7308. return better;
  7309. }
  7310.  
  7311. /**
  7312. * author/date??
  7313. *
  7314. * <PRE>
  7315. * Amplify the scalefactor bands that violate the masking threshold.
  7316. * See ISO 11172-3 Section C.1.5.4.3.5
  7317. *
  7318. * distort[] = noise/masking
  7319. * distort[] > 1 ==> noise is not masked
  7320. * distort[] < 1 ==> noise is masked
  7321. * max_dist = maximum value of distort[]
  7322. *
  7323. * Three algorithms:
  7324. * noise_shaping_amp
  7325. * 0 Amplify all bands with distort[]>1.
  7326. *
  7327. * 1 Amplify all bands with distort[] >= max_dist^(.5);
  7328. * ( 50% in the db scale)
  7329. *
  7330. * 2 Amplify first band with distort[] >= max_dist;
  7331. *
  7332. *
  7333. * For algorithms 0 and 1, if max_dist < 1, then amplify all bands
  7334. * with distort[] >= .95*max_dist. This is to make sure we always
  7335. * amplify at least one band.
  7336. * </PRE>
  7337. */
  7338. function amp_scalefac_bands(gfp, cod_info, distort, xrpow, bRefine) {
  7339. var gfc = gfp.internal_flags;
  7340. var ifqstep34;
  7341.  
  7342. if (cod_info.scalefac_scale == 0) {
  7343. ifqstep34 = 1.29683955465100964055;
  7344. /* 2**(.75*.5) */
  7345. } else {
  7346. ifqstep34 = 1.68179283050742922612;
  7347. /* 2**(.75*1) */
  7348. }
  7349.  
  7350. /* compute maximum value of distort[] */
  7351. var trigger = 0;
  7352. for (var sfb = 0; sfb < cod_info.sfbmax; sfb++) {
  7353. if (trigger < distort[sfb])
  7354. trigger = distort[sfb];
  7355. }
  7356.  
  7357. var noise_shaping_amp = gfc.noise_shaping_amp;
  7358. if (noise_shaping_amp == 3) {
  7359. if (bRefine)
  7360. noise_shaping_amp = 2;
  7361. else
  7362. noise_shaping_amp = 1;
  7363. }
  7364. switch (noise_shaping_amp) {
  7365. case 2:
  7366. /* amplify exactly 1 band */
  7367. break;
  7368.  
  7369. case 1:
  7370. /* amplify bands within 50% of max (on db scale) */
  7371. if (trigger > 1.0)
  7372. trigger = Math.pow(trigger, .5);
  7373. else
  7374. trigger *= .95;
  7375. break;
  7376.  
  7377. case 0:
  7378. default:
  7379. /* ISO algorithm. amplify all bands with distort>1 */
  7380. if (trigger > 1.0)
  7381. trigger = 1.0;
  7382. else
  7383. trigger *= .95;
  7384. break;
  7385. }
  7386.  
  7387. var j = 0;
  7388. for (var sfb = 0; sfb < cod_info.sfbmax; sfb++) {
  7389. var width = cod_info.width[sfb];
  7390. var l;
  7391. j += width;
  7392. if (distort[sfb] < trigger)
  7393. continue;
  7394.  
  7395. if ((gfc.substep_shaping & 2) != 0) {
  7396. gfc.pseudohalf[sfb] = (0 == gfc.pseudohalf[sfb]) ? 1 : 0;
  7397. if (0 == gfc.pseudohalf[sfb] && gfc.noise_shaping_amp == 2)
  7398. return;
  7399. }
  7400. cod_info.scalefac[sfb]++;
  7401. for (l = -width; l < 0; l++) {
  7402. xrpow[j + l] *= ifqstep34;
  7403. if (xrpow[j + l] > cod_info.xrpow_max)
  7404. cod_info.xrpow_max = xrpow[j + l];
  7405. }
  7406.  
  7407. if (gfc.noise_shaping_amp == 2)
  7408. return;
  7409. }
  7410. }
  7411.  
  7412. /**
  7413. * Takehiro Tominaga 2000-xx-xx
  7414. *
  7415. * turns on scalefac scale and adjusts scalefactors
  7416. */
  7417. function inc_scalefac_scale(cod_info, xrpow) {
  7418. var ifqstep34 = 1.29683955465100964055;
  7419.  
  7420. var j = 0;
  7421. for (var sfb = 0; sfb < cod_info.sfbmax; sfb++) {
  7422. var width = cod_info.width[sfb];
  7423. var s = cod_info.scalefac[sfb];
  7424. if (cod_info.preflag != 0)
  7425. s += qupvt.pretab[sfb];
  7426. j += width;
  7427. if ((s & 1) != 0) {
  7428. s++;
  7429. for (var l = -width; l < 0; l++) {
  7430. xrpow[j + l] *= ifqstep34;
  7431. if (xrpow[j + l] > cod_info.xrpow_max)
  7432. cod_info.xrpow_max = xrpow[j + l];
  7433. }
  7434. }
  7435. cod_info.scalefac[sfb] = s >> 1;
  7436. }
  7437. cod_info.preflag = 0;
  7438. cod_info.scalefac_scale = 1;
  7439. }
  7440.  
  7441. /**
  7442. * Takehiro Tominaga 2000-xx-xx
  7443. *
  7444. * increases the subblock gain and adjusts scalefactors
  7445. */
  7446. function inc_subblock_gain(gfc, cod_info, xrpow) {
  7447. var sfb;
  7448. var scalefac = cod_info.scalefac;
  7449.  
  7450. /* subbloc_gain can't do anything in the long block region */
  7451. for (sfb = 0; sfb < cod_info.sfb_lmax; sfb++) {
  7452. if (scalefac[sfb] >= 16)
  7453. return true;
  7454. }
  7455.  
  7456. for (var window = 0; window < 3; window++) {
  7457. var s1 = 0;
  7458. var s2 = 0;
  7459.  
  7460. for (sfb = cod_info.sfb_lmax + window; sfb < cod_info.sfbdivide; sfb += 3) {
  7461. if (s1 < scalefac[sfb])
  7462. s1 = scalefac[sfb];
  7463. }
  7464. for (; sfb < cod_info.sfbmax; sfb += 3) {
  7465. if (s2 < scalefac[sfb])
  7466. s2 = scalefac[sfb];
  7467. }
  7468.  
  7469. if (s1 < 16 && s2 < 8)
  7470. continue;
  7471.  
  7472. if (cod_info.subblock_gain[window] >= 7)
  7473. return true;
  7474.  
  7475. /*
  7476. * even though there is no scalefactor for sfb12 subblock gain
  7477. * affects upper frequencies too, that's why we have to go up to
  7478. * SBMAX_s
  7479. */
  7480. cod_info.subblock_gain[window]++;
  7481. var j = gfc.scalefac_band.l[cod_info.sfb_lmax];
  7482. for (sfb = cod_info.sfb_lmax + window; sfb < cod_info.sfbmax; sfb += 3) {
  7483. var amp;
  7484. var width = cod_info.width[sfb];
  7485. var s = scalefac[sfb];
  7486. s = s - (4 >> cod_info.scalefac_scale);
  7487. if (s >= 0) {
  7488. scalefac[sfb] = s;
  7489. j += width * 3;
  7490. continue;
  7491. }
  7492.  
  7493. scalefac[sfb] = 0;
  7494. {
  7495. var gain = 210 + (s << (cod_info.scalefac_scale + 1));
  7496. amp = qupvt.IPOW20(gain);
  7497. }
  7498. j += width * (window + 1);
  7499. for (var l = -width; l < 0; l++) {
  7500. xrpow[j + l] *= amp;
  7501. if (xrpow[j + l] > cod_info.xrpow_max)
  7502. cod_info.xrpow_max = xrpow[j + l];
  7503. }
  7504. j += width * (3 - window - 1);
  7505. }
  7506.  
  7507. {
  7508. var amp = qupvt.IPOW20(202);
  7509. j += cod_info.width[sfb] * (window + 1);
  7510. for (var l = -cod_info.width[sfb]; l < 0; l++) {
  7511. xrpow[j + l] *= amp;
  7512. if (xrpow[j + l] > cod_info.xrpow_max)
  7513. cod_info.xrpow_max = xrpow[j + l];
  7514. }
  7515. }
  7516. }
  7517. return false;
  7518. }
  7519.  
  7520. /**
  7521. * <PRE>
  7522. * Takehiro Tominaga /date??
  7523. * Robert Hegemann 2000-09-06: made a function of it
  7524. *
  7525. * amplifies scalefactor bands,
  7526. * - if all are already amplified returns 0
  7527. * - if some bands are amplified too much:
  7528. * * try to increase scalefac_scale
  7529. * * if already scalefac_scale was set
  7530. * try on short blocks to increase subblock gain
  7531. * </PRE>
  7532. */
  7533. function balance_noise(gfp, cod_info, distort, xrpow, bRefine) {
  7534. var gfc = gfp.internal_flags;
  7535.  
  7536. amp_scalefac_bands(gfp, cod_info, distort, xrpow, bRefine);
  7537.  
  7538. /*
  7539. * check to make sure we have not amplified too much loop_break returns
  7540. * 0 if there is an unamplified scalefac scale_bitcount returns 0 if no
  7541. * scalefactors are too large
  7542. */
  7543.  
  7544. var status = loop_break(cod_info);
  7545.  
  7546. if (status)
  7547. return false;
  7548. /* all bands amplified */
  7549.  
  7550. /*
  7551. * not all scalefactors have been amplified. so these scalefacs are
  7552. * possibly valid. encode them:
  7553. */
  7554. if (gfc.mode_gr == 2)
  7555. status = tk.scale_bitcount(cod_info);
  7556. else
  7557. status = tk.scale_bitcount_lsf(gfc, cod_info);
  7558.  
  7559. if (!status)
  7560. return true;
  7561. /* amplified some bands not exceeding limits */
  7562.  
  7563. /*
  7564. * some scalefactors are too large. lets try setting scalefac_scale=1
  7565. */
  7566. if (gfc.noise_shaping > 1) {
  7567. Arrays.fill(gfc.pseudohalf, 0);
  7568. if (0 == cod_info.scalefac_scale) {
  7569. inc_scalefac_scale(cod_info, xrpow);
  7570. status = false;
  7571. } else {
  7572. if (cod_info.block_type == Encoder.SHORT_TYPE
  7573. && gfc.subblock_gain > 0) {
  7574. status = (inc_subblock_gain(gfc, cod_info, xrpow) || loop_break(cod_info));
  7575. }
  7576. }
  7577. }
  7578.  
  7579. if (!status) {
  7580. if (gfc.mode_gr == 2)
  7581. status = tk.scale_bitcount(cod_info);
  7582. else
  7583. status = tk.scale_bitcount_lsf(gfc, cod_info);
  7584. }
  7585. return !status;
  7586. }
  7587.  
  7588. /**
  7589. * <PRE>
  7590. * Function: The outer iteration loop controls the masking conditions
  7591. * of all scalefactorbands. It computes the best scalefac and
  7592. * global gain. This module calls the inner iteration loop
  7593. *
  7594. * mt 5/99 completely rewritten to allow for bit reservoir control,
  7595. * mid/side channels with L/R or mid/side masking thresholds,
  7596. * and chooses best quantization instead of last quantization when
  7597. * no distortion free quantization can be found.
  7598. *
  7599. * added VBR support mt 5/99
  7600. *
  7601. * some code shuffle rh 9/00
  7602. * </PRE>
  7603. *
  7604. * @param l3_xmin
  7605. * allowed distortion
  7606. * @param xrpow
  7607. * coloured magnitudes of spectral
  7608. * @param targ_bits
  7609. * maximum allowed bits
  7610. */
  7611. this.outer_loop = function (gfp, cod_info, l3_xmin, xrpow, ch, targ_bits) {
  7612. var gfc = gfp.internal_flags;
  7613. var cod_info_w = new GrInfo();
  7614. var save_xrpow = new_float(576);
  7615. var distort = new_float(L3Side.SFBMAX);
  7616. var best_noise_info = new CalcNoiseResult();
  7617. var better;
  7618. var prev_noise = new CalcNoiseData();
  7619. var best_part2_3_length = 9999999;
  7620. var bEndOfSearch = false;
  7621. var bRefine = false;
  7622. var best_ggain_pass1 = 0;
  7623.  
  7624. bin_search_StepSize(gfc, cod_info, targ_bits, ch, xrpow);
  7625.  
  7626. if (0 == gfc.noise_shaping)
  7627. /* fast mode, no noise shaping, we are ready */
  7628. return 100;
  7629. /* default noise_info.over_count */
  7630.  
  7631. /* compute the distortion in this quantization */
  7632. /* coefficients and thresholds both l/r (or both mid/side) */
  7633. qupvt.calc_noise(cod_info, l3_xmin, distort, best_noise_info,
  7634. prev_noise);
  7635. best_noise_info.bits = cod_info.part2_3_length;
  7636.  
  7637. cod_info_w.assign(cod_info);
  7638. var age = 0;
  7639. System.arraycopy(xrpow, 0, save_xrpow, 0, 576);
  7640.  
  7641. while (!bEndOfSearch) {
  7642. /* BEGIN MAIN LOOP */
  7643. do {
  7644. var noise_info = new CalcNoiseResult();
  7645. var search_limit;
  7646. var maxggain = 255;
  7647.  
  7648. /*
  7649. * When quantization with no distorted bands is found, allow up
  7650. * to X new unsuccesful tries in serial. This gives us more
  7651. * possibilities for different quant_compare modes. Much more
  7652. * than 3 makes not a big difference, it is only slower.
  7653. */
  7654.  
  7655. if ((gfc.substep_shaping & 2) != 0) {
  7656. search_limit = 20;
  7657. } else {
  7658. search_limit = 3;
  7659. }
  7660.  
  7661. /*
  7662. * Check if the last scalefactor band is distorted. in VBR mode
  7663. * we can't get rid of the distortion, so quit now and VBR mode
  7664. * will try again with more bits. (makes a 10% speed increase,
  7665. * the files I tested were binary identical, 2000/05/20 Robert
  7666. * Hegemann) distort[] > 1 means noise > allowed noise
  7667. */
  7668. if (gfc.sfb21_extra) {
  7669. if (distort[cod_info_w.sfbmax] > 1.0)
  7670. break;
  7671. if (cod_info_w.block_type == Encoder.SHORT_TYPE
  7672. && (distort[cod_info_w.sfbmax + 1] > 1.0 || distort[cod_info_w.sfbmax + 2] > 1.0))
  7673. break;
  7674. }
  7675.  
  7676. /* try a new scalefactor conbination on cod_info_w */
  7677. if (!balance_noise(gfp, cod_info_w, distort, xrpow, bRefine))
  7678. break;
  7679. if (cod_info_w.scalefac_scale != 0)
  7680. maxggain = 254;
  7681.  
  7682. /*
  7683. * inner_loop starts with the initial quantization step computed
  7684. * above and slowly increases until the bits < huff_bits. Thus
  7685. * it is important not to start with too large of an inital
  7686. * quantization step. Too small is ok, but inner_loop will take
  7687. * longer
  7688. */
  7689. var huff_bits = targ_bits - cod_info_w.part2_length;
  7690. if (huff_bits <= 0)
  7691. break;
  7692.  
  7693. /*
  7694. * increase quantizer stepsize until needed bits are below
  7695. * maximum
  7696. */
  7697. while ((cod_info_w.part2_3_length = tk.count_bits(gfc, xrpow,
  7698. cod_info_w, prev_noise)) > huff_bits
  7699. && cod_info_w.global_gain <= maxggain)
  7700. cod_info_w.global_gain++;
  7701.  
  7702. if (cod_info_w.global_gain > maxggain)
  7703. break;
  7704.  
  7705. if (best_noise_info.over_count == 0) {
  7706.  
  7707. while ((cod_info_w.part2_3_length = tk.count_bits(gfc,
  7708. xrpow, cod_info_w, prev_noise)) > best_part2_3_length
  7709. && cod_info_w.global_gain <= maxggain)
  7710. cod_info_w.global_gain++;
  7711.  
  7712. if (cod_info_w.global_gain > maxggain)
  7713. break;
  7714. }
  7715.  
  7716. /* compute the distortion in this quantization */
  7717. qupvt.calc_noise(cod_info_w, l3_xmin, distort, noise_info,
  7718. prev_noise);
  7719. noise_info.bits = cod_info_w.part2_3_length;
  7720.  
  7721. /*
  7722. * check if this quantization is better than our saved
  7723. * quantization
  7724. */
  7725. if (cod_info.block_type != Encoder.SHORT_TYPE) {
  7726. // NORM, START or STOP type
  7727. better = gfp.quant_comp;
  7728. } else
  7729. better = gfp.quant_comp_short;
  7730.  
  7731. better = quant_compare(better, best_noise_info, noise_info,
  7732. cod_info_w, distort) ? 1 : 0;
  7733.  
  7734. /* save data so we can restore this quantization later */
  7735. if (better != 0) {
  7736. best_part2_3_length = cod_info.part2_3_length;
  7737. best_noise_info = noise_info;
  7738. cod_info.assign(cod_info_w);
  7739. age = 0;
  7740. /* save data so we can restore this quantization later */
  7741. /* store for later reuse */
  7742. System.arraycopy(xrpow, 0, save_xrpow, 0, 576);
  7743. } else {
  7744. /* early stop? */
  7745. if (gfc.full_outer_loop == 0) {
  7746. if (++age > search_limit
  7747. && best_noise_info.over_count == 0)
  7748. break;
  7749. if ((gfc.noise_shaping_amp == 3) && bRefine && age > 30)
  7750. break;
  7751. if ((gfc.noise_shaping_amp == 3)
  7752. && bRefine
  7753. && (cod_info_w.global_gain - best_ggain_pass1) > 15)
  7754. break;
  7755. }
  7756. }
  7757. } while ((cod_info_w.global_gain + cod_info_w.scalefac_scale) < 255);
  7758.  
  7759. if (gfc.noise_shaping_amp == 3) {
  7760. if (!bRefine) {
  7761. /* refine search */
  7762. cod_info_w.assign(cod_info);
  7763. System.arraycopy(save_xrpow, 0, xrpow, 0, 576);
  7764. age = 0;
  7765. best_ggain_pass1 = cod_info_w.global_gain;
  7766.  
  7767. bRefine = true;
  7768. } else {
  7769. /* search already refined, stop */
  7770. bEndOfSearch = true;
  7771. }
  7772.  
  7773. } else {
  7774. bEndOfSearch = true;
  7775. }
  7776. }
  7777.  
  7778. /*
  7779. * finish up
  7780. */
  7781. if (gfp.VBR == VbrMode.vbr_rh || gfp.VBR == VbrMode.vbr_mtrh)
  7782. /* restore for reuse on next try */
  7783. System.arraycopy(save_xrpow, 0, xrpow, 0, 576);
  7784. /*
  7785. * do the 'substep shaping'
  7786. */
  7787. else if ((gfc.substep_shaping & 1) != 0)
  7788. trancate_smallspectrums(gfc, cod_info, l3_xmin, xrpow);
  7789.  
  7790. return best_noise_info.over_count;
  7791. }
  7792.  
  7793. /**
  7794. * Robert Hegemann 2000-09-06
  7795. *
  7796. * update reservoir status after FINAL quantization/bitrate
  7797. */
  7798. this.iteration_finish_one = function (gfc, gr, ch) {
  7799. var l3_side = gfc.l3_side;
  7800. var cod_info = l3_side.tt[gr][ch];
  7801.  
  7802. /*
  7803. * try some better scalefac storage
  7804. */
  7805. tk.best_scalefac_store(gfc, gr, ch, l3_side);
  7806.  
  7807. /*
  7808. * best huffman_divide may save some bits too
  7809. */
  7810. if (gfc.use_best_huffman == 1)
  7811. tk.best_huffman_divide(gfc, cod_info);
  7812.  
  7813. /*
  7814. * update reservoir status after FINAL quantization/bitrate
  7815. */
  7816. rv.ResvAdjust(gfc, cod_info);
  7817. };
  7818.  
  7819. /**
  7820. *
  7821. * 2000-09-04 Robert Hegemann
  7822. *
  7823. * @param l3_xmin
  7824. * allowed distortion of the scalefactor
  7825. * @param xrpow
  7826. * coloured magnitudes of spectral values
  7827. */
  7828. this.VBR_encode_granule = function (gfp, cod_info, l3_xmin, xrpow, ch, min_bits, max_bits) {
  7829. var gfc = gfp.internal_flags;
  7830. var bst_cod_info = new GrInfo();
  7831. var bst_xrpow = new_float(576);
  7832. var Max_bits = max_bits;
  7833. var real_bits = max_bits + 1;
  7834. var this_bits = (max_bits + min_bits) / 2;
  7835. var dbits, over, found = 0;
  7836. var sfb21_extra = gfc.sfb21_extra;
  7837.  
  7838. Arrays.fill(bst_cod_info.l3_enc, 0);
  7839.  
  7840. /*
  7841. * search within round about 40 bits of optimal
  7842. */
  7843. do {
  7844.  
  7845. if (this_bits > Max_bits - 42)
  7846. gfc.sfb21_extra = false;
  7847. else
  7848. gfc.sfb21_extra = sfb21_extra;
  7849.  
  7850. over = outer_loop(gfp, cod_info, l3_xmin, xrpow, ch, this_bits);
  7851.  
  7852. /*
  7853. * is quantization as good as we are looking for ? in this case: is
  7854. * no scalefactor band distorted?
  7855. */
  7856. if (over <= 0) {
  7857. found = 1;
  7858. /*
  7859. * now we know it can be done with "real_bits" and maybe we can
  7860. * skip some iterations
  7861. */
  7862. real_bits = cod_info.part2_3_length;
  7863.  
  7864. /*
  7865. * store best quantization so far
  7866. */
  7867. bst_cod_info.assign(cod_info);
  7868. System.arraycopy(xrpow, 0, bst_xrpow, 0, 576);
  7869.  
  7870. /*
  7871. * try with fewer bits
  7872. */
  7873. max_bits = real_bits - 32;
  7874. dbits = max_bits - min_bits;
  7875. this_bits = (max_bits + min_bits) / 2;
  7876. } else {
  7877. /*
  7878. * try with more bits
  7879. */
  7880. min_bits = this_bits + 32;
  7881. dbits = max_bits - min_bits;
  7882. this_bits = (max_bits + min_bits) / 2;
  7883.  
  7884. if (found != 0) {
  7885. found = 2;
  7886. /*
  7887. * start again with best quantization so far
  7888. */
  7889. cod_info.assign(bst_cod_info);
  7890. System.arraycopy(bst_xrpow, 0, xrpow, 0, 576);
  7891. }
  7892. }
  7893. } while (dbits > 12);
  7894.  
  7895. gfc.sfb21_extra = sfb21_extra;
  7896.  
  7897. /*
  7898. * found=0 => nothing found, use last one found=1 => we just found the
  7899. * best and left the loop found=2 => we restored a good one and have now
  7900. * l3_enc to restore too
  7901. */
  7902. if (found == 2) {
  7903. System.arraycopy(bst_cod_info.l3_enc, 0, cod_info.l3_enc, 0, 576);
  7904. }
  7905. }
  7906.  
  7907. /**
  7908. * Robert Hegemann 2000-09-05
  7909. *
  7910. * calculates * how many bits are available for analog silent granules * how
  7911. * many bits to use for the lowest allowed bitrate * how many bits each
  7912. * bitrate would provide
  7913. */
  7914. this.get_framebits = function (gfp, frameBits) {
  7915. var gfc = gfp.internal_flags;
  7916.  
  7917. /*
  7918. * always use at least this many bits per granule per channel unless we
  7919. * detect analog silence, see below
  7920. */
  7921. gfc.bitrate_index = gfc.VBR_min_bitrate;
  7922. var bitsPerFrame = bs.getframebits(gfp);
  7923.  
  7924. /*
  7925. * bits for analog silence
  7926. */
  7927. gfc.bitrate_index = 1;
  7928. bitsPerFrame = bs.getframebits(gfp);
  7929.  
  7930. for (var i = 1; i <= gfc.VBR_max_bitrate; i++) {
  7931. gfc.bitrate_index = i;
  7932. var mb = new MeanBits(bitsPerFrame);
  7933. frameBits[i] = rv.ResvFrameBegin(gfp, mb);
  7934. bitsPerFrame = mb.bits;
  7935. }
  7936. };
  7937.  
  7938. /* RH: this one needs to be overhauled sometime */
  7939.  
  7940. /**
  7941. * <PRE>
  7942. * 2000-09-04 Robert Hegemann
  7943. *
  7944. * * converts LR to MS coding when necessary
  7945. * * calculates allowed/adjusted quantization noise amounts
  7946. * * detects analog silent frames
  7947. *
  7948. * some remarks:
  7949. * - lower masking depending on Quality setting
  7950. * - quality control together with adjusted ATH MDCT scaling
  7951. * on lower quality setting allocate more noise from
  7952. * ATH masking, and on higher quality setting allocate
  7953. * less noise from ATH masking.
  7954. * - experiments show that going more than 2dB over GPSYCHO's
  7955. * limits ends up in very annoying artefacts
  7956. * </PRE>
  7957. */
  7958. this.VBR_old_prepare = function (gfp, pe, ms_ener_ratio, ratio, l3_xmin, frameBits, min_bits,
  7959. max_bits, bands) {
  7960. var gfc = gfp.internal_flags;
  7961.  
  7962. var masking_lower_db, adjust = 0.0;
  7963. var analog_silence = 1;
  7964. var bits = 0;
  7965.  
  7966. gfc.bitrate_index = gfc.VBR_max_bitrate;
  7967. var avg = rv.ResvFrameBegin(gfp, new MeanBits(0)) / gfc.mode_gr;
  7968.  
  7969. get_framebits(gfp, frameBits);
  7970.  
  7971. for (var gr = 0; gr < gfc.mode_gr; gr++) {
  7972. var mxb = qupvt.on_pe(gfp, pe, max_bits[gr], avg, gr, 0);
  7973. if (gfc.mode_ext == Encoder.MPG_MD_MS_LR) {
  7974. ms_convert(gfc.l3_side, gr);
  7975. qupvt.reduce_side(max_bits[gr], ms_ener_ratio[gr], avg, mxb);
  7976. }
  7977. for (var ch = 0; ch < gfc.channels_out; ++ch) {
  7978. var cod_info = gfc.l3_side.tt[gr][ch];
  7979.  
  7980. if (cod_info.block_type != Encoder.SHORT_TYPE) {
  7981. // NORM, START or STOP type
  7982. adjust = 1.28 / (1 + Math
  7983. .exp(3.5 - pe[gr][ch] / 300.)) - 0.05;
  7984. masking_lower_db = gfc.PSY.mask_adjust - adjust;
  7985. } else {
  7986. adjust = 2.56 / (1 + Math
  7987. .exp(3.5 - pe[gr][ch] / 300.)) - 0.14;
  7988. masking_lower_db = gfc.PSY.mask_adjust_short - adjust;
  7989. }
  7990. gfc.masking_lower = Math.pow(10.0,
  7991. masking_lower_db * 0.1);
  7992.  
  7993. init_outer_loop(gfc, cod_info);
  7994. bands[gr][ch] = qupvt.calc_xmin(gfp, ratio[gr][ch], cod_info,
  7995. l3_xmin[gr][ch]);
  7996. if (bands[gr][ch] != 0)
  7997. analog_silence = 0;
  7998.  
  7999. min_bits[gr][ch] = 126;
  8000.  
  8001. bits += max_bits[gr][ch];
  8002. }
  8003. }
  8004. for (var gr = 0; gr < gfc.mode_gr; gr++) {
  8005. for (var ch = 0; ch < gfc.channels_out; ch++) {
  8006. if (bits > frameBits[gfc.VBR_max_bitrate]) {
  8007. max_bits[gr][ch] *= frameBits[gfc.VBR_max_bitrate];
  8008. max_bits[gr][ch] /= bits;
  8009. }
  8010. if (min_bits[gr][ch] > max_bits[gr][ch])
  8011. min_bits[gr][ch] = max_bits[gr][ch];
  8012.  
  8013. }
  8014. /* for ch */
  8015. }
  8016. /* for gr */
  8017.  
  8018. return analog_silence;
  8019. };
  8020.  
  8021. this.bitpressure_strategy = function (gfc, l3_xmin, min_bits, max_bits) {
  8022. for (var gr = 0; gr < gfc.mode_gr; gr++) {
  8023. for (var ch = 0; ch < gfc.channels_out; ch++) {
  8024. var gi = gfc.l3_side.tt[gr][ch];
  8025. var pxmin = l3_xmin[gr][ch];
  8026. var pxminPos = 0;
  8027. for (var sfb = 0; sfb < gi.psy_lmax; sfb++)
  8028. pxmin[pxminPos++] *= 1. + .029 * sfb * sfb
  8029. / Encoder.SBMAX_l / Encoder.SBMAX_l;
  8030.  
  8031. if (gi.block_type == Encoder.SHORT_TYPE) {
  8032. for (var sfb = gi.sfb_smin; sfb < Encoder.SBMAX_s; sfb++) {
  8033. pxmin[pxminPos++] *= 1. + .029 * sfb * sfb
  8034. / Encoder.SBMAX_s / Encoder.SBMAX_s;
  8035. pxmin[pxminPos++] *= 1. + .029 * sfb * sfb
  8036. / Encoder.SBMAX_s / Encoder.SBMAX_s;
  8037. pxmin[pxminPos++] *= 1. + .029 * sfb * sfb
  8038. / Encoder.SBMAX_s / Encoder.SBMAX_s;
  8039. }
  8040. }
  8041. max_bits[gr][ch] = 0 | Math.max(min_bits[gr][ch],
  8042. 0.9 * max_bits[gr][ch]);
  8043. }
  8044. }
  8045. };
  8046.  
  8047. this.VBR_new_prepare = function (gfp, pe, ratio, l3_xmin, frameBits, max_bits) {
  8048. var gfc = gfp.internal_flags;
  8049.  
  8050. var analog_silence = 1;
  8051. var avg = 0, bits = 0;
  8052. var maximum_framebits;
  8053.  
  8054. if (!gfp.free_format) {
  8055. gfc.bitrate_index = gfc.VBR_max_bitrate;
  8056.  
  8057. var mb = new MeanBits(avg);
  8058. rv.ResvFrameBegin(gfp, mb);
  8059. avg = mb.bits;
  8060.  
  8061. get_framebits(gfp, frameBits);
  8062. maximum_framebits = frameBits[gfc.VBR_max_bitrate];
  8063. } else {
  8064. gfc.bitrate_index = 0;
  8065. var mb = new MeanBits(avg);
  8066. maximum_framebits = rv.ResvFrameBegin(gfp, mb);
  8067. avg = mb.bits;
  8068. frameBits[0] = maximum_framebits;
  8069. }
  8070.  
  8071. for (var gr = 0; gr < gfc.mode_gr; gr++) {
  8072. qupvt.on_pe(gfp, pe, max_bits[gr], avg, gr, 0);
  8073. if (gfc.mode_ext == Encoder.MPG_MD_MS_LR) {
  8074. ms_convert(gfc.l3_side, gr);
  8075. }
  8076. for (var ch = 0; ch < gfc.channels_out; ++ch) {
  8077. var cod_info = gfc.l3_side.tt[gr][ch];
  8078.  
  8079. gfc.masking_lower = Math.pow(10.0,
  8080. gfc.PSY.mask_adjust * 0.1);
  8081.  
  8082. init_outer_loop(gfc, cod_info);
  8083. if (0 != qupvt.calc_xmin(gfp, ratio[gr][ch], cod_info,
  8084. l3_xmin[gr][ch]))
  8085. analog_silence = 0;
  8086.  
  8087. bits += max_bits[gr][ch];
  8088. }
  8089. }
  8090. for (var gr = 0; gr < gfc.mode_gr; gr++) {
  8091. for (var ch = 0; ch < gfc.channels_out; ch++) {
  8092. if (bits > maximum_framebits) {
  8093. max_bits[gr][ch] *= maximum_framebits;
  8094. max_bits[gr][ch] /= bits;
  8095. }
  8096.  
  8097. }
  8098. /* for ch */
  8099. }
  8100. /* for gr */
  8101.  
  8102. return analog_silence;
  8103. };
  8104.  
  8105. /**
  8106. * calculates target bits for ABR encoding
  8107. *
  8108. * mt 2000/05/31
  8109. */
  8110. this.calc_target_bits = function (gfp, pe, ms_ener_ratio, targ_bits, analog_silence_bits, max_frame_bits) {
  8111. var gfc = gfp.internal_flags;
  8112. var l3_side = gfc.l3_side;
  8113. var res_factor;
  8114. var gr, ch, totbits, mean_bits = 0;
  8115.  
  8116. gfc.bitrate_index = gfc.VBR_max_bitrate;
  8117. var mb = new MeanBits(mean_bits);
  8118. max_frame_bits[0] = rv.ResvFrameBegin(gfp, mb);
  8119. mean_bits = mb.bits;
  8120.  
  8121. gfc.bitrate_index = 1;
  8122. mean_bits = bs.getframebits(gfp) - gfc.sideinfo_len * 8;
  8123. analog_silence_bits[0] = mean_bits / (gfc.mode_gr * gfc.channels_out);
  8124.  
  8125. mean_bits = gfp.VBR_mean_bitrate_kbps * gfp.framesize * 1000;
  8126. if ((gfc.substep_shaping & 1) != 0)
  8127. mean_bits *= 1.09;
  8128. mean_bits /= gfp.out_samplerate;
  8129. mean_bits -= gfc.sideinfo_len * 8;
  8130. mean_bits /= (gfc.mode_gr * gfc.channels_out);
  8131.  
  8132. /**
  8133. * <PRE>
  8134. * res_factor is the percentage of the target bitrate that should
  8135. * be used on average. the remaining bits are added to the
  8136. * bitreservoir and used for difficult to encode frames.
  8137. *
  8138. * Since we are tracking the average bitrate, we should adjust
  8139. * res_factor "on the fly", increasing it if the average bitrate
  8140. * is greater than the requested bitrate, and decreasing it
  8141. * otherwise. Reasonable ranges are from .9 to 1.0
  8142. *
  8143. * Until we get the above suggestion working, we use the following
  8144. * tuning:
  8145. * compression ratio res_factor
  8146. * 5.5 (256kbps) 1.0 no need for bitreservoir
  8147. * 11 (128kbps) .93 7% held for reservoir
  8148. *
  8149. * with linear interpolation for other values.
  8150. * </PRE>
  8151. */
  8152. res_factor = .93 + .07 * (11.0 - gfp.compression_ratio)
  8153. / (11.0 - 5.5);
  8154. if (res_factor < .90)
  8155. res_factor = .90;
  8156. if (res_factor > 1.00)
  8157. res_factor = 1.00;
  8158.  
  8159. for (gr = 0; gr < gfc.mode_gr; gr++) {
  8160. var sum = 0;
  8161. for (ch = 0; ch < gfc.channels_out; ch++) {
  8162. targ_bits[gr][ch] = (int)(res_factor * mean_bits);
  8163.  
  8164. if (pe[gr][ch] > 700) {
  8165. var add_bits = (int)((pe[gr][ch] - 700) / 1.4);
  8166.  
  8167. var cod_info = l3_side.tt[gr][ch];
  8168. targ_bits[gr][ch] = (int)(res_factor * mean_bits);
  8169.  
  8170. /* short blocks use a little extra, no matter what the pe */
  8171. if (cod_info.block_type == Encoder.SHORT_TYPE) {
  8172. if (add_bits < mean_bits / 2)
  8173. add_bits = mean_bits / 2;
  8174. }
  8175. /* at most increase bits by 1.5*average */
  8176. if (add_bits > mean_bits * 3 / 2)
  8177. add_bits = mean_bits * 3 / 2;
  8178. else if (add_bits < 0)
  8179. add_bits = 0;
  8180.  
  8181. targ_bits[gr][ch] += add_bits;
  8182. }
  8183. if (targ_bits[gr][ch] > LameInternalFlags.MAX_BITS_PER_CHANNEL) {
  8184. targ_bits[gr][ch] = LameInternalFlags.MAX_BITS_PER_CHANNEL;
  8185. }
  8186. sum += targ_bits[gr][ch];
  8187. }
  8188. /* for ch */
  8189. if (sum > LameInternalFlags.MAX_BITS_PER_GRANULE) {
  8190. for (ch = 0; ch < gfc.channels_out; ++ch) {
  8191. targ_bits[gr][ch] *= LameInternalFlags.MAX_BITS_PER_GRANULE;
  8192. targ_bits[gr][ch] /= sum;
  8193. }
  8194. }
  8195. }
  8196. /* for gr */
  8197.  
  8198. if (gfc.mode_ext == Encoder.MPG_MD_MS_LR)
  8199. for (gr = 0; gr < gfc.mode_gr; gr++) {
  8200. qupvt.reduce_side(targ_bits[gr], ms_ener_ratio[gr], mean_bits
  8201. * gfc.channels_out,
  8202. LameInternalFlags.MAX_BITS_PER_GRANULE);
  8203. }
  8204.  
  8205. /*
  8206. * sum target bits
  8207. */
  8208. totbits = 0;
  8209. for (gr = 0; gr < gfc.mode_gr; gr++) {
  8210. for (ch = 0; ch < gfc.channels_out; ch++) {
  8211. if (targ_bits[gr][ch] > LameInternalFlags.MAX_BITS_PER_CHANNEL)
  8212. targ_bits[gr][ch] = LameInternalFlags.MAX_BITS_PER_CHANNEL;
  8213. totbits += targ_bits[gr][ch];
  8214. }
  8215. }
  8216.  
  8217. /*
  8218. * repartion target bits if needed
  8219. */
  8220. if (totbits > max_frame_bits[0]) {
  8221. for (gr = 0; gr < gfc.mode_gr; gr++) {
  8222. for (ch = 0; ch < gfc.channels_out; ch++) {
  8223. targ_bits[gr][ch] *= max_frame_bits[0];
  8224. targ_bits[gr][ch] /= totbits;
  8225. }
  8226. }
  8227. }
  8228. }
  8229.  
  8230. }
  8231.  
  8232. /*
  8233. * MP3 window subband -> subband filtering -> mdct routine
  8234. *
  8235. * Copyright (c) 1999-2000 Takehiro Tominaga
  8236. *
  8237. *
  8238. * This library is free software; you can redistribute it and/or
  8239. * modify it under the terms of the GNU Lesser General Public
  8240. * License as published by the Free Software Foundation; either
  8241. * version 2 of the License, or (at your option) any later version.
  8242. *
  8243. * This library is distributed in the hope that it will be useful,
  8244. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  8245. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  8246. * Library General Public License for more details.
  8247. *
  8248. * You should have received a copy of the GNU Library General Public
  8249. * License along with this library; if not, write to the
  8250. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  8251. * Boston, MA 02111-1307, USA.
  8252. */
  8253. /*
  8254. * Special Thanks to Patrick De Smet for your advices.
  8255. */
  8256.  
  8257. /* $Id: NewMDCT.java,v 1.11 2011/05/24 20:48:06 kenchis Exp $ */
  8258.  
  8259. //package mp3;
  8260.  
  8261. //import java.util.Arrays;
  8262.  
  8263.  
  8264.  
  8265. function NewMDCT() {
  8266.  
  8267. var enwindow = [
  8268. -4.77e-07 * 0.740951125354959 / 2.384e-06,
  8269. 1.03951e-04 * 0.740951125354959 / 2.384e-06,
  8270. 9.53674e-04 * 0.740951125354959 / 2.384e-06,
  8271. 2.841473e-03 * 0.740951125354959 / 2.384e-06,
  8272. 3.5758972e-02 * 0.740951125354959 / 2.384e-06,
  8273. 3.401756e-03 * 0.740951125354959 / 2.384e-06,
  8274. 9.83715e-04 * 0.740951125354959 / 2.384e-06,
  8275. 9.9182e-05 * 0.740951125354959 / 2.384e-06, /* 15 */
  8276. 1.2398e-05 * 0.740951125354959 / 2.384e-06,
  8277. 1.91212e-04 * 0.740951125354959 / 2.384e-06,
  8278. 2.283096e-03 * 0.740951125354959 / 2.384e-06,
  8279. 1.6994476e-02 * 0.740951125354959 / 2.384e-06,
  8280. -1.8756866e-02 * 0.740951125354959 / 2.384e-06,
  8281. -2.630711e-03 * 0.740951125354959 / 2.384e-06,
  8282. -2.47478e-04 * 0.740951125354959 / 2.384e-06,
  8283. -1.4782e-05 * 0.740951125354959 / 2.384e-06,
  8284. 9.063471690191471e-01, 1.960342806591213e-01,
  8285.  
  8286. -4.77e-07 * 0.773010453362737 / 2.384e-06,
  8287. 1.05858e-04 * 0.773010453362737 / 2.384e-06,
  8288. 9.30786e-04 * 0.773010453362737 / 2.384e-06,
  8289. 2.521515e-03 * 0.773010453362737 / 2.384e-06,
  8290. 3.5694122e-02 * 0.773010453362737 / 2.384e-06,
  8291. 3.643036e-03 * 0.773010453362737 / 2.384e-06,
  8292. 9.91821e-04 * 0.773010453362737 / 2.384e-06,
  8293. 9.6321e-05 * 0.773010453362737 / 2.384e-06, /* 14 */
  8294. 1.1444e-05 * 0.773010453362737 / 2.384e-06,
  8295. 1.65462e-04 * 0.773010453362737 / 2.384e-06,
  8296. 2.110004e-03 * 0.773010453362737 / 2.384e-06,
  8297. 1.6112804e-02 * 0.773010453362737 / 2.384e-06,
  8298. -1.9634247e-02 * 0.773010453362737 / 2.384e-06,
  8299. -2.803326e-03 * 0.773010453362737 / 2.384e-06,
  8300. -2.77042e-04 * 0.773010453362737 / 2.384e-06,
  8301. -1.6689e-05 * 0.773010453362737 / 2.384e-06,
  8302. 8.206787908286602e-01, 3.901806440322567e-01,
  8303.  
  8304. -4.77e-07 * 0.803207531480645 / 2.384e-06,
  8305. 1.07288e-04 * 0.803207531480645 / 2.384e-06,
  8306. 9.02653e-04 * 0.803207531480645 / 2.384e-06,
  8307. 2.174854e-03 * 0.803207531480645 / 2.384e-06,
  8308. 3.5586357e-02 * 0.803207531480645 / 2.384e-06,
  8309. 3.858566e-03 * 0.803207531480645 / 2.384e-06,
  8310. 9.95159e-04 * 0.803207531480645 / 2.384e-06,
  8311. 9.3460e-05 * 0.803207531480645 / 2.384e-06, /* 13 */
  8312. 1.0014e-05 * 0.803207531480645 / 2.384e-06,
  8313. 1.40190e-04 * 0.803207531480645 / 2.384e-06,
  8314. 1.937389e-03 * 0.803207531480645 / 2.384e-06,
  8315. 1.5233517e-02 * 0.803207531480645 / 2.384e-06,
  8316. -2.0506859e-02 * 0.803207531480645 / 2.384e-06,
  8317. -2.974033e-03 * 0.803207531480645 / 2.384e-06,
  8318. -3.07560e-04 * 0.803207531480645 / 2.384e-06,
  8319. -1.8120e-05 * 0.803207531480645 / 2.384e-06,
  8320. 7.416505462720353e-01, 5.805693545089249e-01,
  8321.  
  8322. -4.77e-07 * 0.831469612302545 / 2.384e-06,
  8323. 1.08242e-04 * 0.831469612302545 / 2.384e-06,
  8324. 8.68797e-04 * 0.831469612302545 / 2.384e-06,
  8325. 1.800537e-03 * 0.831469612302545 / 2.384e-06,
  8326. 3.5435200e-02 * 0.831469612302545 / 2.384e-06,
  8327. 4.049301e-03 * 0.831469612302545 / 2.384e-06,
  8328. 9.94205e-04 * 0.831469612302545 / 2.384e-06,
  8329. 9.0599e-05 * 0.831469612302545 / 2.384e-06, /* 12 */
  8330. 9.060e-06 * 0.831469612302545 / 2.384e-06,
  8331. 1.16348e-04 * 0.831469612302545 / 2.384e-06,
  8332. 1.766682e-03 * 0.831469612302545 / 2.384e-06,
  8333. 1.4358521e-02 * 0.831469612302545 / 2.384e-06,
  8334. -2.1372318e-02 * 0.831469612302545 / 2.384e-06,
  8335. -3.14188e-03 * 0.831469612302545 / 2.384e-06,
  8336. -3.39031e-04 * 0.831469612302545 / 2.384e-06,
  8337. -1.9550e-05 * 0.831469612302545 / 2.384e-06,
  8338. 6.681786379192989e-01, 7.653668647301797e-01,
  8339.  
  8340. -4.77e-07 * 0.857728610000272 / 2.384e-06,
  8341. 1.08719e-04 * 0.857728610000272 / 2.384e-06,
  8342. 8.29220e-04 * 0.857728610000272 / 2.384e-06,
  8343. 1.399517e-03 * 0.857728610000272 / 2.384e-06,
  8344. 3.5242081e-02 * 0.857728610000272 / 2.384e-06,
  8345. 4.215240e-03 * 0.857728610000272 / 2.384e-06,
  8346. 9.89437e-04 * 0.857728610000272 / 2.384e-06,
  8347. 8.7261e-05 * 0.857728610000272 / 2.384e-06, /* 11 */
  8348. 8.106e-06 * 0.857728610000272 / 2.384e-06,
  8349. 9.3937e-05 * 0.857728610000272 / 2.384e-06,
  8350. 1.597881e-03 * 0.857728610000272 / 2.384e-06,
  8351. 1.3489246e-02 * 0.857728610000272 / 2.384e-06,
  8352. -2.2228718e-02 * 0.857728610000272 / 2.384e-06,
  8353. -3.306866e-03 * 0.857728610000272 / 2.384e-06,
  8354. -3.71456e-04 * 0.857728610000272 / 2.384e-06,
  8355. -2.1458e-05 * 0.857728610000272 / 2.384e-06,
  8356. 5.993769336819237e-01, 9.427934736519954e-01,
  8357.  
  8358. -4.77e-07 * 0.881921264348355 / 2.384e-06,
  8359. 1.08719e-04 * 0.881921264348355 / 2.384e-06,
  8360. 7.8392e-04 * 0.881921264348355 / 2.384e-06,
  8361. 9.71317e-04 * 0.881921264348355 / 2.384e-06,
  8362. 3.5007000e-02 * 0.881921264348355 / 2.384e-06,
  8363. 4.357815e-03 * 0.881921264348355 / 2.384e-06,
  8364. 9.80854e-04 * 0.881921264348355 / 2.384e-06,
  8365. 8.3923e-05 * 0.881921264348355 / 2.384e-06, /* 10 */
  8366. 7.629e-06 * 0.881921264348355 / 2.384e-06,
  8367. 7.2956e-05 * 0.881921264348355 / 2.384e-06,
  8368. 1.432419e-03 * 0.881921264348355 / 2.384e-06,
  8369. 1.2627602e-02 * 0.881921264348355 / 2.384e-06,
  8370. -2.3074150e-02 * 0.881921264348355 / 2.384e-06,
  8371. -3.467083e-03 * 0.881921264348355 / 2.384e-06,
  8372. -4.04358e-04 * 0.881921264348355 / 2.384e-06,
  8373. -2.3365e-05 * 0.881921264348355 / 2.384e-06,
  8374. 5.345111359507916e-01, 1.111140466039205e+00,
  8375.  
  8376. -9.54e-07 * 0.903989293123443 / 2.384e-06,
  8377. 1.08242e-04 * 0.903989293123443 / 2.384e-06,
  8378. 7.31945e-04 * 0.903989293123443 / 2.384e-06,
  8379. 5.15938e-04 * 0.903989293123443 / 2.384e-06,
  8380. 3.4730434e-02 * 0.903989293123443 / 2.384e-06,
  8381. 4.477024e-03 * 0.903989293123443 / 2.384e-06,
  8382. 9.68933e-04 * 0.903989293123443 / 2.384e-06,
  8383. 8.0585e-05 * 0.903989293123443 / 2.384e-06, /* 9 */
  8384. 6.676e-06 * 0.903989293123443 / 2.384e-06,
  8385. 5.2929e-05 * 0.903989293123443 / 2.384e-06,
  8386. 1.269817e-03 * 0.903989293123443 / 2.384e-06,
  8387. 1.1775017e-02 * 0.903989293123443 / 2.384e-06,
  8388. -2.3907185e-02 * 0.903989293123443 / 2.384e-06,
  8389. -3.622532e-03 * 0.903989293123443 / 2.384e-06,
  8390. -4.38213e-04 * 0.903989293123443 / 2.384e-06,
  8391. -2.5272e-05 * 0.903989293123443 / 2.384e-06,
  8392. 4.729647758913199e-01, 1.268786568327291e+00,
  8393.  
  8394. -9.54e-07 * 0.92387953251128675613 / 2.384e-06,
  8395. 1.06812e-04 * 0.92387953251128675613 / 2.384e-06,
  8396. 6.74248e-04 * 0.92387953251128675613 / 2.384e-06,
  8397. 3.3379e-05 * 0.92387953251128675613 / 2.384e-06,
  8398. 3.4412861e-02 * 0.92387953251128675613 / 2.384e-06,
  8399. 4.573822e-03 * 0.92387953251128675613 / 2.384e-06,
  8400. 9.54151e-04 * 0.92387953251128675613 / 2.384e-06,
  8401. 7.6771e-05 * 0.92387953251128675613 / 2.384e-06,
  8402. 6.199e-06 * 0.92387953251128675613 / 2.384e-06,
  8403. 3.4332e-05 * 0.92387953251128675613 / 2.384e-06,
  8404. 1.111031e-03 * 0.92387953251128675613 / 2.384e-06,
  8405. 1.0933399e-02 * 0.92387953251128675613 / 2.384e-06,
  8406. -2.4725437e-02 * 0.92387953251128675613 / 2.384e-06,
  8407. -3.771782e-03 * 0.92387953251128675613 / 2.384e-06,
  8408. -4.72546e-04 * 0.92387953251128675613 / 2.384e-06,
  8409. -2.7657e-05 * 0.92387953251128675613 / 2.384e-06,
  8410. 4.1421356237309504879e-01, /* tan(PI/8) */
  8411. 1.414213562373095e+00,
  8412.  
  8413. -9.54e-07 * 0.941544065183021 / 2.384e-06,
  8414. 1.05381e-04 * 0.941544065183021 / 2.384e-06,
  8415. 6.10352e-04 * 0.941544065183021 / 2.384e-06,
  8416. -4.75883e-04 * 0.941544065183021 / 2.384e-06,
  8417. 3.4055710e-02 * 0.941544065183021 / 2.384e-06,
  8418. 4.649162e-03 * 0.941544065183021 / 2.384e-06,
  8419. 9.35555e-04 * 0.941544065183021 / 2.384e-06,
  8420. 7.3433e-05 * 0.941544065183021 / 2.384e-06, /* 7 */
  8421. 5.245e-06 * 0.941544065183021 / 2.384e-06,
  8422. 1.7166e-05 * 0.941544065183021 / 2.384e-06,
  8423. 9.56535e-04 * 0.941544065183021 / 2.384e-06,
  8424. 1.0103703e-02 * 0.941544065183021 / 2.384e-06,
  8425. -2.5527000e-02 * 0.941544065183021 / 2.384e-06,
  8426. -3.914356e-03 * 0.941544065183021 / 2.384e-06,
  8427. -5.07355e-04 * 0.941544065183021 / 2.384e-06,
  8428. -3.0041e-05 * 0.941544065183021 / 2.384e-06,
  8429. 3.578057213145241e-01, 1.546020906725474e+00,
  8430.  
  8431. -9.54e-07 * 0.956940335732209 / 2.384e-06,
  8432. 1.02520e-04 * 0.956940335732209 / 2.384e-06,
  8433. 5.39303e-04 * 0.956940335732209 / 2.384e-06,
  8434. -1.011848e-03 * 0.956940335732209 / 2.384e-06,
  8435. 3.3659935e-02 * 0.956940335732209 / 2.384e-06,
  8436. 4.703045e-03 * 0.956940335732209 / 2.384e-06,
  8437. 9.15051e-04 * 0.956940335732209 / 2.384e-06,
  8438. 7.0095e-05 * 0.956940335732209 / 2.384e-06, /* 6 */
  8439. 4.768e-06 * 0.956940335732209 / 2.384e-06,
  8440. 9.54e-07 * 0.956940335732209 / 2.384e-06,
  8441. 8.06808e-04 * 0.956940335732209 / 2.384e-06,
  8442. 9.287834e-03 * 0.956940335732209 / 2.384e-06,
  8443. -2.6310921e-02 * 0.956940335732209 / 2.384e-06,
  8444. -4.048824e-03 * 0.956940335732209 / 2.384e-06,
  8445. -5.42164e-04 * 0.956940335732209 / 2.384e-06,
  8446. -3.2425e-05 * 0.956940335732209 / 2.384e-06,
  8447. 3.033466836073424e-01, 1.662939224605090e+00,
  8448.  
  8449. -1.431e-06 * 0.970031253194544 / 2.384e-06,
  8450. 9.9182e-05 * 0.970031253194544 / 2.384e-06,
  8451. 4.62532e-04 * 0.970031253194544 / 2.384e-06,
  8452. -1.573563e-03 * 0.970031253194544 / 2.384e-06,
  8453. 3.3225536e-02 * 0.970031253194544 / 2.384e-06,
  8454. 4.737377e-03 * 0.970031253194544 / 2.384e-06,
  8455. 8.91685e-04 * 0.970031253194544 / 2.384e-06,
  8456. 6.6280e-05 * 0.970031253194544 / 2.384e-06, /* 5 */
  8457. 4.292e-06 * 0.970031253194544 / 2.384e-06,
  8458. -1.3828e-05 * 0.970031253194544 / 2.384e-06,
  8459. 6.61850e-04 * 0.970031253194544 / 2.384e-06,
  8460. 8.487225e-03 * 0.970031253194544 / 2.384e-06,
  8461. -2.7073860e-02 * 0.970031253194544 / 2.384e-06,
  8462. -4.174709e-03 * 0.970031253194544 / 2.384e-06,
  8463. -5.76973e-04 * 0.970031253194544 / 2.384e-06,
  8464. -3.4809e-05 * 0.970031253194544 / 2.384e-06,
  8465. 2.504869601913055e-01, 1.763842528696710e+00,
  8466.  
  8467. -1.431e-06 * 0.98078528040323 / 2.384e-06,
  8468. 9.5367e-05 * 0.98078528040323 / 2.384e-06,
  8469. 3.78609e-04 * 0.98078528040323 / 2.384e-06,
  8470. -2.161503e-03 * 0.98078528040323 / 2.384e-06,
  8471. 3.2754898e-02 * 0.98078528040323 / 2.384e-06,
  8472. 4.752159e-03 * 0.98078528040323 / 2.384e-06,
  8473. 8.66413e-04 * 0.98078528040323 / 2.384e-06,
  8474. 6.2943e-05 * 0.98078528040323 / 2.384e-06, /* 4 */
  8475. 3.815e-06 * 0.98078528040323 / 2.384e-06,
  8476. -2.718e-05 * 0.98078528040323 / 2.384e-06,
  8477. 5.22137e-04 * 0.98078528040323 / 2.384e-06,
  8478. 7.703304e-03 * 0.98078528040323 / 2.384e-06,
  8479. -2.7815342e-02 * 0.98078528040323 / 2.384e-06,
  8480. -4.290581e-03 * 0.98078528040323 / 2.384e-06,
  8481. -6.11782e-04 * 0.98078528040323 / 2.384e-06,
  8482. -3.7670e-05 * 0.98078528040323 / 2.384e-06,
  8483. 1.989123673796580e-01, 1.847759065022573e+00,
  8484.  
  8485. -1.907e-06 * 0.989176509964781 / 2.384e-06,
  8486. 9.0122e-05 * 0.989176509964781 / 2.384e-06,
  8487. 2.88486e-04 * 0.989176509964781 / 2.384e-06,
  8488. -2.774239e-03 * 0.989176509964781 / 2.384e-06,
  8489. 3.2248020e-02 * 0.989176509964781 / 2.384e-06,
  8490. 4.748821e-03 * 0.989176509964781 / 2.384e-06,
  8491. 8.38757e-04 * 0.989176509964781 / 2.384e-06,
  8492. 5.9605e-05 * 0.989176509964781 / 2.384e-06, /* 3 */
  8493. 3.338e-06 * 0.989176509964781 / 2.384e-06,
  8494. -3.9577e-05 * 0.989176509964781 / 2.384e-06,
  8495. 3.88145e-04 * 0.989176509964781 / 2.384e-06,
  8496. 6.937027e-03 * 0.989176509964781 / 2.384e-06,
  8497. -2.8532982e-02 * 0.989176509964781 / 2.384e-06,
  8498. -4.395962e-03 * 0.989176509964781 / 2.384e-06,
  8499. -6.46591e-04 * 0.989176509964781 / 2.384e-06,
  8500. -4.0531e-05 * 0.989176509964781 / 2.384e-06,
  8501. 1.483359875383474e-01, 1.913880671464418e+00,
  8502.  
  8503. -1.907e-06 * 0.995184726672197 / 2.384e-06,
  8504. 8.4400e-05 * 0.995184726672197 / 2.384e-06,
  8505. 1.91689e-04 * 0.995184726672197 / 2.384e-06,
  8506. -3.411293e-03 * 0.995184726672197 / 2.384e-06,
  8507. 3.1706810e-02 * 0.995184726672197 / 2.384e-06,
  8508. 4.728317e-03 * 0.995184726672197 / 2.384e-06,
  8509. 8.09669e-04 * 0.995184726672197 / 2.384e-06,
  8510. 5.579e-05 * 0.995184726672197 / 2.384e-06,
  8511. 3.338e-06 * 0.995184726672197 / 2.384e-06,
  8512. -5.0545e-05 * 0.995184726672197 / 2.384e-06,
  8513. 2.59876e-04 * 0.995184726672197 / 2.384e-06,
  8514. 6.189346e-03 * 0.995184726672197 / 2.384e-06,
  8515. -2.9224873e-02 * 0.995184726672197 / 2.384e-06,
  8516. -4.489899e-03 * 0.995184726672197 / 2.384e-06,
  8517. -6.80923e-04 * 0.995184726672197 / 2.384e-06,
  8518. -4.3392e-05 * 0.995184726672197 / 2.384e-06,
  8519. 9.849140335716425e-02, 1.961570560806461e+00,
  8520.  
  8521. -2.384e-06 * 0.998795456205172 / 2.384e-06,
  8522. 7.7724e-05 * 0.998795456205172 / 2.384e-06,
  8523. 8.8215e-05 * 0.998795456205172 / 2.384e-06,
  8524. -4.072189e-03 * 0.998795456205172 / 2.384e-06,
  8525. 3.1132698e-02 * 0.998795456205172 / 2.384e-06,
  8526. 4.691124e-03 * 0.998795456205172 / 2.384e-06,
  8527. 7.79152e-04 * 0.998795456205172 / 2.384e-06,
  8528. 5.2929e-05 * 0.998795456205172 / 2.384e-06,
  8529. 2.861e-06 * 0.998795456205172 / 2.384e-06,
  8530. -6.0558e-05 * 0.998795456205172 / 2.384e-06,
  8531. 1.37329e-04 * 0.998795456205172 / 2.384e-06,
  8532. 5.462170e-03 * 0.998795456205172 / 2.384e-06,
  8533. -2.9890060e-02 * 0.998795456205172 / 2.384e-06,
  8534. -4.570484e-03 * 0.998795456205172 / 2.384e-06,
  8535. -7.14302e-04 * 0.998795456205172 / 2.384e-06,
  8536. -4.6253e-05 * 0.998795456205172 / 2.384e-06,
  8537. 4.912684976946725e-02, 1.990369453344394e+00,
  8538.  
  8539. 3.5780907e-02 * Util.SQRT2 * 0.5 / 2.384e-06,
  8540. 1.7876148e-02 * Util.SQRT2 * 0.5 / 2.384e-06,
  8541. 3.134727e-03 * Util.SQRT2 * 0.5 / 2.384e-06,
  8542. 2.457142e-03 * Util.SQRT2 * 0.5 / 2.384e-06,
  8543. 9.71317e-04 * Util.SQRT2 * 0.5 / 2.384e-06,
  8544. 2.18868e-04 * Util.SQRT2 * 0.5 / 2.384e-06,
  8545. 1.01566e-04 * Util.SQRT2 * 0.5 / 2.384e-06,
  8546. 1.3828e-05 * Util.SQRT2 * 0.5 / 2.384e-06,
  8547.  
  8548. 3.0526638e-02 / 2.384e-06, 4.638195e-03 / 2.384e-06,
  8549. 7.47204e-04 / 2.384e-06, 4.9591e-05 / 2.384e-06,
  8550. 4.756451e-03 / 2.384e-06, 2.1458e-05 / 2.384e-06,
  8551. -6.9618e-05 / 2.384e-06, /* 2.384e-06/2.384e-06 */
  8552. ];
  8553.  
  8554. var NS = 12;
  8555. var NL = 36;
  8556.  
  8557. var win = [
  8558. [
  8559. 2.382191739347913e-13,
  8560. 6.423305872147834e-13,
  8561. 9.400849094049688e-13,
  8562. 1.122435026096556e-12,
  8563. 1.183840321267481e-12,
  8564. 1.122435026096556e-12,
  8565. 9.400849094049690e-13,
  8566. 6.423305872147839e-13,
  8567. 2.382191739347918e-13,
  8568.  
  8569. 5.456116108943412e-12,
  8570. 4.878985199565852e-12,
  8571. 4.240448995017367e-12,
  8572. 3.559909094758252e-12,
  8573. 2.858043359288075e-12,
  8574. 2.156177623817898e-12,
  8575. 1.475637723558783e-12,
  8576. 8.371015190102974e-13,
  8577. 2.599706096327376e-13,
  8578.  
  8579. -5.456116108943412e-12,
  8580. -4.878985199565852e-12,
  8581. -4.240448995017367e-12,
  8582. -3.559909094758252e-12,
  8583. -2.858043359288076e-12,
  8584. -2.156177623817898e-12,
  8585. -1.475637723558783e-12,
  8586. -8.371015190102975e-13,
  8587. -2.599706096327376e-13,
  8588.  
  8589. -2.382191739347923e-13,
  8590. -6.423305872147843e-13,
  8591. -9.400849094049696e-13,
  8592. -1.122435026096556e-12,
  8593. -1.183840321267481e-12,
  8594. -1.122435026096556e-12,
  8595. -9.400849094049694e-13,
  8596. -6.423305872147840e-13,
  8597. -2.382191739347918e-13,
  8598. ],
  8599. [
  8600. 2.382191739347913e-13,
  8601. 6.423305872147834e-13,
  8602. 9.400849094049688e-13,
  8603. 1.122435026096556e-12,
  8604. 1.183840321267481e-12,
  8605. 1.122435026096556e-12,
  8606. 9.400849094049688e-13,
  8607. 6.423305872147841e-13,
  8608. 2.382191739347918e-13,
  8609.  
  8610. 5.456116108943413e-12,
  8611. 4.878985199565852e-12,
  8612. 4.240448995017367e-12,
  8613. 3.559909094758253e-12,
  8614. 2.858043359288075e-12,
  8615. 2.156177623817898e-12,
  8616. 1.475637723558782e-12,
  8617. 8.371015190102975e-13,
  8618. 2.599706096327376e-13,
  8619.  
  8620. -5.461314069809755e-12,
  8621. -4.921085770524055e-12,
  8622. -4.343405037091838e-12,
  8623. -3.732668368707687e-12,
  8624. -3.093523840190885e-12,
  8625. -2.430835727329465e-12,
  8626. -1.734679010007751e-12,
  8627. -9.748253656609281e-13,
  8628. -2.797435120168326e-13,
  8629.  
  8630. 0.000000000000000e+00,
  8631. 0.000000000000000e+00,
  8632. 0.000000000000000e+00,
  8633. 0.000000000000000e+00,
  8634. 0.000000000000000e+00,
  8635. 0.000000000000000e+00,
  8636. -2.283748241799531e-13,
  8637. -4.037858874020686e-13,
  8638. -2.146547464825323e-13,
  8639. ],
  8640. [
  8641. 1.316524975873958e-01, /* win[SHORT_TYPE] */
  8642. 4.142135623730950e-01,
  8643. 7.673269879789602e-01,
  8644.  
  8645. 1.091308501069271e+00, /* tantab_l */
  8646. 1.303225372841206e+00,
  8647. 1.569685577117490e+00,
  8648. 1.920982126971166e+00,
  8649. 2.414213562373094e+00,
  8650. 3.171594802363212e+00,
  8651. 4.510708503662055e+00,
  8652. 7.595754112725146e+00,
  8653. 2.290376554843115e+01,
  8654.  
  8655. 0.98480775301220802032, /* cx */
  8656. 0.64278760968653936292,
  8657. 0.34202014332566882393,
  8658. 0.93969262078590842791,
  8659. -0.17364817766693030343,
  8660. -0.76604444311897790243,
  8661. 0.86602540378443870761,
  8662. 0.500000000000000e+00,
  8663.  
  8664. -5.144957554275265e-01, /* ca */
  8665. -4.717319685649723e-01,
  8666. -3.133774542039019e-01,
  8667. -1.819131996109812e-01,
  8668. -9.457419252642064e-02,
  8669. -4.096558288530405e-02,
  8670. -1.419856857247115e-02,
  8671. -3.699974673760037e-03,
  8672.  
  8673. 8.574929257125442e-01, /* cs */
  8674. 8.817419973177052e-01,
  8675. 9.496286491027329e-01,
  8676. 9.833145924917901e-01,
  8677. 9.955178160675857e-01,
  8678. 9.991605581781475e-01,
  8679. 9.998991952444470e-01,
  8680. 9.999931550702802e-01,
  8681. ],
  8682. [
  8683. 0.000000000000000e+00,
  8684. 0.000000000000000e+00,
  8685. 0.000000000000000e+00,
  8686. 0.000000000000000e+00,
  8687. 0.000000000000000e+00,
  8688. 0.000000000000000e+00,
  8689. 2.283748241799531e-13,
  8690. 4.037858874020686e-13,
  8691. 2.146547464825323e-13,
  8692.  
  8693. 5.461314069809755e-12,
  8694. 4.921085770524055e-12,
  8695. 4.343405037091838e-12,
  8696. 3.732668368707687e-12,
  8697. 3.093523840190885e-12,
  8698. 2.430835727329466e-12,
  8699. 1.734679010007751e-12,
  8700. 9.748253656609281e-13,
  8701. 2.797435120168326e-13,
  8702.  
  8703. -5.456116108943413e-12,
  8704. -4.878985199565852e-12,
  8705. -4.240448995017367e-12,
  8706. -3.559909094758253e-12,
  8707. -2.858043359288075e-12,
  8708. -2.156177623817898e-12,
  8709. -1.475637723558782e-12,
  8710. -8.371015190102975e-13,
  8711. -2.599706096327376e-13,
  8712.  
  8713. -2.382191739347913e-13,
  8714. -6.423305872147834e-13,
  8715. -9.400849094049688e-13,
  8716. -1.122435026096556e-12,
  8717. -1.183840321267481e-12,
  8718. -1.122435026096556e-12,
  8719. -9.400849094049688e-13,
  8720. -6.423305872147841e-13,
  8721. -2.382191739347918e-13,
  8722. ]
  8723. ];
  8724.  
  8725. var tantab_l = win[Encoder.SHORT_TYPE];
  8726. var cx = win[Encoder.SHORT_TYPE];
  8727. var ca = win[Encoder.SHORT_TYPE];
  8728. var cs = win[Encoder.SHORT_TYPE];
  8729.  
  8730. /**
  8731. * new IDCT routine written by Takehiro TOMINAGA
  8732. *
  8733. * PURPOSE: Overlapping window on PCM samples<BR>
  8734. *
  8735. * SEMANTICS:<BR>
  8736. * 32 16-bit pcm samples are scaled to fractional 2's complement and
  8737. * concatenated to the end of the window buffer #x#. The updated window
  8738. * buffer #x# is then windowed by the analysis window #c# to produce the
  8739. * windowed sample #z#
  8740. */
  8741. var order = [
  8742. 0, 1, 16, 17, 8, 9, 24, 25, 4, 5, 20, 21, 12, 13, 28, 29,
  8743. 2, 3, 18, 19, 10, 11, 26, 27, 6, 7, 22, 23, 14, 15, 30, 31
  8744. ];
  8745.  
  8746. /**
  8747. * returns sum_j=0^31 a[j]*cos(PI*j*(k+1/2)/32), 0<=k<32
  8748. */
  8749. function window_subband(x1, x1Pos, a) {
  8750. var wp = 10;
  8751.  
  8752. var x2 = x1Pos + 238 - 14 - 286;
  8753.  
  8754. for (var i = -15; i < 0; i++) {
  8755. var w, s, t;
  8756.  
  8757. w = enwindow[wp + -10];
  8758. s = x1[x2 + -224] * w;
  8759. t = x1[x1Pos + 224] * w;
  8760. w = enwindow[wp + -9];
  8761. s += x1[x2 + -160] * w;
  8762. t += x1[x1Pos + 160] * w;
  8763. w = enwindow[wp + -8];
  8764. s += x1[x2 + -96] * w;
  8765. t += x1[x1Pos + 96] * w;
  8766. w = enwindow[wp + -7];
  8767. s += x1[x2 + -32] * w;
  8768. t += x1[x1Pos + 32] * w;
  8769. w = enwindow[wp + -6];
  8770. s += x1[x2 + 32] * w;
  8771. t += x1[x1Pos + -32] * w;
  8772. w = enwindow[wp + -5];
  8773. s += x1[x2 + 96] * w;
  8774. t += x1[x1Pos + -96] * w;
  8775. w = enwindow[wp + -4];
  8776. s += x1[x2 + 160] * w;
  8777. t += x1[x1Pos + -160] * w;
  8778. w = enwindow[wp + -3];
  8779. s += x1[x2 + 224] * w;
  8780. t += x1[x1Pos + -224] * w;
  8781.  
  8782. w = enwindow[wp + -2];
  8783. s += x1[x1Pos + -256] * w;
  8784. t -= x1[x2 + 256] * w;
  8785. w = enwindow[wp + -1];
  8786. s += x1[x1Pos + -192] * w;
  8787. t -= x1[x2 + 192] * w;
  8788. w = enwindow[wp + 0];
  8789. s += x1[x1Pos + -128] * w;
  8790. t -= x1[x2 + 128] * w;
  8791. w = enwindow[wp + 1];
  8792. s += x1[x1Pos + -64] * w;
  8793. t -= x1[x2 + 64] * w;
  8794. w = enwindow[wp + 2];
  8795. s += x1[x1Pos + 0] * w;
  8796. t -= x1[x2 + 0] * w;
  8797. w = enwindow[wp + 3];
  8798. s += x1[x1Pos + 64] * w;
  8799. t -= x1[x2 + -64] * w;
  8800. w = enwindow[wp + 4];
  8801. s += x1[x1Pos + 128] * w;
  8802. t -= x1[x2 + -128] * w;
  8803. w = enwindow[wp + 5];
  8804. s += x1[x1Pos + 192] * w;
  8805. t -= x1[x2 + -192] * w;
  8806.  
  8807. /*
  8808. * this multiplyer could be removed, but it needs more 256 FLOAT
  8809. * data. thinking about the data cache performance, I think we
  8810. * should not use such a huge table. tt 2000/Oct/25
  8811. */
  8812. s *= enwindow[wp + 6];
  8813. w = t - s;
  8814. a[30 + i * 2] = t + s;
  8815. a[31 + i * 2] = enwindow[wp + 7] * w;
  8816. wp += 18;
  8817. x1Pos--;
  8818. x2++;
  8819. }
  8820. {
  8821. var s, t, u, v;
  8822. t = x1[x1Pos + -16] * enwindow[wp + -10];
  8823. s = x1[x1Pos + -32] * enwindow[wp + -2];
  8824. t += (x1[x1Pos + -48] - x1[x1Pos + 16]) * enwindow[wp + -9];
  8825. s += x1[x1Pos + -96] * enwindow[wp + -1];
  8826. t += (x1[x1Pos + -80] + x1[x1Pos + 48]) * enwindow[wp + -8];
  8827. s += x1[x1Pos + -160] * enwindow[wp + 0];
  8828. t += (x1[x1Pos + -112] - x1[x1Pos + 80]) * enwindow[wp + -7];
  8829. s += x1[x1Pos + -224] * enwindow[wp + 1];
  8830. t += (x1[x1Pos + -144] + x1[x1Pos + 112]) * enwindow[wp + -6];
  8831. s -= x1[x1Pos + 32] * enwindow[wp + 2];
  8832. t += (x1[x1Pos + -176] - x1[x1Pos + 144]) * enwindow[wp + -5];
  8833. s -= x1[x1Pos + 96] * enwindow[wp + 3];
  8834. t += (x1[x1Pos + -208] + x1[x1Pos + 176]) * enwindow[wp + -4];
  8835. s -= x1[x1Pos + 160] * enwindow[wp + 4];
  8836. t += (x1[x1Pos + -240] - x1[x1Pos + 208]) * enwindow[wp + -3];
  8837. s -= x1[x1Pos + 224];
  8838.  
  8839. u = s - t;
  8840. v = s + t;
  8841.  
  8842. t = a[14];
  8843. s = a[15] - t;
  8844.  
  8845. a[31] = v + t; /* A0 */
  8846. a[30] = u + s; /* A1 */
  8847. a[15] = u - s; /* A2 */
  8848. a[14] = v - t; /* A3 */
  8849. }
  8850. {
  8851. var xr;
  8852. xr = a[28] - a[0];
  8853. a[0] += a[28];
  8854. a[28] = xr * enwindow[wp + -2 * 18 + 7];
  8855. xr = a[29] - a[1];
  8856. a[1] += a[29];
  8857. a[29] = xr * enwindow[wp + -2 * 18 + 7];
  8858.  
  8859. xr = a[26] - a[2];
  8860. a[2] += a[26];
  8861. a[26] = xr * enwindow[wp + -4 * 18 + 7];
  8862. xr = a[27] - a[3];
  8863. a[3] += a[27];
  8864. a[27] = xr * enwindow[wp + -4 * 18 + 7];
  8865.  
  8866. xr = a[24] - a[4];
  8867. a[4] += a[24];
  8868. a[24] = xr * enwindow[wp + -6 * 18 + 7];
  8869. xr = a[25] - a[5];
  8870. a[5] += a[25];
  8871. a[25] = xr * enwindow[wp + -6 * 18 + 7];
  8872.  
  8873. xr = a[22] - a[6];
  8874. a[6] += a[22];
  8875. a[22] = xr * Util.SQRT2;
  8876. xr = a[23] - a[7];
  8877. a[7] += a[23];
  8878. a[23] = xr * Util.SQRT2 - a[7];
  8879. a[7] -= a[6];
  8880. a[22] -= a[7];
  8881. a[23] -= a[22];
  8882.  
  8883. xr = a[6];
  8884. a[6] = a[31] - xr;
  8885. a[31] = a[31] + xr;
  8886. xr = a[7];
  8887. a[7] = a[30] - xr;
  8888. a[30] = a[30] + xr;
  8889. xr = a[22];
  8890. a[22] = a[15] - xr;
  8891. a[15] = a[15] + xr;
  8892. xr = a[23];
  8893. a[23] = a[14] - xr;
  8894. a[14] = a[14] + xr;
  8895.  
  8896. xr = a[20] - a[8];
  8897. a[8] += a[20];
  8898. a[20] = xr * enwindow[wp + -10 * 18 + 7];
  8899. xr = a[21] - a[9];
  8900. a[9] += a[21];
  8901. a[21] = xr * enwindow[wp + -10 * 18 + 7];
  8902.  
  8903. xr = a[18] - a[10];
  8904. a[10] += a[18];
  8905. a[18] = xr * enwindow[wp + -12 * 18 + 7];
  8906. xr = a[19] - a[11];
  8907. a[11] += a[19];
  8908. a[19] = xr * enwindow[wp + -12 * 18 + 7];
  8909.  
  8910. xr = a[16] - a[12];
  8911. a[12] += a[16];
  8912. a[16] = xr * enwindow[wp + -14 * 18 + 7];
  8913. xr = a[17] - a[13];
  8914. a[13] += a[17];
  8915. a[17] = xr * enwindow[wp + -14 * 18 + 7];
  8916.  
  8917. xr = -a[20] + a[24];
  8918. a[20] += a[24];
  8919. a[24] = xr * enwindow[wp + -12 * 18 + 7];
  8920. xr = -a[21] + a[25];
  8921. a[21] += a[25];
  8922. a[25] = xr * enwindow[wp + -12 * 18 + 7];
  8923.  
  8924. xr = a[4] - a[8];
  8925. a[4] += a[8];
  8926. a[8] = xr * enwindow[wp + -12 * 18 + 7];
  8927. xr = a[5] - a[9];
  8928. a[5] += a[9];
  8929. a[9] = xr * enwindow[wp + -12 * 18 + 7];
  8930.  
  8931. xr = a[0] - a[12];
  8932. a[0] += a[12];
  8933. a[12] = xr * enwindow[wp + -4 * 18 + 7];
  8934. xr = a[1] - a[13];
  8935. a[1] += a[13];
  8936. a[13] = xr * enwindow[wp + -4 * 18 + 7];
  8937. xr = a[16] - a[28];
  8938. a[16] += a[28];
  8939. a[28] = xr * enwindow[wp + -4 * 18 + 7];
  8940. xr = -a[17] + a[29];
  8941. a[17] += a[29];
  8942. a[29] = xr * enwindow[wp + -4 * 18 + 7];
  8943.  
  8944. xr = Util.SQRT2 * (a[2] - a[10]);
  8945. a[2] += a[10];
  8946. a[10] = xr;
  8947. xr = Util.SQRT2 * (a[3] - a[11]);
  8948. a[3] += a[11];
  8949. a[11] = xr;
  8950. xr = Util.SQRT2 * (-a[18] + a[26]);
  8951. a[18] += a[26];
  8952. a[26] = xr - a[18];
  8953. xr = Util.SQRT2 * (-a[19] + a[27]);
  8954. a[19] += a[27];
  8955. a[27] = xr - a[19];
  8956.  
  8957. xr = a[2];
  8958. a[19] -= a[3];
  8959. a[3] -= xr;
  8960. a[2] = a[31] - xr;
  8961. a[31] += xr;
  8962. xr = a[3];
  8963. a[11] -= a[19];
  8964. a[18] -= xr;
  8965. a[3] = a[30] - xr;
  8966. a[30] += xr;
  8967. xr = a[18];
  8968. a[27] -= a[11];
  8969. a[19] -= xr;
  8970. a[18] = a[15] - xr;
  8971. a[15] += xr;
  8972.  
  8973. xr = a[19];
  8974. a[10] -= xr;
  8975. a[19] = a[14] - xr;
  8976. a[14] += xr;
  8977. xr = a[10];
  8978. a[11] -= xr;
  8979. a[10] = a[23] - xr;
  8980. a[23] += xr;
  8981. xr = a[11];
  8982. a[26] -= xr;
  8983. a[11] = a[22] - xr;
  8984. a[22] += xr;
  8985. xr = a[26];
  8986. a[27] -= xr;
  8987. a[26] = a[7] - xr;
  8988. a[7] += xr;
  8989.  
  8990. xr = a[27];
  8991. a[27] = a[6] - xr;
  8992. a[6] += xr;
  8993.  
  8994. xr = Util.SQRT2 * (a[0] - a[4]);
  8995. a[0] += a[4];
  8996. a[4] = xr;
  8997. xr = Util.SQRT2 * (a[1] - a[5]);
  8998. a[1] += a[5];
  8999. a[5] = xr;
  9000. xr = Util.SQRT2 * (a[16] - a[20]);
  9001. a[16] += a[20];
  9002. a[20] = xr;
  9003. xr = Util.SQRT2 * (a[17] - a[21]);
  9004. a[17] += a[21];
  9005. a[21] = xr;
  9006.  
  9007. xr = -Util.SQRT2 * (a[8] - a[12]);
  9008. a[8] += a[12];
  9009. a[12] = xr - a[8];
  9010. xr = -Util.SQRT2 * (a[9] - a[13]);
  9011. a[9] += a[13];
  9012. a[13] = xr - a[9];
  9013. xr = -Util.SQRT2 * (a[25] - a[29]);
  9014. a[25] += a[29];
  9015. a[29] = xr - a[25];
  9016. xr = -Util.SQRT2 * (a[24] + a[28]);
  9017. a[24] -= a[28];
  9018. a[28] = xr - a[24];
  9019.  
  9020. xr = a[24] - a[16];
  9021. a[24] = xr;
  9022. xr = a[20] - xr;
  9023. a[20] = xr;
  9024. xr = a[28] - xr;
  9025. a[28] = xr;
  9026.  
  9027. xr = a[25] - a[17];
  9028. a[25] = xr;
  9029. xr = a[21] - xr;
  9030. a[21] = xr;
  9031. xr = a[29] - xr;
  9032. a[29] = xr;
  9033.  
  9034. xr = a[17] - a[1];
  9035. a[17] = xr;
  9036. xr = a[9] - xr;
  9037. a[9] = xr;
  9038. xr = a[25] - xr;
  9039. a[25] = xr;
  9040. xr = a[5] - xr;
  9041. a[5] = xr;
  9042. xr = a[21] - xr;
  9043. a[21] = xr;
  9044. xr = a[13] - xr;
  9045. a[13] = xr;
  9046. xr = a[29] - xr;
  9047. a[29] = xr;
  9048.  
  9049. xr = a[1] - a[0];
  9050. a[1] = xr;
  9051. xr = a[16] - xr;
  9052. a[16] = xr;
  9053. xr = a[17] - xr;
  9054. a[17] = xr;
  9055. xr = a[8] - xr;
  9056. a[8] = xr;
  9057. xr = a[9] - xr;
  9058. a[9] = xr;
  9059. xr = a[24] - xr;
  9060. a[24] = xr;
  9061. xr = a[25] - xr;
  9062. a[25] = xr;
  9063. xr = a[4] - xr;
  9064. a[4] = xr;
  9065. xr = a[5] - xr;
  9066. a[5] = xr;
  9067. xr = a[20] - xr;
  9068. a[20] = xr;
  9069. xr = a[21] - xr;
  9070. a[21] = xr;
  9071. xr = a[12] - xr;
  9072. a[12] = xr;
  9073. xr = a[13] - xr;
  9074. a[13] = xr;
  9075. xr = a[28] - xr;
  9076. a[28] = xr;
  9077. xr = a[29] - xr;
  9078. a[29] = xr;
  9079.  
  9080. xr = a[0];
  9081. a[0] += a[31];
  9082. a[31] -= xr;
  9083. xr = a[1];
  9084. a[1] += a[30];
  9085. a[30] -= xr;
  9086. xr = a[16];
  9087. a[16] += a[15];
  9088. a[15] -= xr;
  9089. xr = a[17];
  9090. a[17] += a[14];
  9091. a[14] -= xr;
  9092. xr = a[8];
  9093. a[8] += a[23];
  9094. a[23] -= xr;
  9095. xr = a[9];
  9096. a[9] += a[22];
  9097. a[22] -= xr;
  9098. xr = a[24];
  9099. a[24] += a[7];
  9100. a[7] -= xr;
  9101. xr = a[25];
  9102. a[25] += a[6];
  9103. a[6] -= xr;
  9104. xr = a[4];
  9105. a[4] += a[27];
  9106. a[27] -= xr;
  9107. xr = a[5];
  9108. a[5] += a[26];
  9109. a[26] -= xr;
  9110. xr = a[20];
  9111. a[20] += a[11];
  9112. a[11] -= xr;
  9113. xr = a[21];
  9114. a[21] += a[10];
  9115. a[10] -= xr;
  9116. xr = a[12];
  9117. a[12] += a[19];
  9118. a[19] -= xr;
  9119. xr = a[13];
  9120. a[13] += a[18];
  9121. a[18] -= xr;
  9122. xr = a[28];
  9123. a[28] += a[3];
  9124. a[3] -= xr;
  9125. xr = a[29];
  9126. a[29] += a[2];
  9127. a[2] -= xr;
  9128. }
  9129. }
  9130.  
  9131. /**
  9132. * Function: Calculation of the MDCT In the case of long blocks (type 0,1,3)
  9133. * there are 36 coefficents in the time domain and 18 in the frequency
  9134. * domain.<BR>
  9135. * In the case of short blocks (type 2) there are 3 transformations with
  9136. * short length. This leads to 12 coefficents in the time and 6 in the
  9137. * frequency domain. In this case the results are stored side by side in the
  9138. * vector out[].
  9139. *
  9140. * New layer3
  9141. */
  9142. function mdct_short(inout, inoutPos) {
  9143. for (var l = 0; l < 3; l++) {
  9144. var tc0, tc1, tc2, ts0, ts1, ts2;
  9145.  
  9146. ts0 = inout[inoutPos + 2 * 3] * win[Encoder.SHORT_TYPE][0]
  9147. - inout[inoutPos + 5 * 3];
  9148. tc0 = inout[inoutPos + 0 * 3] * win[Encoder.SHORT_TYPE][2]
  9149. - inout[inoutPos + 3 * 3];
  9150. tc1 = ts0 + tc0;
  9151. tc2 = ts0 - tc0;
  9152.  
  9153. ts0 = inout[inoutPos + 5 * 3] * win[Encoder.SHORT_TYPE][0]
  9154. + inout[inoutPos + 2 * 3];
  9155. tc0 = inout[inoutPos + 3 * 3] * win[Encoder.SHORT_TYPE][2]
  9156. + inout[inoutPos + 0 * 3];
  9157. ts1 = ts0 + tc0;
  9158. ts2 = -ts0 + tc0;
  9159.  
  9160. tc0 = (inout[inoutPos + 1 * 3] * win[Encoder.SHORT_TYPE][1] - inout[inoutPos + 4 * 3]) * 2.069978111953089e-11;
  9161. /*
  9162. * tritab_s [ 1 ]
  9163. */
  9164. ts0 = (inout[inoutPos + 4 * 3] * win[Encoder.SHORT_TYPE][1] + inout[inoutPos + 1 * 3]) * 2.069978111953089e-11;
  9165. /*
  9166. * tritab_s [ 1 ]
  9167. */
  9168. inout[inoutPos + 3 * 0] = tc1 * 1.907525191737280e-11 + tc0;
  9169. /*
  9170. * tritab_s[ 2 ]
  9171. */
  9172. inout[inoutPos + 3 * 5] = -ts1 * 1.907525191737280e-11 + ts0;
  9173. /*
  9174. * tritab_s[0 ]
  9175. */
  9176. tc2 = tc2 * 0.86602540378443870761 * 1.907525191737281e-11;
  9177. /*
  9178. * tritab_s[ 2]
  9179. */
  9180. ts1 = ts1 * 0.5 * 1.907525191737281e-11 + ts0;
  9181. inout[inoutPos + 3 * 1] = tc2 - ts1;
  9182. inout[inoutPos + 3 * 2] = tc2 + ts1;
  9183.  
  9184. tc1 = tc1 * 0.5 * 1.907525191737281e-11 - tc0;
  9185. ts2 = ts2 * 0.86602540378443870761 * 1.907525191737281e-11;
  9186. /*
  9187. * tritab_s[ 0]
  9188. */
  9189. inout[inoutPos + 3 * 3] = tc1 + ts2;
  9190. inout[inoutPos + 3 * 4] = tc1 - ts2;
  9191.  
  9192. inoutPos++;
  9193. }
  9194. }
  9195.  
  9196. function mdct_long(out, outPos, _in) {
  9197. var ct, st;
  9198. {
  9199. var tc1, tc2, tc3, tc4, ts5, ts6, ts7, ts8;
  9200. /* 1,2, 5,6, 9,10, 13,14, 17 */
  9201. tc1 = _in[17] - _in[9];
  9202. tc3 = _in[15] - _in[11];
  9203. tc4 = _in[14] - _in[12];
  9204. ts5 = _in[0] + _in[8];
  9205. ts6 = _in[1] + _in[7];
  9206. ts7 = _in[2] + _in[6];
  9207. ts8 = _in[3] + _in[5];
  9208.  
  9209. out[outPos + 17] = (ts5 + ts7 - ts8) - (ts6 - _in[4]);
  9210. st = (ts5 + ts7 - ts8) * cx[12 + 7] + (ts6 - _in[4]);
  9211. ct = (tc1 - tc3 - tc4) * cx[12 + 6];
  9212. out[outPos + 5] = ct + st;
  9213. out[outPos + 6] = ct - st;
  9214.  
  9215. tc2 = (_in[16] - _in[10]) * cx[12 + 6];
  9216. ts6 = ts6 * cx[12 + 7] + _in[4];
  9217. ct = tc1 * cx[12 + 0] + tc2 + tc3 * cx[12 + 1] + tc4 * cx[12 + 2];
  9218. st = -ts5 * cx[12 + 4] + ts6 - ts7 * cx[12 + 5] + ts8 * cx[12 + 3];
  9219. out[outPos + 1] = ct + st;
  9220. out[outPos + 2] = ct - st;
  9221.  
  9222. ct = tc1 * cx[12 + 1] - tc2 - tc3 * cx[12 + 2] + tc4 * cx[12 + 0];
  9223. st = -ts5 * cx[12 + 5] + ts6 - ts7 * cx[12 + 3] + ts8 * cx[12 + 4];
  9224. out[outPos + 9] = ct + st;
  9225. out[outPos + 10] = ct - st;
  9226.  
  9227. ct = tc1 * cx[12 + 2] - tc2 + tc3 * cx[12 + 0] - tc4 * cx[12 + 1];
  9228. st = ts5 * cx[12 + 3] - ts6 + ts7 * cx[12 + 4] - ts8 * cx[12 + 5];
  9229. out[outPos + 13] = ct + st;
  9230. out[outPos + 14] = ct - st;
  9231. }
  9232. {
  9233. var ts1, ts2, ts3, ts4, tc5, tc6, tc7, tc8;
  9234.  
  9235. ts1 = _in[8] - _in[0];
  9236. ts3 = _in[6] - _in[2];
  9237. ts4 = _in[5] - _in[3];
  9238. tc5 = _in[17] + _in[9];
  9239. tc6 = _in[16] + _in[10];
  9240. tc7 = _in[15] + _in[11];
  9241. tc8 = _in[14] + _in[12];
  9242.  
  9243. out[outPos + 0] = (tc5 + tc7 + tc8) + (tc6 + _in[13]);
  9244. ct = (tc5 + tc7 + tc8) * cx[12 + 7] - (tc6 + _in[13]);
  9245. st = (ts1 - ts3 + ts4) * cx[12 + 6];
  9246. out[outPos + 11] = ct + st;
  9247. out[outPos + 12] = ct - st;
  9248.  
  9249. ts2 = (_in[7] - _in[1]) * cx[12 + 6];
  9250. tc6 = _in[13] - tc6 * cx[12 + 7];
  9251. ct = tc5 * cx[12 + 3] - tc6 + tc7 * cx[12 + 4] + tc8 * cx[12 + 5];
  9252. st = ts1 * cx[12 + 2] + ts2 + ts3 * cx[12 + 0] + ts4 * cx[12 + 1];
  9253. out[outPos + 3] = ct + st;
  9254. out[outPos + 4] = ct - st;
  9255.  
  9256. ct = -tc5 * cx[12 + 5] + tc6 - tc7 * cx[12 + 3] - tc8 * cx[12 + 4];
  9257. st = ts1 * cx[12 + 1] + ts2 - ts3 * cx[12 + 2] - ts4 * cx[12 + 0];
  9258. out[outPos + 7] = ct + st;
  9259. out[outPos + 8] = ct - st;
  9260.  
  9261. ct = -tc5 * cx[12 + 4] + tc6 - tc7 * cx[12 + 5] - tc8 * cx[12 + 3];
  9262. st = ts1 * cx[12 + 0] - ts2 + ts3 * cx[12 + 1] - ts4 * cx[12 + 2];
  9263. out[outPos + 15] = ct + st;
  9264. out[outPos + 16] = ct - st;
  9265. }
  9266. }
  9267.  
  9268. this.mdct_sub48 = function(gfc, w0, w1) {
  9269. var wk = w0;
  9270. var wkPos = 286;
  9271. /* thinking cache performance, ch->gr loop is better than gr->ch loop */
  9272. for (var ch = 0; ch < gfc.channels_out; ch++) {
  9273. for (var gr = 0; gr < gfc.mode_gr; gr++) {
  9274. var band;
  9275. var gi = (gfc.l3_side.tt[gr][ch]);
  9276. var mdct_enc = gi.xr;
  9277. var mdct_encPos = 0;
  9278. var samp = gfc.sb_sample[ch][1 - gr];
  9279. var sampPos = 0;
  9280.  
  9281. for (var k = 0; k < 18 / 2; k++) {
  9282. window_subband(wk, wkPos, samp[sampPos]);
  9283. window_subband(wk, wkPos + 32, samp[sampPos + 1]);
  9284. sampPos += 2;
  9285. wkPos += 64;
  9286. /*
  9287. * Compensate for inversion in the analysis filter
  9288. */
  9289. for (band = 1; band < 32; band += 2) {
  9290. samp[sampPos - 1][band] *= -1;
  9291. }
  9292. }
  9293.  
  9294. /*
  9295. * Perform imdct of 18 previous subband samples + 18 current
  9296. * subband samples
  9297. */
  9298. for (band = 0; band < 32; band++, mdct_encPos += 18) {
  9299. var type = gi.block_type;
  9300. var band0 = gfc.sb_sample[ch][gr];
  9301. var band1 = gfc.sb_sample[ch][1 - gr];
  9302. if (gi.mixed_block_flag != 0 && band < 2)
  9303. type = 0;
  9304. if (gfc.amp_filter[band] < 1e-12) {
  9305. Arrays.fill(mdct_enc, mdct_encPos + 0,
  9306. mdct_encPos + 18, 0);
  9307. } else {
  9308. if (gfc.amp_filter[band] < 1.0) {
  9309. for (var k = 0; k < 18; k++)
  9310. band1[k][order[band]] *= gfc.amp_filter[band];
  9311. }
  9312. if (type == Encoder.SHORT_TYPE) {
  9313. for (var k = -NS / 4; k < 0; k++) {
  9314. var w = win[Encoder.SHORT_TYPE][k + 3];
  9315. mdct_enc[mdct_encPos + k * 3 + 9] = band0[9 + k][order[band]]
  9316. * w - band0[8 - k][order[band]];
  9317. mdct_enc[mdct_encPos + k * 3 + 18] = band0[14 - k][order[band]]
  9318. * w + band0[15 + k][order[band]];
  9319. mdct_enc[mdct_encPos + k * 3 + 10] = band0[15 + k][order[band]]
  9320. * w - band0[14 - k][order[band]];
  9321. mdct_enc[mdct_encPos + k * 3 + 19] = band1[2 - k][order[band]]
  9322. * w + band1[3 + k][order[band]];
  9323. mdct_enc[mdct_encPos + k * 3 + 11] = band1[3 + k][order[band]]
  9324. * w - band1[2 - k][order[band]];
  9325. mdct_enc[mdct_encPos + k * 3 + 20] = band1[8 - k][order[band]]
  9326. * w + band1[9 + k][order[band]];
  9327. }
  9328. mdct_short(mdct_enc, mdct_encPos);
  9329. } else {
  9330. var work = new_float(18);
  9331. for (var k = -NL / 4; k < 0; k++) {
  9332. var a, b;
  9333. a = win[type][k + 27]
  9334. * band1[k + 9][order[band]]
  9335. + win[type][k + 36]
  9336. * band1[8 - k][order[band]];
  9337. b = win[type][k + 9]
  9338. * band0[k + 9][order[band]]
  9339. - win[type][k + 18]
  9340. * band0[8 - k][order[band]];
  9341. work[k + 9] = a - b * tantab_l[3 + k + 9];
  9342. work[k + 18] = a * tantab_l[3 + k + 9] + b;
  9343. }
  9344.  
  9345. mdct_long(mdct_enc, mdct_encPos, work);
  9346. }
  9347. }
  9348. /*
  9349. * Perform aliasing reduction butterfly
  9350. */
  9351. if (type != Encoder.SHORT_TYPE && band != 0) {
  9352. for (var k = 7; k >= 0; --k) {
  9353. var bu, bd;
  9354. bu = mdct_enc[mdct_encPos + k] * ca[20 + k]
  9355. + mdct_enc[mdct_encPos + -1 - k]
  9356. * cs[28 + k];
  9357. bd = mdct_enc[mdct_encPos + k] * cs[28 + k]
  9358. - mdct_enc[mdct_encPos + -1 - k]
  9359. * ca[20 + k];
  9360.  
  9361. mdct_enc[mdct_encPos + -1 - k] = bu;
  9362. mdct_enc[mdct_encPos + k] = bd;
  9363. }
  9364. }
  9365. }
  9366. }
  9367. wk = w1;
  9368. wkPos = 286;
  9369. if (gfc.mode_gr == 1) {
  9370. for (var i = 0; i < 18; i++) {
  9371. System.arraycopy(gfc.sb_sample[ch][1][i], 0,
  9372. gfc.sb_sample[ch][0][i], 0, 32);
  9373. }
  9374. }
  9375. }
  9376. }
  9377. }
  9378.  
  9379. //package mp3;
  9380.  
  9381.  
  9382. function III_psy_ratio() {
  9383. this.thm = new III_psy_xmin();
  9384. this.en = new III_psy_xmin();
  9385. }
  9386.  
  9387.  
  9388. /**
  9389. * ENCDELAY The encoder delay.
  9390. *
  9391. * Minimum allowed is MDCTDELAY (see below)
  9392. *
  9393. * The first 96 samples will be attenuated, so using a value less than 96
  9394. * will result in corrupt data for the first 96-ENCDELAY samples.
  9395. *
  9396. * suggested: 576 set to 1160 to sync with FhG.
  9397. */
  9398. Encoder.ENCDELAY = 576;
  9399. /**
  9400. * make sure there is at least one complete frame after the last frame
  9401. * containing real data
  9402. *
  9403. * Using a value of 288 would be sufficient for a a very sophisticated
  9404. * decoder that can decode granule-by-granule instead of frame by frame. But
  9405. * lets not assume this, and assume the decoder will not decode frame N
  9406. * unless it also has data for frame N+1
  9407. */
  9408. Encoder.POSTDELAY = 1152;
  9409.  
  9410. /**
  9411. * delay of the MDCT used in mdct.c original ISO routines had a delay of
  9412. * 528! Takehiro's routines:
  9413. */
  9414. Encoder.MDCTDELAY = 48;
  9415. Encoder.FFTOFFSET = (224 + Encoder.MDCTDELAY);
  9416.  
  9417. /**
  9418. * Most decoders, including the one we use, have a delay of 528 samples.
  9419. */
  9420. Encoder.DECDELAY = 528;
  9421.  
  9422. /**
  9423. * number of subbands
  9424. */
  9425. Encoder.SBLIMIT = 32;
  9426.  
  9427. /**
  9428. * parition bands bands
  9429. */
  9430. Encoder.CBANDS = 64;
  9431.  
  9432. /**
  9433. * number of critical bands/scale factor bands where masking is computed
  9434. */
  9435. Encoder.SBPSY_l = 21;
  9436. Encoder.SBPSY_s = 12;
  9437.  
  9438. /**
  9439. * total number of scalefactor bands encoded
  9440. */
  9441. Encoder.SBMAX_l = 22;
  9442. Encoder.SBMAX_s = 13;
  9443. Encoder.PSFB21 = 6;
  9444. Encoder.PSFB12 = 6;
  9445.  
  9446. /**
  9447. * FFT sizes
  9448. */
  9449. Encoder.BLKSIZE = 1024;
  9450. Encoder.HBLKSIZE = (Encoder.BLKSIZE / 2 + 1);
  9451. Encoder.BLKSIZE_s = 256;
  9452. Encoder.HBLKSIZE_s = (Encoder.BLKSIZE_s / 2 + 1);
  9453.  
  9454. Encoder.NORM_TYPE = 0;
  9455. Encoder.START_TYPE = 1;
  9456. Encoder.SHORT_TYPE = 2;
  9457. Encoder.STOP_TYPE = 3;
  9458.  
  9459. /**
  9460. * <PRE>
  9461. * Mode Extention:
  9462. * When we are in stereo mode, there are 4 possible methods to store these
  9463. * two channels. The stereo modes -m? are using a subset of them.
  9464. *
  9465. * -ms: MPG_MD_LR_LR
  9466. * -mj: MPG_MD_LR_LR and MPG_MD_MS_LR
  9467. * -mf: MPG_MD_MS_LR
  9468. * -mi: all
  9469. * </PRE>
  9470. */
  9471. Encoder.MPG_MD_LR_LR = 0;
  9472. Encoder.MPG_MD_LR_I = 1;
  9473. Encoder.MPG_MD_MS_LR = 2;
  9474. Encoder.MPG_MD_MS_I = 3;
  9475.  
  9476. Encoder.fircoef = [-0.0207887 * 5, -0.0378413 * 5,
  9477. -0.0432472 * 5, -0.031183 * 5, 7.79609e-18 * 5, 0.0467745 * 5,
  9478. 0.10091 * 5, 0.151365 * 5, 0.187098 * 5];
  9479.  
  9480. function Encoder() {
  9481.  
  9482. var FFTOFFSET = Encoder.FFTOFFSET;
  9483. var MPG_MD_MS_LR = Encoder.MPG_MD_MS_LR;
  9484. //BitStream bs;
  9485. //PsyModel psy;
  9486. //VBRTag vbr;
  9487. //QuantizePVT qupvt;
  9488. var bs = null;
  9489. this.psy = null;
  9490. var psy = null;
  9491. var vbr = null;
  9492. var qupvt = null;
  9493.  
  9494. //public final void setModules(BitStream bs, PsyModel psy, QuantizePVT qupvt,
  9495. // VBRTag vbr) {
  9496. this.setModules = function (_bs, _psy, _qupvt, _vbr) {
  9497. bs = _bs;
  9498. this.psy = _psy;
  9499. psy = _psy;
  9500. vbr = _vbr;
  9501. qupvt = _qupvt;
  9502. };
  9503.  
  9504. var newMDCT = new NewMDCT();
  9505.  
  9506. /***********************************************************************
  9507. *
  9508. * encoder and decoder delays
  9509. *
  9510. ***********************************************************************/
  9511.  
  9512. /**
  9513. * <PRE>
  9514. * layer III enc->dec delay: 1056 (1057?) (observed)
  9515. * layer II enc->dec delay: 480 (481?) (observed)
  9516. *
  9517. * polyphase 256-16 (dec or enc) = 240
  9518. * mdct 256+32 (9*32) (dec or enc) = 288
  9519. * total: 512+16
  9520. *
  9521. * My guess is that delay of polyphase filterbank is actualy 240.5
  9522. * (there are technical reasons for this, see postings in mp3encoder).
  9523. * So total Encode+Decode delay = ENCDELAY + 528 + 1
  9524. * </PRE>
  9525. */
  9526.  
  9527.  
  9528. /**
  9529. * auto-adjust of ATH, useful for low volume Gabriel Bouvigne 3 feb 2001
  9530. *
  9531. * modifies some values in gfp.internal_flags.ATH (gfc.ATH)
  9532. */
  9533. //private void adjust_ATH(final LameInternalFlags gfc) {
  9534. function adjust_ATH(gfc) {
  9535. var gr2_max, max_pow;
  9536.  
  9537. if (gfc.ATH.useAdjust == 0) {
  9538. gfc.ATH.adjust = 1.0;
  9539. /* no adjustment */
  9540. return;
  9541. }
  9542.  
  9543. /* jd - 2001 mar 12, 27, jun 30 */
  9544. /* loudness based on equal loudness curve; */
  9545. /* use granule with maximum combined loudness */
  9546. max_pow = gfc.loudness_sq[0][0];
  9547. gr2_max = gfc.loudness_sq[1][0];
  9548. if (gfc.channels_out == 2) {
  9549. max_pow += gfc.loudness_sq[0][1];
  9550. gr2_max += gfc.loudness_sq[1][1];
  9551. } else {
  9552. max_pow += max_pow;
  9553. gr2_max += gr2_max;
  9554. }
  9555. if (gfc.mode_gr == 2) {
  9556. max_pow = Math.max(max_pow, gr2_max);
  9557. }
  9558. max_pow *= 0.5;
  9559. /* max_pow approaches 1.0 for full band noise */
  9560.  
  9561. /* jd - 2001 mar 31, jun 30 */
  9562. /* user tuning of ATH adjustment region */
  9563. max_pow *= gfc.ATH.aaSensitivityP;
  9564.  
  9565. /*
  9566. * adjust ATH depending on range of maximum value
  9567. */
  9568.  
  9569. /* jd - 2001 feb27, mar12,20, jun30, jul22 */
  9570. /* continuous curves based on approximation */
  9571. /* to GB's original values. */
  9572. /* For an increase in approximate loudness, */
  9573. /* set ATH adjust to adjust_limit immediately */
  9574. /* after a delay of one frame. */
  9575. /* For a loudness decrease, reduce ATH adjust */
  9576. /* towards adjust_limit gradually. */
  9577. /* max_pow is a loudness squared or a power. */
  9578. if (max_pow > 0.03125) { /* ((1 - 0.000625)/ 31.98) from curve below */
  9579. if (gfc.ATH.adjust >= 1.0) {
  9580. gfc.ATH.adjust = 1.0;
  9581. } else {
  9582. /* preceding frame has lower ATH adjust; */
  9583. /* ascend only to the preceding adjust_limit */
  9584. /* in case there is leading low volume */
  9585. if (gfc.ATH.adjust < gfc.ATH.adjustLimit) {
  9586. gfc.ATH.adjust = gfc.ATH.adjustLimit;
  9587. }
  9588. }
  9589. gfc.ATH.adjustLimit = 1.0;
  9590. } else { /* adjustment curve */
  9591. /* about 32 dB maximum adjust (0.000625) */
  9592. var adj_lim_new = 31.98 * max_pow + 0.000625;
  9593. if (gfc.ATH.adjust >= adj_lim_new) { /* descend gradually */
  9594. gfc.ATH.adjust *= adj_lim_new * 0.075 + 0.925;
  9595. if (gfc.ATH.adjust < adj_lim_new) { /* stop descent */
  9596. gfc.ATH.adjust = adj_lim_new;
  9597. }
  9598. } else { /* ascend */
  9599. if (gfc.ATH.adjustLimit >= adj_lim_new) {
  9600. gfc.ATH.adjust = adj_lim_new;
  9601. } else {
  9602. /* preceding frame has lower ATH adjust; */
  9603. /* ascend only to the preceding adjust_limit */
  9604. if (gfc.ATH.adjust < gfc.ATH.adjustLimit) {
  9605. gfc.ATH.adjust = gfc.ATH.adjustLimit;
  9606. }
  9607. }
  9608. }
  9609. gfc.ATH.adjustLimit = adj_lim_new;
  9610. }
  9611. }
  9612.  
  9613. /**
  9614. * <PRE>
  9615. * some simple statistics
  9616. *
  9617. * bitrate index 0: free bitrate . not allowed in VBR mode
  9618. * : bitrates, kbps depending on MPEG version
  9619. * bitrate index 15: forbidden
  9620. *
  9621. * mode_ext:
  9622. * 0: LR
  9623. * 1: LR-i
  9624. * 2: MS
  9625. * 3: MS-i
  9626. * </PRE>
  9627. */
  9628. function updateStats(gfc) {
  9629. var gr, ch;
  9630.  
  9631. /* count bitrate indices */
  9632. gfc.bitrate_stereoMode_Hist[gfc.bitrate_index][4]++;
  9633. gfc.bitrate_stereoMode_Hist[15][4]++;
  9634.  
  9635. /* count 'em for every mode extension in case of 2 channel encoding */
  9636. if (gfc.channels_out == 2) {
  9637. gfc.bitrate_stereoMode_Hist[gfc.bitrate_index][gfc.mode_ext]++;
  9638. gfc.bitrate_stereoMode_Hist[15][gfc.mode_ext]++;
  9639. }
  9640. for (gr = 0; gr < gfc.mode_gr; ++gr) {
  9641. for (ch = 0; ch < gfc.channels_out; ++ch) {
  9642. var bt = gfc.l3_side.tt[gr][ch].block_type | 0;
  9643. if (gfc.l3_side.tt[gr][ch].mixed_block_flag != 0)
  9644. bt = 4;
  9645. gfc.bitrate_blockType_Hist[gfc.bitrate_index][bt]++;
  9646. gfc.bitrate_blockType_Hist[gfc.bitrate_index][5]++;
  9647. gfc.bitrate_blockType_Hist[15][bt]++;
  9648. gfc.bitrate_blockType_Hist[15][5]++;
  9649. }
  9650. }
  9651. }
  9652.  
  9653. function lame_encode_frame_init(gfp, inbuf) {
  9654. var gfc = gfp.internal_flags;
  9655.  
  9656. var ch, gr;
  9657.  
  9658. if (gfc.lame_encode_frame_init == 0) {
  9659. /* prime the MDCT/polyphase filterbank with a short block */
  9660. var i, j;
  9661. var primebuff0 = new_float(286 + 1152 + 576);
  9662. var primebuff1 = new_float(286 + 1152 + 576);
  9663. gfc.lame_encode_frame_init = 1;
  9664. for (i = 0, j = 0; i < 286 + 576 * (1 + gfc.mode_gr); ++i) {
  9665. if (i < 576 * gfc.mode_gr) {
  9666. primebuff0[i] = 0;
  9667. if (gfc.channels_out == 2)
  9668. primebuff1[i] = 0;
  9669. } else {
  9670. primebuff0[i] = inbuf[0][j];
  9671. if (gfc.channels_out == 2)
  9672. primebuff1[i] = inbuf[1][j];
  9673. ++j;
  9674. }
  9675. }
  9676. /* polyphase filtering / mdct */
  9677. for (gr = 0; gr < gfc.mode_gr; gr++) {
  9678. for (ch = 0; ch < gfc.channels_out; ch++) {
  9679. gfc.l3_side.tt[gr][ch].block_type = Encoder.SHORT_TYPE;
  9680. }
  9681. }
  9682. newMDCT.mdct_sub48(gfc, primebuff0, primebuff1);
  9683.  
  9684. /* check FFT will not use a negative starting offset */
  9685. /* check if we have enough data for FFT */
  9686. /* check if we have enough data for polyphase filterbank */
  9687. }
  9688.  
  9689. }
  9690.  
  9691. /**
  9692. * <PRE>
  9693. * encodeframe() Layer 3
  9694. *
  9695. * encode a single frame
  9696. *
  9697. *
  9698. * lame_encode_frame()
  9699. *
  9700. *
  9701. * gr 0 gr 1
  9702. * inbuf: |--------------|--------------|--------------|
  9703. *
  9704. *
  9705. * Polyphase (18 windows, each shifted 32)
  9706. * gr 0:
  9707. * window1 <----512---.
  9708. * window18 <----512---.
  9709. *
  9710. * gr 1:
  9711. * window1 <----512---.
  9712. * window18 <----512---.
  9713. *
  9714. *
  9715. *
  9716. * MDCT output: |--------------|--------------|--------------|
  9717. *
  9718. * FFT's <---------1024---------.
  9719. * <---------1024-------.
  9720. *
  9721. *
  9722. *
  9723. * inbuf = buffer of PCM data size=MP3 framesize
  9724. * encoder acts on inbuf[ch][0], but output is delayed by MDCTDELAY
  9725. * so the MDCT coefficints are from inbuf[ch][-MDCTDELAY]
  9726. *
  9727. * psy-model FFT has a 1 granule delay, so we feed it data for the
  9728. * next granule.
  9729. * FFT is centered over granule: 224+576+224
  9730. * So FFT starts at: 576-224-MDCTDELAY
  9731. *
  9732. * MPEG2: FFT ends at: BLKSIZE+576-224-MDCTDELAY (1328)
  9733. * MPEG1: FFT ends at: BLKSIZE+2*576-224-MDCTDELAY (1904)
  9734. *
  9735. * MPEG2: polyphase first window: [0..511]
  9736. * 18th window: [544..1055] (1056)
  9737. * MPEG1: 36th window: [1120..1631] (1632)
  9738. * data needed: 512+framesize-32
  9739. *
  9740. * A close look newmdct.c shows that the polyphase filterbank
  9741. * only uses data from [0..510] for each window. Perhaps because the window
  9742. * used by the filterbank is zero for the last point, so Takehiro's
  9743. * code doesn't bother to compute with it.
  9744. *
  9745. * FFT starts at 576-224-MDCTDELAY (304) = 576-FFTOFFSET
  9746. *
  9747. * </PRE>
  9748. */
  9749.  
  9750.  
  9751. this.lame_encode_mp3_frame = function (gfp, inbuf_l, inbuf_r, mp3buf, mp3bufPos, mp3buf_size) {
  9752. var mp3count;
  9753. var masking_LR = new_array_n([2, 2]);
  9754. /*
  9755. * LR masking &
  9756. * energy
  9757. */
  9758. masking_LR[0][0] = new III_psy_ratio();
  9759. masking_LR[0][1] = new III_psy_ratio();
  9760. masking_LR[1][0] = new III_psy_ratio();
  9761. masking_LR[1][1] = new III_psy_ratio();
  9762. var masking_MS = new_array_n([2, 2]);
  9763. /* MS masking & energy */
  9764. masking_MS[0][0] = new III_psy_ratio();
  9765. masking_MS[0][1] = new III_psy_ratio();
  9766. masking_MS[1][0] = new III_psy_ratio();
  9767. masking_MS[1][1] = new III_psy_ratio();
  9768. //III_psy_ratio masking[][];
  9769. var masking;
  9770. /* pointer to selected maskings */
  9771. var inbuf = [null, null];
  9772. var gfc = gfp.internal_flags;
  9773.  
  9774. var tot_ener = new_float_n([2, 4]);
  9775. var ms_ener_ratio = [.5, .5];
  9776. var pe = [[0., 0.], [0., 0.]];
  9777. var pe_MS = [[0., 0.], [0., 0.]];
  9778.  
  9779. //float[][] pe_use;
  9780. var pe_use;
  9781.  
  9782. var ch, gr;
  9783.  
  9784. inbuf[0] = inbuf_l;
  9785. inbuf[1] = inbuf_r;
  9786.  
  9787. if (gfc.lame_encode_frame_init == 0) {
  9788. /* first run? */
  9789. lame_encode_frame_init(gfp, inbuf);
  9790.  
  9791. }
  9792.  
  9793. /********************** padding *****************************/
  9794. /**
  9795. * <PRE>
  9796. * padding method as described in
  9797. * "MPEG-Layer3 / Bitstream Syntax and Decoding"
  9798. * by Martin Sieler, Ralph Sperschneider
  9799. *
  9800. * note: there is no padding for the very first frame
  9801. *
  9802. * Robert Hegemann 2000-06-22
  9803. * </PRE>
  9804. */
  9805. gfc.padding = 0;
  9806. if ((gfc.slot_lag -= gfc.frac_SpF) < 0) {
  9807. gfc.slot_lag += gfp.out_samplerate;
  9808. gfc.padding = 1;
  9809. }
  9810.  
  9811. /****************************************
  9812. * Stage 1: psychoacoustic model *
  9813. ****************************************/
  9814.  
  9815. if (gfc.psymodel != 0) {
  9816. /*
  9817. * psychoacoustic model psy model has a 1 granule (576) delay that
  9818. * we must compensate for (mt 6/99).
  9819. */
  9820. var ret;
  9821. var bufp = [null, null];
  9822. /* address of beginning of left & right granule */
  9823. var bufpPos = 0;
  9824. /* address of beginning of left & right granule */
  9825. var blocktype = new_int(2);
  9826.  
  9827. for (gr = 0; gr < gfc.mode_gr; gr++) {
  9828.  
  9829. for (ch = 0; ch < gfc.channels_out; ch++) {
  9830. bufp[ch] = inbuf[ch];
  9831. bufpPos = 576 + gr * 576 - Encoder.FFTOFFSET;
  9832. }
  9833. if (gfp.VBR == VbrMode.vbr_mtrh || gfp.VBR == VbrMode.vbr_mt) {
  9834. ret = psy.L3psycho_anal_vbr(gfp, bufp, bufpPos, gr,
  9835. masking_LR, masking_MS, pe[gr], pe_MS[gr],
  9836. tot_ener[gr], blocktype);
  9837. } else {
  9838. ret = psy.L3psycho_anal_ns(gfp, bufp, bufpPos, gr,
  9839. masking_LR, masking_MS, pe[gr], pe_MS[gr],
  9840. tot_ener[gr], blocktype);
  9841. }
  9842. if (ret != 0)
  9843. return -4;
  9844.  
  9845. if (gfp.mode == MPEGMode.JOINT_STEREO) {
  9846. ms_ener_ratio[gr] = tot_ener[gr][2] + tot_ener[gr][3];
  9847. if (ms_ener_ratio[gr] > 0)
  9848. ms_ener_ratio[gr] = tot_ener[gr][3] / ms_ener_ratio[gr];
  9849. }
  9850.  
  9851. /* block type flags */
  9852. for (ch = 0; ch < gfc.channels_out; ch++) {
  9853. var cod_info = gfc.l3_side.tt[gr][ch];
  9854. cod_info.block_type = blocktype[ch];
  9855. cod_info.mixed_block_flag = 0;
  9856. }
  9857. }
  9858. } else {
  9859. /* no psy model */
  9860. for (gr = 0; gr < gfc.mode_gr; gr++)
  9861. for (ch = 0; ch < gfc.channels_out; ch++) {
  9862. gfc.l3_side.tt[gr][ch].block_type = Encoder.NORM_TYPE;
  9863. gfc.l3_side.tt[gr][ch].mixed_block_flag = 0;
  9864. pe_MS[gr][ch] = pe[gr][ch] = 700;
  9865. }
  9866. }
  9867.  
  9868. /* auto-adjust of ATH, useful for low volume */
  9869. adjust_ATH(gfc);
  9870.  
  9871. /****************************************
  9872. * Stage 2: MDCT *
  9873. ****************************************/
  9874.  
  9875. /* polyphase filtering / mdct */
  9876. newMDCT.mdct_sub48(gfc, inbuf[0], inbuf[1]);
  9877.  
  9878. /****************************************
  9879. * Stage 3: MS/LR decision *
  9880. ****************************************/
  9881.  
  9882. /* Here will be selected MS or LR coding of the 2 stereo channels */
  9883. gfc.mode_ext = Encoder.MPG_MD_LR_LR;
  9884.  
  9885. if (gfp.force_ms) {
  9886. gfc.mode_ext = Encoder.MPG_MD_MS_LR;
  9887. } else if (gfp.mode == MPEGMode.JOINT_STEREO) {
  9888. /*
  9889. * ms_ratio = is scaled, for historical reasons, to look like a
  9890. * ratio of side_channel / total. 0 = signal is 100% mono .5 = L & R
  9891. * uncorrelated
  9892. */
  9893.  
  9894. /**
  9895. * <PRE>
  9896. * [0] and [1] are the results for the two granules in MPEG-1,
  9897. * in MPEG-2 it's only a faked averaging of the same value
  9898. * _prev is the value of the last granule of the previous frame
  9899. * _next is the value of the first granule of the next frame
  9900. * </PRE>
  9901. */
  9902.  
  9903. var sum_pe_MS = 0.;
  9904. var sum_pe_LR = 0.;
  9905. for (gr = 0; gr < gfc.mode_gr; gr++) {
  9906. for (ch = 0; ch < gfc.channels_out; ch++) {
  9907. sum_pe_MS += pe_MS[gr][ch];
  9908. sum_pe_LR += pe[gr][ch];
  9909. }
  9910. }
  9911.  
  9912. /* based on PE: M/S coding would not use much more bits than L/R */
  9913. if (sum_pe_MS <= 1.00 * sum_pe_LR) {
  9914.  
  9915. var gi0 = gfc.l3_side.tt[0];
  9916. var gi1 = gfc.l3_side.tt[gfc.mode_gr - 1];
  9917.  
  9918. if (gi0[0].block_type == gi0[1].block_type
  9919. && gi1[0].block_type == gi1[1].block_type) {
  9920.  
  9921. gfc.mode_ext = Encoder.MPG_MD_MS_LR;
  9922. }
  9923. }
  9924. }
  9925.  
  9926. /* bit and noise allocation */
  9927. if (gfc.mode_ext == MPG_MD_MS_LR) {
  9928. masking = masking_MS;
  9929. /* use MS masking */
  9930. pe_use = pe_MS;
  9931. } else {
  9932. masking = masking_LR;
  9933. /* use LR masking */
  9934. pe_use = pe;
  9935. }
  9936.  
  9937. /* copy data for MP3 frame analyzer */
  9938. if (gfp.analysis && gfc.pinfo != null) {
  9939. for (gr = 0; gr < gfc.mode_gr; gr++) {
  9940. for (ch = 0; ch < gfc.channels_out; ch++) {
  9941. gfc.pinfo.ms_ratio[gr] = gfc.ms_ratio[gr];
  9942. gfc.pinfo.ms_ener_ratio[gr] = ms_ener_ratio[gr];
  9943. gfc.pinfo.blocktype[gr][ch] = gfc.l3_side.tt[gr][ch].block_type;
  9944. gfc.pinfo.pe[gr][ch] = pe_use[gr][ch];
  9945. System.arraycopy(gfc.l3_side.tt[gr][ch].xr, 0,
  9946. gfc.pinfo.xr[gr][ch], 0, 576);
  9947. /*
  9948. * in psymodel, LR and MS data was stored in pinfo. switch
  9949. * to MS data:
  9950. */
  9951. if (gfc.mode_ext == MPG_MD_MS_LR) {
  9952. gfc.pinfo.ers[gr][ch] = gfc.pinfo.ers[gr][ch + 2];
  9953. System.arraycopy(gfc.pinfo.energy[gr][ch + 2], 0,
  9954. gfc.pinfo.energy[gr][ch], 0,
  9955. gfc.pinfo.energy[gr][ch].length);
  9956. }
  9957. }
  9958. }
  9959. }
  9960.  
  9961. /****************************************
  9962. * Stage 4: quantization loop *
  9963. ****************************************/
  9964.  
  9965. if (gfp.VBR == VbrMode.vbr_off || gfp.VBR == VbrMode.vbr_abr) {
  9966.  
  9967. var i;
  9968. var f;
  9969.  
  9970. for (i = 0; i < 18; i++)
  9971. gfc.nsPsy.pefirbuf[i] = gfc.nsPsy.pefirbuf[i + 1];
  9972.  
  9973. f = 0.0;
  9974. for (gr = 0; gr < gfc.mode_gr; gr++)
  9975. for (ch = 0; ch < gfc.channels_out; ch++)
  9976. f += pe_use[gr][ch];
  9977. gfc.nsPsy.pefirbuf[18] = f;
  9978.  
  9979. f = gfc.nsPsy.pefirbuf[9];
  9980. for (i = 0; i < 9; i++)
  9981. f += (gfc.nsPsy.pefirbuf[i] + gfc.nsPsy.pefirbuf[18 - i])
  9982. * Encoder.fircoef[i];
  9983.  
  9984. f = (670 * 5 * gfc.mode_gr * gfc.channels_out) / f;
  9985. for (gr = 0; gr < gfc.mode_gr; gr++) {
  9986. for (ch = 0; ch < gfc.channels_out; ch++) {
  9987. pe_use[gr][ch] *= f;
  9988. }
  9989. }
  9990. }
  9991. gfc.iteration_loop.iteration_loop(gfp, pe_use, ms_ener_ratio, masking);
  9992.  
  9993. /****************************************
  9994. * Stage 5: bitstream formatting *
  9995. ****************************************/
  9996.  
  9997. /* write the frame to the bitstream */
  9998. bs.format_bitstream(gfp);
  9999.  
  10000. /* copy mp3 bit buffer into array */
  10001. mp3count = bs.copy_buffer(gfc, mp3buf, mp3bufPos, mp3buf_size, 1);
  10002.  
  10003. if (gfp.bWriteVbrTag)
  10004. vbr.addVbrFrame(gfp);
  10005.  
  10006. if (gfp.analysis && gfc.pinfo != null) {
  10007. for (ch = 0; ch < gfc.channels_out; ch++) {
  10008. var j;
  10009. for (j = 0; j < FFTOFFSET; j++)
  10010. gfc.pinfo.pcmdata[ch][j] = gfc.pinfo.pcmdata[ch][j
  10011. + gfp.framesize];
  10012. for (j = FFTOFFSET; j < 1600; j++) {
  10013. gfc.pinfo.pcmdata[ch][j] = inbuf[ch][j - FFTOFFSET];
  10014. }
  10015. }
  10016. qupvt.set_frame_pinfo(gfp, masking);
  10017. }
  10018.  
  10019. updateStats(gfc);
  10020.  
  10021. return mp3count;
  10022. }
  10023. }
  10024.  
  10025.  
  10026. //package mp3;
  10027.  
  10028. function VBRSeekInfo() {
  10029. /**
  10030. * What we have seen so far.
  10031. */
  10032. this.sum = 0;
  10033. /**
  10034. * How many frames we have seen in this chunk.
  10035. */
  10036. this.seen = 0;
  10037. /**
  10038. * How many frames we want to collect into one chunk.
  10039. */
  10040. this.want = 0;
  10041. /**
  10042. * Actual position in our bag.
  10043. */
  10044. this.pos = 0;
  10045. /**
  10046. * Size of our bag.
  10047. */
  10048. this.size = 0;
  10049. /**
  10050. * Pointer to our bag.
  10051. */
  10052. this.bag = null;
  10053. this.nVbrNumFrames = 0;
  10054. this.nBytesWritten = 0;
  10055. /* VBR tag data */
  10056. this.TotalFrameSize = 0;
  10057. }
  10058.  
  10059.  
  10060.  
  10061. function IIISideInfo() {
  10062. this.tt = [[null, null], [null, null]];
  10063. this.main_data_begin = 0;
  10064. this.private_bits = 0;
  10065. this.resvDrain_pre = 0;
  10066. this.resvDrain_post = 0;
  10067. this.scfsi = [new_int(4), new_int(4)];
  10068.  
  10069. for (var gr = 0; gr < 2; gr++) {
  10070. for (var ch = 0; ch < 2; ch++) {
  10071. this.tt[gr][ch] = new GrInfo();
  10072. }
  10073. }
  10074. }
  10075.  
  10076.  
  10077.  
  10078. //package mp3;
  10079.  
  10080. /**
  10081. * Variables used for --nspsytune
  10082. *
  10083. * @author Ken
  10084. *
  10085. */
  10086. function NsPsy() {
  10087. this.last_en_subshort = new_float_n([4, 9]);
  10088. this.lastAttacks = new_int(4);
  10089. this.pefirbuf = new_float(19);
  10090. this.longfact = new_float(Encoder.SBMAX_l);
  10091. this.shortfact = new_float(Encoder.SBMAX_s);
  10092.  
  10093. /**
  10094. * short block tuning
  10095. */
  10096. this.attackthre = 0.;
  10097. this.attackthre_s = 0.;
  10098. }
  10099.  
  10100.  
  10101. function III_psy_xmin() {
  10102. this.l = new_float(Encoder.SBMAX_l);
  10103. this.s = new_float_n([Encoder.SBMAX_s, 3]);
  10104.  
  10105. var self = this;
  10106. this.assign = function (iii_psy_xmin) {
  10107. System.arraycopy(iii_psy_xmin.l, 0, self.l, 0, Encoder.SBMAX_l);
  10108. for (var i = 0; i < Encoder.SBMAX_s; i++) {
  10109. for (var j = 0; j < 3; j++) {
  10110. self.s[i][j] = iii_psy_xmin.s[i][j];
  10111. }
  10112. }
  10113. }
  10114. }
  10115.  
  10116.  
  10117.  
  10118.  
  10119. LameInternalFlags.MFSIZE = (3 * 1152 + Encoder.ENCDELAY - Encoder.MDCTDELAY);
  10120. LameInternalFlags.MAX_HEADER_BUF = 256;
  10121. LameInternalFlags.MAX_BITS_PER_CHANNEL = 4095;
  10122. LameInternalFlags.MAX_BITS_PER_GRANULE = 7680;
  10123. LameInternalFlags.BPC = 320;
  10124.  
  10125. function LameInternalFlags() {
  10126. var MAX_HEADER_LEN = 40;
  10127.  
  10128.  
  10129. /********************************************************************
  10130. * internal variables NOT set by calling program, and should not be *
  10131. * modified by the calling program *
  10132. ********************************************************************/
  10133.  
  10134. /**
  10135. * Some remarks to the Class_ID field: The Class ID is an Identifier for a
  10136. * pointer to this struct. It is very unlikely that a pointer to
  10137. * lame_global_flags has the same 32 bits in it's structure (large and other
  10138. * special properties, for instance prime).
  10139. *
  10140. * To test that the structure is right and initialized, use: if ( gfc .
  10141. * Class_ID == LAME_ID ) ... Other remark: If you set a flag to 0 for uninit
  10142. * data and 1 for init data, the right test should be "if (flag == 1)" and
  10143. * NOT "if (flag)". Unintended modification of this element will be
  10144. * otherwise misinterpreted as an init.
  10145. */
  10146. this.Class_ID = 0;
  10147.  
  10148. this.lame_encode_frame_init = 0;
  10149. this.iteration_init_init = 0;
  10150. this.fill_buffer_resample_init = 0;
  10151.  
  10152. //public float mfbuf[][] = new float[2][MFSIZE];
  10153. this.mfbuf = new_float_n([2, LameInternalFlags.MFSIZE]);
  10154.  
  10155. /**
  10156. * granules per frame
  10157. */
  10158. this.mode_gr = 0;
  10159. /**
  10160. * number of channels in the input data stream (PCM or decoded PCM)
  10161. */
  10162. this.channels_in = 0;
  10163. /**
  10164. * number of channels in the output data stream (not used for decoding)
  10165. */
  10166. this.channels_out = 0;
  10167. /**
  10168. * input_samp_rate/output_samp_rate
  10169. */
  10170. //public double resample_ratio;
  10171. this.resample_ratio = 0.;
  10172.  
  10173. this.mf_samples_to_encode = 0;
  10174. this.mf_size = 0;
  10175. /**
  10176. * min bitrate index
  10177. */
  10178. this.VBR_min_bitrate = 0;
  10179. /**
  10180. * max bitrate index
  10181. */
  10182. this.VBR_max_bitrate = 0;
  10183. this.bitrate_index = 0;
  10184. this.samplerate_index = 0;
  10185. this.mode_ext = 0;
  10186.  
  10187. /* lowpass and highpass filter control */
  10188. /**
  10189. * normalized frequency bounds of passband
  10190. */
  10191. this.lowpass1 = 0.;
  10192. this.lowpass2 = 0.;
  10193. /**
  10194. * normalized frequency bounds of passband
  10195. */
  10196. this.highpass1 = 0.;
  10197. this.highpass2 = 0.;
  10198.  
  10199. /**
  10200. * 0 = none 1 = ISO AAC model 2 = allow scalefac_select=1
  10201. */
  10202. this.noise_shaping = 0;
  10203.  
  10204. /**
  10205. * 0 = ISO model: amplify all distorted bands<BR>
  10206. * 1 = amplify within 50% of max (on db scale)<BR>
  10207. * 2 = amplify only most distorted band<BR>
  10208. * 3 = method 1 and refine with method 2<BR>
  10209. */
  10210. this.noise_shaping_amp = 0;
  10211. /**
  10212. * 0 = no substep<BR>
  10213. * 1 = use substep shaping at last step(VBR only)<BR>
  10214. * (not implemented yet)<BR>
  10215. * 2 = use substep inside loop<BR>
  10216. * 3 = use substep inside loop and last step<BR>
  10217. */
  10218. this.substep_shaping = 0;
  10219.  
  10220. /**
  10221. * 1 = gpsycho. 0 = none
  10222. */
  10223. this.psymodel = 0;
  10224. /**
  10225. * 0 = stop at over=0, all scalefacs amplified or<BR>
  10226. * a scalefac has reached max value<BR>
  10227. * 1 = stop when all scalefacs amplified or a scalefac has reached max value<BR>
  10228. * 2 = stop when all scalefacs amplified
  10229. */
  10230. this.noise_shaping_stop = 0;
  10231.  
  10232. /**
  10233. * 0 = no, 1 = yes
  10234. */
  10235. this.subblock_gain = 0;
  10236. /**
  10237. * 0 = no. 1=outside loop 2=inside loop(slow)
  10238. */
  10239. this.use_best_huffman = 0;
  10240.  
  10241. /**
  10242. * 0 = stop early after 0 distortion found. 1 = full search
  10243. */
  10244. this.full_outer_loop = 0;
  10245.  
  10246. //public IIISideInfo l3_side = new IIISideInfo();
  10247. this.l3_side = new IIISideInfo();
  10248. this.ms_ratio = new_float(2);
  10249.  
  10250. /* used for padding */
  10251. /**
  10252. * padding for the current frame?
  10253. */
  10254. this.padding = 0;
  10255. this.frac_SpF = 0;
  10256. this.slot_lag = 0;
  10257.  
  10258. /**
  10259. * optional ID3 tags
  10260. */
  10261. //public ID3TagSpec tag_spec;
  10262. this.tag_spec = null;
  10263. this.nMusicCRC = 0;
  10264.  
  10265. /* variables used by Quantize */
  10266. //public int OldValue[] = new int[2];
  10267. this.OldValue = new_int(2);
  10268. //public int CurrentStep[] = new int[2];
  10269. this.CurrentStep = new_int(2);
  10270.  
  10271. this.masking_lower = 0.;
  10272. //public int bv_scf[] = new int[576];
  10273. this.bv_scf = new_int(576);
  10274. //public int pseudohalf[] = new int[L3Side.SFBMAX];
  10275. this.pseudohalf = new_int(L3Side.SFBMAX);
  10276.  
  10277. /**
  10278. * will be set in lame_init_params
  10279. */
  10280. this.sfb21_extra = false;
  10281.  
  10282. /* BPC = maximum number of filter convolution windows to precompute */
  10283. //public float[][] inbuf_old = new float[2][];
  10284. this.inbuf_old = new Array(2);
  10285. //public float[][] blackfilt = new float[2 * BPC + 1][];
  10286. this.blackfilt = new Array(2 * LameInternalFlags.BPC + 1);
  10287. //public double itime[] = new double[2];
  10288. this.itime = new_double(2);
  10289. this.sideinfo_len = 0;
  10290.  
  10291. /* variables for newmdct.c */
  10292. //public float sb_sample[][][][] = new float[2][2][18][Encoder.SBLIMIT];
  10293. this.sb_sample = new_float_n([2, 2, 18, Encoder.SBLIMIT]);
  10294. this.amp_filter = new_float(32);
  10295.  
  10296. /* variables for BitStream */
  10297.  
  10298. /**
  10299. * <PRE>
  10300. * mpeg1: buffer=511 bytes smallest frame: 96-38(sideinfo)=58
  10301. * max number of frames in reservoir: 8
  10302. * mpeg2: buffer=255 bytes. smallest frame: 24-23bytes=1
  10303. * with VBR, if you are encoding all silence, it is possible to
  10304. * have 8kbs/24khz frames with 1byte of data each, which means we need
  10305. * to buffer up to 255 headers!
  10306. * </PRE>
  10307. */
  10308. /**
  10309. * also, max_header_buf has to be a power of two
  10310. */
  10311. /**
  10312. * max size of header is 38
  10313. */
  10314.  
  10315. function Header() {
  10316. this.write_timing = 0;
  10317. this.ptr = 0;
  10318. //public byte buf[] = new byte[MAX_HEADER_LEN];
  10319. this.buf = new_byte(MAX_HEADER_LEN);
  10320. }
  10321.  
  10322. this.header = new Array(LameInternalFlags.MAX_HEADER_BUF);
  10323.  
  10324. this.h_ptr = 0;
  10325. this.w_ptr = 0;
  10326. this.ancillary_flag = 0;
  10327.  
  10328. /* variables for Reservoir */
  10329. /**
  10330. * in bits
  10331. */
  10332. this.ResvSize = 0;
  10333. /**
  10334. * in bits
  10335. */
  10336. this.ResvMax = 0;
  10337.  
  10338. //public ScaleFac scalefac_band = new ScaleFac();
  10339. this.scalefac_band = new ScaleFac();
  10340.  
  10341. /* daa from PsyModel */
  10342. /* The static variables "r", "phi_sav", "new", "old" and "oldest" have */
  10343. /* to be remembered for the unpredictability measure. For "r" and */
  10344. /* "phi_sav", the first index from the left is the channel select and */
  10345. /* the second index is the "age" of the data. */
  10346. this.minval_l = new_float(Encoder.CBANDS);
  10347. this.minval_s = new_float(Encoder.CBANDS);
  10348. this.nb_1 = new_float_n([4, Encoder.CBANDS]);
  10349. this.nb_2 = new_float_n([4, Encoder.CBANDS]);
  10350. this.nb_s1 = new_float_n([4, Encoder.CBANDS]);
  10351. this.nb_s2 = new_float_n([4, Encoder.CBANDS]);
  10352. this.s3_ss = null;
  10353. this.s3_ll = null;
  10354. this.decay = 0.;
  10355.  
  10356. //public III_psy_xmin[] thm = new III_psy_xmin[4];
  10357. //public III_psy_xmin[] en = new III_psy_xmin[4];
  10358. this.thm = new Array(4);
  10359. this.en = new Array(4);
  10360.  
  10361. /**
  10362. * fft and energy calculation
  10363. */
  10364. this.tot_ener = new_float(4);
  10365.  
  10366. /* loudness calculation (for adaptive threshold of hearing) */
  10367. /**
  10368. * loudness^2 approx. per granule and channel
  10369. */
  10370. this.loudness_sq = new_float_n([2, 2]);
  10371. /**
  10372. * account for granule delay of L3psycho_anal
  10373. */
  10374. this.loudness_sq_save = new_float(2);
  10375.  
  10376. /**
  10377. * Scale Factor Bands
  10378. */
  10379. this.mld_l = new_float(Encoder.SBMAX_l);
  10380. this.mld_s = new_float(Encoder.SBMAX_s);
  10381. this.bm_l = new_int(Encoder.SBMAX_l);
  10382. this.bo_l = new_int(Encoder.SBMAX_l);
  10383. this.bm_s = new_int(Encoder.SBMAX_s);
  10384. this.bo_s = new_int(Encoder.SBMAX_s);
  10385. this.npart_l = 0;
  10386. this.npart_s = 0;
  10387.  
  10388. this.s3ind = new_int_n([Encoder.CBANDS, 2]);
  10389. this.s3ind_s = new_int_n([Encoder.CBANDS, 2]);
  10390.  
  10391. this.numlines_s = new_int(Encoder.CBANDS);
  10392. this.numlines_l = new_int(Encoder.CBANDS);
  10393. this.rnumlines_l = new_float(Encoder.CBANDS);
  10394. this.mld_cb_l = new_float(Encoder.CBANDS);
  10395. this.mld_cb_s = new_float(Encoder.CBANDS);
  10396. this.numlines_s_num1 = 0;
  10397. this.numlines_l_num1 = 0;
  10398.  
  10399. /* ratios */
  10400. this.pe = new_float(4);
  10401. this.ms_ratio_s_old = 0.;
  10402. this.ms_ratio_l_old = 0.;
  10403. this.ms_ener_ratio_old = 0.;
  10404.  
  10405. /**
  10406. * block type
  10407. */
  10408. this.blocktype_old = new_int(2);
  10409.  
  10410. /**
  10411. * variables used for --nspsytune
  10412. */
  10413. this.nsPsy = new NsPsy();
  10414.  
  10415. /**
  10416. * used for Xing VBR header
  10417. */
  10418. this.VBR_seek_table = new VBRSeekInfo();
  10419.  
  10420. /**
  10421. * all ATH related stuff
  10422. */
  10423. //public ATH ATH;
  10424. this.ATH = null;
  10425.  
  10426. this.PSY = null;
  10427.  
  10428. this.nogap_total = 0;
  10429. this.nogap_current = 0;
  10430.  
  10431. /* ReplayGain */
  10432. this.decode_on_the_fly = true;
  10433. this.findReplayGain = true;
  10434. this.findPeakSample = true;
  10435. this.PeakSample = 0.;
  10436. this.RadioGain = 0;
  10437. this.AudiophileGain = 0;
  10438. //public ReplayGain rgdata;
  10439. this.rgdata = null;
  10440.  
  10441. /**
  10442. * gain change required for preventing clipping
  10443. */
  10444. this.noclipGainChange = 0;
  10445. /**
  10446. * user-specified scale factor required for preventing clipping
  10447. */
  10448. this.noclipScale = 0.;
  10449.  
  10450. /* simple statistics */
  10451. this.bitrate_stereoMode_Hist = new_int_n([16, 4 + 1]);
  10452. /**
  10453. * norm/start/short/stop/mixed(short)/sum
  10454. */
  10455. this.bitrate_blockType_Hist = new_int_n([16, 4 + 1 + 1]);
  10456.  
  10457. //public PlottingData pinfo;
  10458. //public MPGLib.mpstr_tag hip;
  10459. this.pinfo = null;
  10460. this.hip = null;
  10461.  
  10462. this.in_buffer_nsamples = 0;
  10463. //public float[] in_buffer_0;
  10464. //public float[] in_buffer_1;
  10465. this.in_buffer_0 = null;
  10466. this.in_buffer_1 = null;
  10467.  
  10468. //public IIterationLoop iteration_loop;
  10469. this.iteration_loop = null;
  10470.  
  10471. for (var i = 0; i < this.en.length; i++) {
  10472. this.en[i] = new III_psy_xmin();
  10473. }
  10474. for (var i = 0; i < this.thm.length; i++) {
  10475. this.thm[i] = new III_psy_xmin();
  10476. }
  10477. for (var i = 0; i < this.header.length; i++) {
  10478. this.header[i] = new Header();
  10479. }
  10480.  
  10481. }
  10482.  
  10483.  
  10484.  
  10485. function FFT() {
  10486.  
  10487. var window = new_float(Encoder.BLKSIZE);
  10488. var window_s = new_float(Encoder.BLKSIZE_s / 2);
  10489.  
  10490. var costab = [
  10491. 9.238795325112867e-01, 3.826834323650898e-01,
  10492. 9.951847266721969e-01, 9.801714032956060e-02,
  10493. 9.996988186962042e-01, 2.454122852291229e-02,
  10494. 9.999811752826011e-01, 6.135884649154475e-03
  10495. ];
  10496.  
  10497. function fht(fz, fzPos, n) {
  10498. var tri = 0;
  10499. var k4;
  10500. var fi;
  10501. var gi;
  10502.  
  10503. n <<= 1;
  10504. /* to get BLKSIZE, because of 3DNow! ASM routine */
  10505. var fn = fzPos + n;
  10506. k4 = 4;
  10507. do {
  10508. var s1, c1;
  10509. var i, k1, k2, k3, kx;
  10510. kx = k4 >> 1;
  10511. k1 = k4;
  10512. k2 = k4 << 1;
  10513. k3 = k2 + k1;
  10514. k4 = k2 << 1;
  10515. fi = fzPos;
  10516. gi = fi + kx;
  10517. do {
  10518. var f0, f1, f2, f3;
  10519. f1 = fz[fi + 0] - fz[fi + k1];
  10520. f0 = fz[fi + 0] + fz[fi + k1];
  10521. f3 = fz[fi + k2] - fz[fi + k3];
  10522. f2 = fz[fi + k2] + fz[fi + k3];
  10523. fz[fi + k2] = f0 - f2;
  10524. fz[fi + 0] = f0 + f2;
  10525. fz[fi + k3] = f1 - f3;
  10526. fz[fi + k1] = f1 + f3;
  10527. f1 = fz[gi + 0] - fz[gi + k1];
  10528. f0 = fz[gi + 0] + fz[gi + k1];
  10529. f3 = (Util.SQRT2 * fz[gi + k3]);
  10530. f2 = (Util.SQRT2 * fz[gi + k2]);
  10531. fz[gi + k2] = f0 - f2;
  10532. fz[gi + 0] = f0 + f2;
  10533. fz[gi + k3] = f1 - f3;
  10534. fz[gi + k1] = f1 + f3;
  10535. gi += k4;
  10536. fi += k4;
  10537. } while (fi < fn);
  10538. c1 = costab[tri + 0];
  10539. s1 = costab[tri + 1];
  10540. for (i = 1; i < kx; i++) {
  10541. var c2, s2;
  10542. c2 = 1 - (2 * s1) * s1;
  10543. s2 = (2 * s1) * c1;
  10544. fi = fzPos + i;
  10545. gi = fzPos + k1 - i;
  10546. do {
  10547. var a, b, g0, f0, f1, g1, f2, g2, f3, g3;
  10548. b = s2 * fz[fi + k1] - c2 * fz[gi + k1];
  10549. a = c2 * fz[fi + k1] + s2 * fz[gi + k1];
  10550. f1 = fz[fi + 0] - a;
  10551. f0 = fz[fi + 0] + a;
  10552. g1 = fz[gi + 0] - b;
  10553. g0 = fz[gi + 0] + b;
  10554. b = s2 * fz[fi + k3] - c2 * fz[gi + k3];
  10555. a = c2 * fz[fi + k3] + s2 * fz[gi + k3];
  10556. f3 = fz[fi + k2] - a;
  10557. f2 = fz[fi + k2] + a;
  10558. g3 = fz[gi + k2] - b;
  10559. g2 = fz[gi + k2] + b;
  10560. b = s1 * f2 - c1 * g3;
  10561. a = c1 * f2 + s1 * g3;
  10562. fz[fi + k2] = f0 - a;
  10563. fz[fi + 0] = f0 + a;
  10564. fz[gi + k3] = g1 - b;
  10565. fz[gi + k1] = g1 + b;
  10566. b = c1 * g2 - s1 * f3;
  10567. a = s1 * g2 + c1 * f3;
  10568. fz[gi + k2] = g0 - a;
  10569. fz[gi + 0] = g0 + a;
  10570. fz[fi + k3] = f1 - b;
  10571. fz[fi + k1] = f1 + b;
  10572. gi += k4;
  10573. fi += k4;
  10574. } while (fi < fn);
  10575. c2 = c1;
  10576. c1 = c2 * costab[tri + 0] - s1 * costab[tri + 1];
  10577. s1 = c2 * costab[tri + 1] + s1 * costab[tri + 0];
  10578. }
  10579. tri += 2;
  10580. } while (k4 < n);
  10581. }
  10582.  
  10583. var rv_tbl = [0x00, 0x80, 0x40,
  10584. 0xc0, 0x20, 0xa0, 0x60, 0xe0, 0x10,
  10585. 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70,
  10586. 0xf0, 0x08, 0x88, 0x48, 0xc8, 0x28,
  10587. 0xa8, 0x68, 0xe8, 0x18, 0x98, 0x58,
  10588. 0xd8, 0x38, 0xb8, 0x78, 0xf8, 0x04,
  10589. 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64,
  10590. 0xe4, 0x14, 0x94, 0x54, 0xd4, 0x34,
  10591. 0xb4, 0x74, 0xf4, 0x0c, 0x8c, 0x4c,
  10592. 0xcc, 0x2c, 0xac, 0x6c, 0xec, 0x1c,
  10593. 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c,
  10594. 0xfc, 0x02, 0x82, 0x42, 0xc2, 0x22,
  10595. 0xa2, 0x62, 0xe2, 0x12, 0x92, 0x52,
  10596. 0xd2, 0x32, 0xb2, 0x72, 0xf2, 0x0a,
  10597. 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a,
  10598. 0xea, 0x1a, 0x9a, 0x5a, 0xda, 0x3a,
  10599. 0xba, 0x7a, 0xfa, 0x06, 0x86, 0x46,
  10600. 0xc6, 0x26, 0xa6, 0x66, 0xe6, 0x16,
  10601. 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76,
  10602. 0xf6, 0x0e, 0x8e, 0x4e, 0xce, 0x2e,
  10603. 0xae, 0x6e, 0xee, 0x1e, 0x9e, 0x5e,
  10604. 0xde, 0x3e, 0xbe, 0x7e, 0xfe];
  10605.  
  10606. this.fft_short = function (gfc, x_real, chn, buffer, bufPos) {
  10607. for (var b = 0; b < 3; b++) {
  10608. var x = Encoder.BLKSIZE_s / 2;
  10609. var k = 0xffff & ((576 / 3) * (b + 1));
  10610. var j = Encoder.BLKSIZE_s / 8 - 1;
  10611. do {
  10612. var f0, f1, f2, f3, w;
  10613. var i = rv_tbl[j << 2] & 0xff;
  10614.  
  10615. f0 = window_s[i] * buffer[chn][bufPos + i + k];
  10616. w = window_s[0x7f - i] * buffer[chn][bufPos + i + k + 0x80];
  10617. f1 = f0 - w;
  10618. f0 = f0 + w;
  10619. f2 = window_s[i + 0x40] * buffer[chn][bufPos + i + k + 0x40];
  10620. w = window_s[0x3f - i] * buffer[chn][bufPos + i + k + 0xc0];
  10621. f3 = f2 - w;
  10622. f2 = f2 + w;
  10623.  
  10624. x -= 4;
  10625. x_real[b][x + 0] = f0 + f2;
  10626. x_real[b][x + 2] = f0 - f2;
  10627. x_real[b][x + 1] = f1 + f3;
  10628. x_real[b][x + 3] = f1 - f3;
  10629.  
  10630. f0 = window_s[i + 0x01] * buffer[chn][bufPos + i + k + 0x01];
  10631. w = window_s[0x7e - i] * buffer[chn][bufPos + i + k + 0x81];
  10632. f1 = f0 - w;
  10633. f0 = f0 + w;
  10634. f2 = window_s[i + 0x41] * buffer[chn][bufPos + i + k + 0x41];
  10635. w = window_s[0x3e - i] * buffer[chn][bufPos + i + k + 0xc1];
  10636. f3 = f2 - w;
  10637. f2 = f2 + w;
  10638.  
  10639. x_real[b][x + Encoder.BLKSIZE_s / 2 + 0] = f0 + f2;
  10640. x_real[b][x + Encoder.BLKSIZE_s / 2 + 2] = f0 - f2;
  10641. x_real[b][x + Encoder.BLKSIZE_s / 2 + 1] = f1 + f3;
  10642. x_real[b][x + Encoder.BLKSIZE_s / 2 + 3] = f1 - f3;
  10643. } while (--j >= 0);
  10644.  
  10645. fht(x_real[b], x, Encoder.BLKSIZE_s / 2);
  10646. /* BLKSIZE_s/2 because of 3DNow! ASM routine */
  10647. /* BLKSIZE/2 because of 3DNow! ASM routine */
  10648. }
  10649. }
  10650.  
  10651. this.fft_long = function (gfc, y, chn, buffer, bufPos) {
  10652. var jj = Encoder.BLKSIZE / 8 - 1;
  10653. var x = Encoder.BLKSIZE / 2;
  10654.  
  10655. do {
  10656. var f0, f1, f2, f3, w;
  10657. var i = rv_tbl[jj] & 0xff;
  10658. f0 = window[i] * buffer[chn][bufPos + i];
  10659. w = window[i + 0x200] * buffer[chn][bufPos + i + 0x200];
  10660. f1 = f0 - w;
  10661. f0 = f0 + w;
  10662. f2 = window[i + 0x100] * buffer[chn][bufPos + i + 0x100];
  10663. w = window[i + 0x300] * buffer[chn][bufPos + i + 0x300];
  10664. f3 = f2 - w;
  10665. f2 = f2 + w;
  10666.  
  10667. x -= 4;
  10668. y[x + 0] = f0 + f2;
  10669. y[x + 2] = f0 - f2;
  10670. y[x + 1] = f1 + f3;
  10671. y[x + 3] = f1 - f3;
  10672.  
  10673. f0 = window[i + 0x001] * buffer[chn][bufPos + i + 0x001];
  10674. w = window[i + 0x201] * buffer[chn][bufPos + i + 0x201];
  10675. f1 = f0 - w;
  10676. f0 = f0 + w;
  10677. f2 = window[i + 0x101] * buffer[chn][bufPos + i + 0x101];
  10678. w = window[i + 0x301] * buffer[chn][bufPos + i + 0x301];
  10679. f3 = f2 - w;
  10680. f2 = f2 + w;
  10681.  
  10682. y[x + Encoder.BLKSIZE / 2 + 0] = f0 + f2;
  10683. y[x + Encoder.BLKSIZE / 2 + 2] = f0 - f2;
  10684. y[x + Encoder.BLKSIZE / 2 + 1] = f1 + f3;
  10685. y[x + Encoder.BLKSIZE / 2 + 3] = f1 - f3;
  10686. } while (--jj >= 0);
  10687.  
  10688. fht(y, x, Encoder.BLKSIZE / 2);
  10689. /* BLKSIZE/2 because of 3DNow! ASM routine */
  10690. }
  10691.  
  10692. this.init_fft = function (gfc) {
  10693. /* The type of window used here will make no real difference, but */
  10694. /*
  10695. * in the interest of merging nspsytune stuff - switch to blackman
  10696. * window
  10697. */
  10698. for (var i = 0; i < Encoder.BLKSIZE; i++)
  10699. /* blackman window */
  10700. window[i] = (0.42 - 0.5 * Math.cos(2 * Math.PI * (i + .5)
  10701. / Encoder.BLKSIZE) + 0.08 * Math.cos(4 * Math.PI * (i + .5)
  10702. / Encoder.BLKSIZE));
  10703.  
  10704. for (var i = 0; i < Encoder.BLKSIZE_s / 2; i++)
  10705. window_s[i] = (0.5 * (1.0 - Math.cos(2.0 * Math.PI
  10706. * (i + 0.5) / Encoder.BLKSIZE_s)));
  10707.  
  10708. }
  10709.  
  10710. }
  10711.  
  10712. /*
  10713. * psymodel.c
  10714. *
  10715. * Copyright (c) 1999-2000 Mark Taylor
  10716. * Copyright (c) 2001-2002 Naoki Shibata
  10717. * Copyright (c) 2000-2003 Takehiro Tominaga
  10718. * Copyright (c) 2000-2008 Robert Hegemann
  10719. * Copyright (c) 2000-2005 Gabriel Bouvigne
  10720. * Copyright (c) 2000-2005 Alexander Leidinger
  10721. *
  10722. * This library is free software; you can redistribute it and/or
  10723. * modify it under the terms of the GNU Lesser General Public
  10724. * License as published by the Free Software Foundation; either
  10725. * version 2 of the License, or (at your option) any later version.
  10726. *
  10727. * This library is distributed in the hope that it will be useful,
  10728. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10729. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  10730. * Library General Public License for more details.
  10731. *
  10732. * You should have received a copy of the GNU Lesser General Public
  10733. * License along with this library; if not, write to the
  10734. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  10735. * Boston, MA 02111-1307, USA.
  10736. */
  10737.  
  10738. /* $Id: PsyModel.java,v 1.27 2011/05/24 20:48:06 kenchis Exp $ */
  10739.  
  10740.  
  10741. /*
  10742. PSYCHO ACOUSTICS
  10743.  
  10744.  
  10745. This routine computes the psycho acoustics, delayed by one granule.
  10746.  
  10747. Input: buffer of PCM data (1024 samples).
  10748.  
  10749. This window should be centered over the 576 sample granule window.
  10750. The routine will compute the psycho acoustics for
  10751. this granule, but return the psycho acoustics computed
  10752. for the *previous* granule. This is because the block
  10753. type of the previous granule can only be determined
  10754. after we have computed the psycho acoustics for the following
  10755. granule.
  10756.  
  10757. Output: maskings and energies for each scalefactor band.
  10758. block type, PE, and some correlation measures.
  10759. The PE is used by CBR modes to determine if extra bits
  10760. from the bit reservoir should be used. The correlation
  10761. measures are used to determine mid/side or regular stereo.
  10762. */
  10763. /*
  10764. Notation:
  10765.  
  10766. barks: a non-linear frequency scale. Mapping from frequency to
  10767. barks is given by freq2bark()
  10768.  
  10769. scalefactor bands: The spectrum (frequencies) are broken into
  10770. SBMAX "scalefactor bands". Thes bands
  10771. are determined by the MPEG ISO spec. In
  10772. the noise shaping/quantization code, we allocate
  10773. bits among the partition bands to achieve the
  10774. best possible quality
  10775.  
  10776. partition bands: The spectrum is also broken into about
  10777. 64 "partition bands". Each partition
  10778. band is about .34 barks wide. There are about 2-5
  10779. partition bands for each scalefactor band.
  10780.  
  10781. LAME computes all psycho acoustic information for each partition
  10782. band. Then at the end of the computations, this information
  10783. is mapped to scalefactor bands. The energy in each scalefactor
  10784. band is taken as the sum of the energy in all partition bands
  10785. which overlap the scalefactor band. The maskings can be computed
  10786. in the same way (and thus represent the average masking in that band)
  10787. or by taking the minmum value multiplied by the number of
  10788. partition bands used (which represents a minimum masking in that band).
  10789. */
  10790. /*
  10791. The general outline is as follows:
  10792.  
  10793. 1. compute the energy in each partition band
  10794. 2. compute the tonality in each partition band
  10795. 3. compute the strength of each partion band "masker"
  10796. 4. compute the masking (via the spreading function applied to each masker)
  10797. 5. Modifications for mid/side masking.
  10798.  
  10799. Each partition band is considiered a "masker". The strength
  10800. of the i'th masker in band j is given by:
  10801.  
  10802. s3(bark(i)-bark(j))*strength(i)
  10803.  
  10804. The strength of the masker is a function of the energy and tonality.
  10805. The more tonal, the less masking. LAME uses a simple linear formula
  10806. (controlled by NMT and TMN) which says the strength is given by the
  10807. energy divided by a linear function of the tonality.
  10808. */
  10809. /*
  10810. s3() is the "spreading function". It is given by a formula
  10811. determined via listening tests.
  10812.  
  10813. The total masking in the j'th partition band is the sum over
  10814. all maskings i. It is thus given by the convolution of
  10815. the strength with s3(), the "spreading function."
  10816.  
  10817. masking(j) = sum_over_i s3(i-j)*strength(i) = s3 o strength
  10818.  
  10819. where "o" = convolution operator. s3 is given by a formula determined
  10820. via listening tests. It is normalized so that s3 o 1 = 1.
  10821.  
  10822. Note: instead of a simple convolution, LAME also has the
  10823. option of using "additive masking"
  10824.  
  10825. The most critical part is step 2, computing the tonality of each
  10826. partition band. LAME has two tonality estimators. The first
  10827. is based on the ISO spec, and measures how predictiable the
  10828. signal is over time. The more predictable, the more tonal.
  10829. The second measure is based on looking at the spectrum of
  10830. a single granule. The more peaky the spectrum, the more
  10831. tonal. By most indications, the latter approach is better.
  10832.  
  10833. Finally, in step 5, the maskings for the mid and side
  10834. channel are possibly increased. Under certain circumstances,
  10835. noise in the mid & side channels is assumed to also
  10836. be masked by strong maskers in the L or R channels.
  10837.  
  10838.  
  10839. Other data computed by the psy-model:
  10840.  
  10841. ms_ratio side-channel / mid-channel masking ratio (for previous granule)
  10842. ms_ratio_next side-channel / mid-channel masking ratio for this granule
  10843.  
  10844. percep_entropy[2] L and R values (prev granule) of PE - A measure of how
  10845. much pre-echo is in the previous granule
  10846. percep_entropy_MS[2] mid and side channel values (prev granule) of percep_entropy
  10847. energy[4] L,R,M,S energy in each channel, prev granule
  10848. blocktype_d[2] block type to use for previous granule
  10849. */
  10850. //package mp3;
  10851.  
  10852. //import java.util.Arrays;
  10853.  
  10854.  
  10855. function PsyModel() {
  10856.  
  10857. var fft = new FFT();
  10858.  
  10859. var LOG10 = 2.30258509299404568402;
  10860.  
  10861. var rpelev = 2;
  10862. var rpelev2 = 16;
  10863. var rpelev_s = 2;
  10864. var rpelev2_s = 16;
  10865.  
  10866. /* size of each partition band, in barks: */
  10867. var DELBARK = .34;
  10868.  
  10869. /* tuned for output level (sensitive to energy scale) */
  10870. var VO_SCALE = (1. / (14752 * 14752) / (Encoder.BLKSIZE / 2));
  10871.  
  10872. var temporalmask_sustain_sec = 0.01;
  10873.  
  10874. var NS_PREECHO_ATT0 = 0.8;
  10875. var NS_PREECHO_ATT1 = 0.6;
  10876. var NS_PREECHO_ATT2 = 0.3;
  10877.  
  10878. var NS_MSFIX = 3.5;
  10879.  
  10880. var NSATTACKTHRE = 4.4;
  10881. var NSATTACKTHRE_S = 25;
  10882.  
  10883. var NSFIRLEN = 21;
  10884.  
  10885. /* size of each partition band, in barks: */
  10886. var LN_TO_LOG10 = 0.2302585093;
  10887.  
  10888. function NON_LINEAR_SCALE_ENERGY(x) {
  10889. return x;
  10890. }
  10891.  
  10892. /**
  10893. * <PRE>
  10894. * L3psycho_anal. Compute psycho acoustics.
  10895. *
  10896. * Data returned to the calling program must be delayed by one
  10897. * granule.
  10898. *
  10899. * This is done in two places.
  10900. * If we do not need to know the blocktype, the copying
  10901. * can be done here at the top of the program: we copy the data for
  10902. * the last granule (computed during the last call) before it is
  10903. * overwritten with the new data. It looks like this:
  10904. *
  10905. * 0. static psymodel_data
  10906. * 1. calling_program_data = psymodel_data
  10907. * 2. compute psymodel_data
  10908. *
  10909. * For data which needs to know the blocktype, the copying must be
  10910. * done at the end of this loop, and the old values must be saved:
  10911. *
  10912. * 0. static psymodel_data_old
  10913. * 1. compute psymodel_data
  10914. * 2. compute possible block type of this granule
  10915. * 3. compute final block type of previous granule based on #2.
  10916. * 4. calling_program_data = psymodel_data_old
  10917. * 5. psymodel_data_old = psymodel_data
  10918. * psycho_loudness_approx
  10919. * jd - 2001 mar 12
  10920. * in: energy - BLKSIZE/2 elements of frequency magnitudes ^ 2
  10921. * gfp - uses out_samplerate, ATHtype (also needed for ATHformula)
  10922. * returns: loudness^2 approximation, a positive value roughly tuned for a value
  10923. * of 1.0 for signals near clipping.
  10924. * notes: When calibrated, feeding this function binary white noise at sample
  10925. * values +32767 or -32768 should return values that approach 3.
  10926. * ATHformula is used to approximate an equal loudness curve.
  10927. * future: Data indicates that the shape of the equal loudness curve varies
  10928. * with intensity. This function might be improved by using an equal
  10929. * loudness curve shaped for typical playback levels (instead of the
  10930. * ATH, that is shaped for the threshold). A flexible realization might
  10931. * simply bend the existing ATH curve to achieve the desired shape.
  10932. * However, the potential gain may not be enough to justify an effort.
  10933. * </PRE>
  10934. */
  10935. function psycho_loudness_approx(energy, gfc) {
  10936. var loudness_power = 0.0;
  10937. /* apply weights to power in freq. bands */
  10938. for (var i = 0; i < Encoder.BLKSIZE / 2; ++i)
  10939. loudness_power += energy[i] * gfc.ATH.eql_w[i];
  10940. loudness_power *= VO_SCALE;
  10941.  
  10942. return loudness_power;
  10943. }
  10944.  
  10945. function compute_ffts(gfp, fftenergy, fftenergy_s, wsamp_l, wsamp_lPos, wsamp_s, wsamp_sPos, gr_out, chn, buffer, bufPos) {
  10946. var gfc = gfp.internal_flags;
  10947. if (chn < 2) {
  10948. fft.fft_long(gfc, wsamp_l[wsamp_lPos], chn, buffer, bufPos);
  10949. fft.fft_short(gfc, wsamp_s[wsamp_sPos], chn, buffer, bufPos);
  10950. }
  10951. /* FFT data for mid and side channel is derived from L & R */
  10952. else if (chn == 2) {
  10953. for (var j = Encoder.BLKSIZE - 1; j >= 0; --j) {
  10954. var l = wsamp_l[wsamp_lPos + 0][j];
  10955. var r = wsamp_l[wsamp_lPos + 1][j];
  10956. wsamp_l[wsamp_lPos + 0][j] = (l + r) * Util.SQRT2 * 0.5;
  10957. wsamp_l[wsamp_lPos + 1][j] = (l - r) * Util.SQRT2 * 0.5;
  10958. }
  10959. for (var b = 2; b >= 0; --b) {
  10960. for (var j = Encoder.BLKSIZE_s - 1; j >= 0; --j) {
  10961. var l = wsamp_s[wsamp_sPos + 0][b][j];
  10962. var r = wsamp_s[wsamp_sPos + 1][b][j];
  10963. wsamp_s[wsamp_sPos + 0][b][j] = (l + r) * Util.SQRT2 * 0.5;
  10964. wsamp_s[wsamp_sPos + 1][b][j] = (l - r) * Util.SQRT2 * 0.5;
  10965. }
  10966. }
  10967. }
  10968.  
  10969. /*********************************************************************
  10970. * compute energies
  10971. *********************************************************************/
  10972. fftenergy[0] = NON_LINEAR_SCALE_ENERGY(wsamp_l[wsamp_lPos + 0][0]);
  10973. fftenergy[0] *= fftenergy[0];
  10974.  
  10975. for (var j = Encoder.BLKSIZE / 2 - 1; j >= 0; --j) {
  10976. var re = (wsamp_l[wsamp_lPos + 0])[Encoder.BLKSIZE / 2 - j];
  10977. var im = (wsamp_l[wsamp_lPos + 0])[Encoder.BLKSIZE / 2 + j];
  10978. fftenergy[Encoder.BLKSIZE / 2 - j] = NON_LINEAR_SCALE_ENERGY((re
  10979. * re + im * im) * 0.5);
  10980. }
  10981. for (var b = 2; b >= 0; --b) {
  10982. fftenergy_s[b][0] = (wsamp_s[wsamp_sPos + 0])[b][0];
  10983. fftenergy_s[b][0] *= fftenergy_s[b][0];
  10984. for (var j = Encoder.BLKSIZE_s / 2 - 1; j >= 0; --j) {
  10985. var re = (wsamp_s[wsamp_sPos + 0])[b][Encoder.BLKSIZE_s
  10986. / 2 - j];
  10987. var im = (wsamp_s[wsamp_sPos + 0])[b][Encoder.BLKSIZE_s
  10988. / 2 + j];
  10989. fftenergy_s[b][Encoder.BLKSIZE_s / 2 - j] = NON_LINEAR_SCALE_ENERGY((re
  10990. * re + im * im) * 0.5);
  10991. }
  10992. }
  10993. /* total energy */
  10994. {
  10995. var totalenergy = 0.0;
  10996. for (var j = 11; j < Encoder.HBLKSIZE; j++)
  10997. totalenergy += fftenergy[j];
  10998.  
  10999. gfc.tot_ener[chn] = totalenergy;
  11000. }
  11001.  
  11002. if (gfp.analysis) {
  11003. for (var j = 0; j < Encoder.HBLKSIZE; j++) {
  11004. gfc.pinfo.energy[gr_out][chn][j] = gfc.pinfo.energy_save[chn][j];
  11005. gfc.pinfo.energy_save[chn][j] = fftenergy[j];
  11006. }
  11007. gfc.pinfo.pe[gr_out][chn] = gfc.pe[chn];
  11008. }
  11009.  
  11010. /*********************************************************************
  11011. * compute loudness approximation (used for ATH auto-level adjustment)
  11012. *********************************************************************/
  11013. if (gfp.athaa_loudapprox == 2 && chn < 2) {
  11014. // no loudness for mid/side ch
  11015. gfc.loudness_sq[gr_out][chn] = gfc.loudness_sq_save[chn];
  11016. gfc.loudness_sq_save[chn] = psycho_loudness_approx(fftenergy, gfc);
  11017. }
  11018. }
  11019.  
  11020. /* mask_add optimization */
  11021. /* init the limit values used to avoid computing log in mask_add when it is not necessary */
  11022.  
  11023. /**
  11024. * <PRE>
  11025. * For example, with i = 10*log10(m2/m1)/10*16 (= log10(m2/m1)*16)
  11026. *
  11027. * abs(i)>8 is equivalent (as i is an integer) to
  11028. * abs(i)>=9
  11029. * i>=9 || i<=-9
  11030. * equivalent to (as i is the biggest integer smaller than log10(m2/m1)*16
  11031. * or the smallest integer bigger than log10(m2/m1)*16 depending on the sign of log10(m2/m1)*16)
  11032. * log10(m2/m1)>=9/16 || log10(m2/m1)<=-9/16
  11033. * exp10 is strictly increasing thus this is equivalent to
  11034. * m2/m1 >= 10^(9/16) || m2/m1<=10^(-9/16) which are comparisons to constants
  11035. * </PRE>
  11036. */
  11037.  
  11038. /**
  11039. * as in if(i>8)
  11040. */
  11041. var I1LIMIT = 8;
  11042. /**
  11043. * as in if(i>24) . changed 23
  11044. */
  11045. var I2LIMIT = 23;
  11046. /**
  11047. * as in if(m<15)
  11048. */
  11049. var MLIMIT = 15;
  11050.  
  11051. var ma_max_i1;
  11052. var ma_max_i2;
  11053. var ma_max_m;
  11054.  
  11055. /**
  11056. * This is the masking table:<BR>
  11057. * According to tonality, values are going from 0dB (TMN) to 9.3dB (NMT).<BR>
  11058. * After additive masking computation, 8dB are added, so final values are
  11059. * going from 8dB to 17.3dB
  11060. *
  11061. * pow(10, -0.0..-0.6)
  11062. */
  11063. var tab = [1.0, 0.79433, 0.63096, 0.63096,
  11064. 0.63096, 0.63096, 0.63096, 0.25119, 0.11749];
  11065.  
  11066. function init_mask_add_max_values() {
  11067. ma_max_i1 = Math.pow(10, (I1LIMIT + 1) / 16.0);
  11068. ma_max_i2 = Math.pow(10, (I2LIMIT + 1) / 16.0);
  11069. ma_max_m = Math.pow(10, (MLIMIT) / 10.0);
  11070. }
  11071.  
  11072. var table1 = [3.3246 * 3.3246,
  11073. 3.23837 * 3.23837, 3.15437 * 3.15437, 3.00412 * 3.00412,
  11074. 2.86103 * 2.86103, 2.65407 * 2.65407, 2.46209 * 2.46209,
  11075. 2.284 * 2.284, 2.11879 * 2.11879, 1.96552 * 1.96552,
  11076. 1.82335 * 1.82335, 1.69146 * 1.69146, 1.56911 * 1.56911,
  11077. 1.46658 * 1.46658, 1.37074 * 1.37074, 1.31036 * 1.31036,
  11078. 1.25264 * 1.25264, 1.20648 * 1.20648, 1.16203 * 1.16203,
  11079. 1.12765 * 1.12765, 1.09428 * 1.09428, 1.0659 * 1.0659,
  11080. 1.03826 * 1.03826, 1.01895 * 1.01895, 1];
  11081.  
  11082. var table2 = [1.33352 * 1.33352,
  11083. 1.35879 * 1.35879, 1.38454 * 1.38454, 1.39497 * 1.39497,
  11084. 1.40548 * 1.40548, 1.3537 * 1.3537, 1.30382 * 1.30382,
  11085. 1.22321 * 1.22321, 1.14758 * 1.14758, 1];
  11086.  
  11087. var table3 = [2.35364 * 2.35364,
  11088. 2.29259 * 2.29259, 2.23313 * 2.23313, 2.12675 * 2.12675,
  11089. 2.02545 * 2.02545, 1.87894 * 1.87894, 1.74303 * 1.74303,
  11090. 1.61695 * 1.61695, 1.49999 * 1.49999, 1.39148 * 1.39148,
  11091. 1.29083 * 1.29083, 1.19746 * 1.19746, 1.11084 * 1.11084,
  11092. 1.03826 * 1.03826];
  11093.  
  11094. /**
  11095. * addition of simultaneous masking Naoki Shibata 2000/7
  11096. */
  11097. function mask_add(m1, m2, kk, b, gfc, shortblock) {
  11098. var ratio;
  11099.  
  11100. if (m2 > m1) {
  11101. if (m2 < (m1 * ma_max_i2))
  11102. ratio = m2 / m1;
  11103. else
  11104. return (m1 + m2);
  11105. } else {
  11106. if (m1 >= (m2 * ma_max_i2))
  11107. return (m1 + m2);
  11108. ratio = m1 / m2;
  11109. }
  11110.  
  11111. /* Should always be true, just checking */
  11112.  
  11113. m1 += m2;
  11114. //if (((long)(b + 3) & 0xffffffff) <= 3 + 3) {
  11115. if ((b + 3) <= 3 + 3) {
  11116. /* approximately, 1 bark = 3 partitions */
  11117. /* 65% of the cases */
  11118. /* originally 'if(i > 8)' */
  11119. if (ratio >= ma_max_i1) {
  11120. /* 43% of the total */
  11121. return m1;
  11122. }
  11123.  
  11124. /* 22% of the total */
  11125. var i = 0 | (Util.FAST_LOG10_X(ratio, 16.0));
  11126. return m1 * table2[i];
  11127. }
  11128.  
  11129. /**
  11130. * <PRE>
  11131. * m<15 equ log10((m1+m2)/gfc.ATH.cb[k])<1.5
  11132. * equ (m1+m2)/gfc.ATH.cb[k]<10^1.5
  11133. * equ (m1+m2)<10^1.5 * gfc.ATH.cb[k]
  11134. * </PRE>
  11135. */
  11136. var i = 0 | Util.FAST_LOG10_X(ratio, 16.0);
  11137. if (shortblock != 0) {
  11138. m2 = gfc.ATH.cb_s[kk] * gfc.ATH.adjust;
  11139. } else {
  11140. m2 = gfc.ATH.cb_l[kk] * gfc.ATH.adjust;
  11141. }
  11142. if (m1 < ma_max_m * m2) {
  11143. /* 3% of the total */
  11144. /* Originally if (m > 0) { */
  11145. if (m1 > m2) {
  11146. var f, r;
  11147.  
  11148. f = 1.0;
  11149. if (i <= 13)
  11150. f = table3[i];
  11151.  
  11152. r = Util.FAST_LOG10_X(m1 / m2, 10.0 / 15.0);
  11153. return m1 * ((table1[i] - f) * r + f);
  11154. }
  11155.  
  11156. if (i > 13)
  11157. return m1;
  11158.  
  11159. return m1 * table3[i];
  11160. }
  11161.  
  11162. /* 10% of total */
  11163. return m1 * table1[i];
  11164. }
  11165.  
  11166. var table2_ = [1.33352 * 1.33352,
  11167. 1.35879 * 1.35879, 1.38454 * 1.38454, 1.39497 * 1.39497,
  11168. 1.40548 * 1.40548, 1.3537 * 1.3537, 1.30382 * 1.30382,
  11169. 1.22321 * 1.22321, 1.14758 * 1.14758, 1];
  11170.  
  11171. /**
  11172. * addition of simultaneous masking Naoki Shibata 2000/7
  11173. */
  11174. function vbrpsy_mask_add(m1, m2, b) {
  11175. var ratio;
  11176.  
  11177. if (m1 < 0) {
  11178. m1 = 0;
  11179. }
  11180. if (m2 < 0) {
  11181. m2 = 0;
  11182. }
  11183. if (m1 <= 0) {
  11184. return m2;
  11185. }
  11186. if (m2 <= 0) {
  11187. return m1;
  11188. }
  11189. if (m2 > m1) {
  11190. ratio = m2 / m1;
  11191. } else {
  11192. ratio = m1 / m2;
  11193. }
  11194. if (-2 <= b && b <= 2) {
  11195. /* approximately, 1 bark = 3 partitions */
  11196. /* originally 'if(i > 8)' */
  11197. if (ratio >= ma_max_i1) {
  11198. return m1 + m2;
  11199. } else {
  11200. var i = 0 | (Util.FAST_LOG10_X(ratio, 16.0));
  11201. return (m1 + m2) * table2_[i];
  11202. }
  11203. }
  11204. if (ratio < ma_max_i2) {
  11205. return m1 + m2;
  11206. }
  11207. if (m1 < m2) {
  11208. m1 = m2;
  11209. }
  11210. return m1;
  11211. }
  11212.  
  11213. /**
  11214. * compute interchannel masking effects
  11215. */
  11216. function calc_interchannel_masking(gfp, ratio) {
  11217. var gfc = gfp.internal_flags;
  11218. if (gfc.channels_out > 1) {
  11219. for (var sb = 0; sb < Encoder.SBMAX_l; sb++) {
  11220. var l = gfc.thm[0].l[sb];
  11221. var r = gfc.thm[1].l[sb];
  11222. gfc.thm[0].l[sb] += r * ratio;
  11223. gfc.thm[1].l[sb] += l * ratio;
  11224. }
  11225. for (var sb = 0; sb < Encoder.SBMAX_s; sb++) {
  11226. for (var sblock = 0; sblock < 3; sblock++) {
  11227. var l = gfc.thm[0].s[sb][sblock];
  11228. var r = gfc.thm[1].s[sb][sblock];
  11229. gfc.thm[0].s[sb][sblock] += r * ratio;
  11230. gfc.thm[1].s[sb][sblock] += l * ratio;
  11231. }
  11232. }
  11233. }
  11234. }
  11235.  
  11236. /**
  11237. * compute M/S thresholds from Johnston & Ferreira 1992 ICASSP paper
  11238. */
  11239. function msfix1(gfc) {
  11240. for (var sb = 0; sb < Encoder.SBMAX_l; sb++) {
  11241. /* use this fix if L & R masking differs by 2db or less */
  11242. /* if db = 10*log10(x2/x1) < 2 */
  11243. /* if (x2 < 1.58*x1) { */
  11244. if (gfc.thm[0].l[sb] > 1.58 * gfc.thm[1].l[sb]
  11245. || gfc.thm[1].l[sb] > 1.58 * gfc.thm[0].l[sb])
  11246. continue;
  11247. var mld = gfc.mld_l[sb] * gfc.en[3].l[sb];
  11248. var rmid = Math.max(gfc.thm[2].l[sb],
  11249. Math.min(gfc.thm[3].l[sb], mld));
  11250.  
  11251. mld = gfc.mld_l[sb] * gfc.en[2].l[sb];
  11252. var rside = Math.max(gfc.thm[3].l[sb],
  11253. Math.min(gfc.thm[2].l[sb], mld));
  11254. gfc.thm[2].l[sb] = rmid;
  11255. gfc.thm[3].l[sb] = rside;
  11256. }
  11257.  
  11258. for (var sb = 0; sb < Encoder.SBMAX_s; sb++) {
  11259. for (var sblock = 0; sblock < 3; sblock++) {
  11260. if (gfc.thm[0].s[sb][sblock] > 1.58 * gfc.thm[1].s[sb][sblock]
  11261. || gfc.thm[1].s[sb][sblock] > 1.58 * gfc.thm[0].s[sb][sblock])
  11262. continue;
  11263. var mld = gfc.mld_s[sb] * gfc.en[3].s[sb][sblock];
  11264. var rmid = Math.max(gfc.thm[2].s[sb][sblock],
  11265. Math.min(gfc.thm[3].s[sb][sblock], mld));
  11266.  
  11267. mld = gfc.mld_s[sb] * gfc.en[2].s[sb][sblock];
  11268. var rside = Math.max(gfc.thm[3].s[sb][sblock],
  11269. Math.min(gfc.thm[2].s[sb][sblock], mld));
  11270.  
  11271. gfc.thm[2].s[sb][sblock] = rmid;
  11272. gfc.thm[3].s[sb][sblock] = rside;
  11273. }
  11274. }
  11275. }
  11276.  
  11277. /**
  11278. * Adjust M/S maskings if user set "msfix"
  11279. *
  11280. * Naoki Shibata 2000
  11281. */
  11282. function ns_msfix(gfc, msfix, athadjust) {
  11283. var msfix2 = msfix;
  11284. var athlower = Math.pow(10, athadjust);
  11285.  
  11286. msfix *= 2.0;
  11287. msfix2 *= 2.0;
  11288. for (var sb = 0; sb < Encoder.SBMAX_l; sb++) {
  11289. var thmLR, thmM, thmS, ath;
  11290. ath = (gfc.ATH.cb_l[gfc.bm_l[sb]]) * athlower;
  11291. thmLR = Math.min(Math.max(gfc.thm[0].l[sb], ath),
  11292. Math.max(gfc.thm[1].l[sb], ath));
  11293. thmM = Math.max(gfc.thm[2].l[sb], ath);
  11294. thmS = Math.max(gfc.thm[3].l[sb], ath);
  11295. if (thmLR * msfix < thmM + thmS) {
  11296. var f = thmLR * msfix2 / (thmM + thmS);
  11297. thmM *= f;
  11298. thmS *= f;
  11299. }
  11300. gfc.thm[2].l[sb] = Math.min(thmM, gfc.thm[2].l[sb]);
  11301. gfc.thm[3].l[sb] = Math.min(thmS, gfc.thm[3].l[sb]);
  11302. }
  11303.  
  11304. athlower *= ( Encoder.BLKSIZE_s / Encoder.BLKSIZE);
  11305. for (var sb = 0; sb < Encoder.SBMAX_s; sb++) {
  11306. for (var sblock = 0; sblock < 3; sblock++) {
  11307. var thmLR, thmM, thmS, ath;
  11308. ath = (gfc.ATH.cb_s[gfc.bm_s[sb]]) * athlower;
  11309. thmLR = Math.min(Math.max(gfc.thm[0].s[sb][sblock], ath),
  11310. Math.max(gfc.thm[1].s[sb][sblock], ath));
  11311. thmM = Math.max(gfc.thm[2].s[sb][sblock], ath);
  11312. thmS = Math.max(gfc.thm[3].s[sb][sblock], ath);
  11313.  
  11314. if (thmLR * msfix < thmM + thmS) {
  11315. var f = thmLR * msfix / (thmM + thmS);
  11316. thmM *= f;
  11317. thmS *= f;
  11318. }
  11319. gfc.thm[2].s[sb][sblock] = Math.min(gfc.thm[2].s[sb][sblock],
  11320. thmM);
  11321. gfc.thm[3].s[sb][sblock] = Math.min(gfc.thm[3].s[sb][sblock],
  11322. thmS);
  11323. }
  11324. }
  11325. }
  11326.  
  11327. /**
  11328. * short block threshold calculation (part 2)
  11329. *
  11330. * partition band bo_s[sfb] is at the transition from scalefactor band sfb
  11331. * to the next one sfb+1; enn and thmm have to be split between them
  11332. */
  11333. function convert_partition2scalefac_s(gfc, eb, thr, chn, sblock) {
  11334. var sb, b;
  11335. var enn = 0.0;
  11336. var thmm = 0.0;
  11337. for (sb = b = 0; sb < Encoder.SBMAX_s; ++b, ++sb) {
  11338. var bo_s_sb = gfc.bo_s[sb];
  11339. var npart_s = gfc.npart_s;
  11340. var b_lim = bo_s_sb < npart_s ? bo_s_sb : npart_s;
  11341. while (b < b_lim) {
  11342. // iff failed, it may indicate some index error elsewhere
  11343. enn += eb[b];
  11344. thmm += thr[b];
  11345. b++;
  11346. }
  11347. gfc.en[chn].s[sb][sblock] = enn;
  11348. gfc.thm[chn].s[sb][sblock] = thmm;
  11349.  
  11350. if (b >= npart_s) {
  11351. ++sb;
  11352. break;
  11353. }
  11354. // iff failed, it may indicate some index error elsewhere
  11355. {
  11356. /* at transition sfb . sfb+1 */
  11357. var w_curr = gfc.PSY.bo_s_weight[sb];
  11358. var w_next = 1.0 - w_curr;
  11359. enn = w_curr * eb[b];
  11360. thmm = w_curr * thr[b];
  11361. gfc.en[chn].s[sb][sblock] += enn;
  11362. gfc.thm[chn].s[sb][sblock] += thmm;
  11363. enn = w_next * eb[b];
  11364. thmm = w_next * thr[b];
  11365. }
  11366. }
  11367. /* zero initialize the rest */
  11368. for (; sb < Encoder.SBMAX_s; ++sb) {
  11369. gfc.en[chn].s[sb][sblock] = 0;
  11370. gfc.thm[chn].s[sb][sblock] = 0;
  11371. }
  11372. }
  11373.  
  11374. /**
  11375. * longblock threshold calculation (part 2)
  11376. */
  11377. function convert_partition2scalefac_l(gfc, eb, thr, chn) {
  11378. var sb, b;
  11379. var enn = 0.0;
  11380. var thmm = 0.0;
  11381. for (sb = b = 0; sb < Encoder.SBMAX_l; ++b, ++sb) {
  11382. var bo_l_sb = gfc.bo_l[sb];
  11383. var npart_l = gfc.npart_l;
  11384. var b_lim = bo_l_sb < npart_l ? bo_l_sb : npart_l;
  11385. while (b < b_lim) {
  11386. // iff failed, it may indicate some index error elsewhere
  11387. enn += eb[b];
  11388. thmm += thr[b];
  11389. b++;
  11390. }
  11391. gfc.en[chn].l[sb] = enn;
  11392. gfc.thm[chn].l[sb] = thmm;
  11393.  
  11394. if (b >= npart_l) {
  11395. ++sb;
  11396. break;
  11397. }
  11398. {
  11399. /* at transition sfb . sfb+1 */
  11400. var w_curr = gfc.PSY.bo_l_weight[sb];
  11401. var w_next = 1.0 - w_curr;
  11402. enn = w_curr * eb[b];
  11403. thmm = w_curr * thr[b];
  11404. gfc.en[chn].l[sb] += enn;
  11405. gfc.thm[chn].l[sb] += thmm;
  11406. enn = w_next * eb[b];
  11407. thmm = w_next * thr[b];
  11408. }
  11409. }
  11410. /* zero initialize the rest */
  11411. for (; sb < Encoder.SBMAX_l; ++sb) {
  11412. gfc.en[chn].l[sb] = 0;
  11413. gfc.thm[chn].l[sb] = 0;
  11414. }
  11415. }
  11416.  
  11417. function compute_masking_s(gfp, fftenergy_s, eb, thr, chn, sblock) {
  11418. var gfc = gfp.internal_flags;
  11419. var j, b;
  11420.  
  11421. for (b = j = 0; b < gfc.npart_s; ++b) {
  11422. var ebb = 0, m = 0;
  11423. var n = gfc.numlines_s[b];
  11424. for (var i = 0; i < n; ++i, ++j) {
  11425. var el = fftenergy_s[sblock][j];
  11426. ebb += el;
  11427. if (m < el)
  11428. m = el;
  11429. }
  11430. eb[b] = ebb;
  11431. }
  11432. for (j = b = 0; b < gfc.npart_s; b++) {
  11433. var kk = gfc.s3ind_s[b][0];
  11434. var ecb = gfc.s3_ss[j++] * eb[kk];
  11435. ++kk;
  11436. while (kk <= gfc.s3ind_s[b][1]) {
  11437. ecb += gfc.s3_ss[j] * eb[kk];
  11438. ++j;
  11439. ++kk;
  11440. }
  11441.  
  11442. { /* limit calculated threshold by previous granule */
  11443. var x = rpelev_s * gfc.nb_s1[chn][b];
  11444. thr[b] = Math.min(ecb, x);
  11445. }
  11446. if (gfc.blocktype_old[chn & 1] == Encoder.SHORT_TYPE) {
  11447. /* limit calculated threshold by even older granule */
  11448. var x = rpelev2_s * gfc.nb_s2[chn][b];
  11449. var y = thr[b];
  11450. thr[b] = Math.min(x, y);
  11451. }
  11452.  
  11453. gfc.nb_s2[chn][b] = gfc.nb_s1[chn][b];
  11454. gfc.nb_s1[chn][b] = ecb;
  11455. }
  11456. for (; b <= Encoder.CBANDS; ++b) {
  11457. eb[b] = 0;
  11458. thr[b] = 0;
  11459. }
  11460. }
  11461.  
  11462. function block_type_set(gfp, uselongblock, blocktype_d, blocktype) {
  11463. var gfc = gfp.internal_flags;
  11464.  
  11465. if (gfp.short_blocks == ShortBlock.short_block_coupled
  11466. /* force both channels to use the same block type */
  11467. /* this is necessary if the frame is to be encoded in ms_stereo. */
  11468. /* But even without ms_stereo, FhG does this */
  11469. && !(uselongblock[0] != 0 && uselongblock[1] != 0))
  11470. uselongblock[0] = uselongblock[1] = 0;
  11471.  
  11472. /*
  11473. * update the blocktype of the previous granule, since it depends on
  11474. * what happend in this granule
  11475. */
  11476. for (var chn = 0; chn < gfc.channels_out; chn++) {
  11477. blocktype[chn] = Encoder.NORM_TYPE;
  11478. /* disable short blocks */
  11479. if (gfp.short_blocks == ShortBlock.short_block_dispensed)
  11480. uselongblock[chn] = 1;
  11481. if (gfp.short_blocks == ShortBlock.short_block_forced)
  11482. uselongblock[chn] = 0;
  11483.  
  11484. if (uselongblock[chn] != 0) {
  11485. /* no attack : use long blocks */
  11486. if (gfc.blocktype_old[chn] == Encoder.SHORT_TYPE)
  11487. blocktype[chn] = Encoder.STOP_TYPE;
  11488. } else {
  11489. /* attack : use short blocks */
  11490. blocktype[chn] = Encoder.SHORT_TYPE;
  11491. if (gfc.blocktype_old[chn] == Encoder.NORM_TYPE) {
  11492. gfc.blocktype_old[chn] = Encoder.START_TYPE;
  11493. }
  11494. if (gfc.blocktype_old[chn] == Encoder.STOP_TYPE)
  11495. gfc.blocktype_old[chn] = Encoder.SHORT_TYPE;
  11496. }
  11497.  
  11498. blocktype_d[chn] = gfc.blocktype_old[chn];
  11499. // value returned to calling program
  11500. gfc.blocktype_old[chn] = blocktype[chn];
  11501. // save for next call to l3psy_anal
  11502. }
  11503. }
  11504.  
  11505. function NS_INTERP(x, y, r) {
  11506. /* was pow((x),(r))*pow((y),1-(r)) */
  11507. if (r >= 1.0) {
  11508. /* 99.7% of the time */
  11509. return x;
  11510. }
  11511. if (r <= 0.0)
  11512. return y;
  11513. if (y > 0.0) {
  11514. /* rest of the time */
  11515. return (Math.pow(x / y, r) * y);
  11516. }
  11517. /* never happens */
  11518. return 0.0;
  11519. }
  11520.  
  11521. /**
  11522. * these values are tuned only for 44.1kHz...
  11523. */
  11524. var regcoef_s = [11.8, 13.6, 17.2, 32, 46.5,
  11525. 51.3, 57.5, 67.1, 71.5, 84.6, 97.6, 130,
  11526. /* 255.8 */
  11527. ];
  11528.  
  11529. function pecalc_s(mr, masking_lower) {
  11530. var pe_s = 1236.28 / 4;
  11531. for (var sb = 0; sb < Encoder.SBMAX_s - 1; sb++) {
  11532. for (var sblock = 0; sblock < 3; sblock++) {
  11533. var thm = mr.thm.s[sb][sblock];
  11534. if (thm > 0.0) {
  11535. var x = thm * masking_lower;
  11536. var en = mr.en.s[sb][sblock];
  11537. if (en > x) {
  11538. if (en > x * 1e10) {
  11539. pe_s += regcoef_s[sb] * (10.0 * LOG10);
  11540. } else {
  11541. pe_s += regcoef_s[sb] * Util.FAST_LOG10(en / x);
  11542. }
  11543. }
  11544. }
  11545. }
  11546. }
  11547.  
  11548. return pe_s;
  11549. }
  11550.  
  11551. /**
  11552. * these values are tuned only for 44.1kHz...
  11553. */
  11554. var regcoef_l = [6.8, 5.8, 5.8, 6.4, 6.5, 9.9,
  11555. 12.1, 14.4, 15, 18.9, 21.6, 26.9, 34.2, 40.2, 46.8, 56.5,
  11556. 60.7, 73.9, 85.7, 93.4, 126.1,
  11557. /* 241.3 */
  11558. ];
  11559.  
  11560. function pecalc_l(mr, masking_lower) {
  11561. var pe_l = 1124.23 / 4;
  11562. for (var sb = 0; sb < Encoder.SBMAX_l - 1; sb++) {
  11563. var thm = mr.thm.l[sb];
  11564. if (thm > 0.0) {
  11565. var x = thm * masking_lower;
  11566. var en = mr.en.l[sb];
  11567. if (en > x) {
  11568. if (en > x * 1e10) {
  11569. pe_l += regcoef_l[sb] * (10.0 * LOG10);
  11570. } else {
  11571. pe_l += regcoef_l[sb] * Util.FAST_LOG10(en / x);
  11572. }
  11573. }
  11574. }
  11575. }
  11576. return pe_l;
  11577. }
  11578.  
  11579. function calc_energy(gfc, fftenergy, eb, max, avg) {
  11580. var b, j;
  11581.  
  11582. for (b = j = 0; b < gfc.npart_l; ++b) {
  11583. var ebb = 0, m = 0;
  11584. var i;
  11585. for (i = 0; i < gfc.numlines_l[b]; ++i, ++j) {
  11586. var el = fftenergy[j];
  11587. ebb += el;
  11588. if (m < el)
  11589. m = el;
  11590. }
  11591. eb[b] = ebb;
  11592. max[b] = m;
  11593. avg[b] = ebb * gfc.rnumlines_l[b];
  11594. }
  11595. }
  11596.  
  11597. function calc_mask_index_l(gfc, max, avg, mask_idx) {
  11598. var last_tab_entry = tab.length - 1;
  11599. var b = 0;
  11600. var a = avg[b] + avg[b + 1];
  11601. if (a > 0.0) {
  11602. var m = max[b];
  11603. if (m < max[b + 1])
  11604. m = max[b + 1];
  11605. a = 20.0 * (m * 2.0 - a)
  11606. / (a * (gfc.numlines_l[b] + gfc.numlines_l[b + 1] - 1));
  11607. var k = 0 | a;
  11608. if (k > last_tab_entry)
  11609. k = last_tab_entry;
  11610. mask_idx[b] = k;
  11611. } else {
  11612. mask_idx[b] = 0;
  11613. }
  11614.  
  11615. for (b = 1; b < gfc.npart_l - 1; b++) {
  11616. a = avg[b - 1] + avg[b] + avg[b + 1];
  11617. if (a > 0.0) {
  11618. var m = max[b - 1];
  11619. if (m < max[b])
  11620. m = max[b];
  11621. if (m < max[b + 1])
  11622. m = max[b + 1];
  11623. a = 20.0
  11624. * (m * 3.0 - a)
  11625. / (a * (gfc.numlines_l[b - 1] + gfc.numlines_l[b]
  11626. + gfc.numlines_l[b + 1] - 1));
  11627. var k = 0 | a;
  11628. if (k > last_tab_entry)
  11629. k = last_tab_entry;
  11630. mask_idx[b] = k;
  11631. } else {
  11632. mask_idx[b] = 0;
  11633. }
  11634. }
  11635.  
  11636. a = avg[b - 1] + avg[b];
  11637. if (a > 0.0) {
  11638. var m = max[b - 1];
  11639. if (m < max[b])
  11640. m = max[b];
  11641. a = 20.0 * (m * 2.0 - a)
  11642. / (a * (gfc.numlines_l[b - 1] + gfc.numlines_l[b] - 1));
  11643. var k = 0 | a;
  11644. if (k > last_tab_entry)
  11645. k = last_tab_entry;
  11646. mask_idx[b] = k;
  11647. } else {
  11648. mask_idx[b] = 0;
  11649. }
  11650. }
  11651.  
  11652. var fircoef = [
  11653. -8.65163e-18 * 2, -0.00851586 * 2, -6.74764e-18 * 2, 0.0209036 * 2,
  11654. -3.36639e-17 * 2, -0.0438162 * 2, -1.54175e-17 * 2, 0.0931738 * 2,
  11655. -5.52212e-17 * 2, -0.313819 * 2
  11656. ];
  11657.  
  11658. this.L3psycho_anal_ns = function (gfp, buffer, bufPos, gr_out, masking_ratio, masking_MS_ratio, percep_entropy, percep_MS_entropy, energy, blocktype_d) {
  11659. /*
  11660. * to get a good cache performance, one has to think about the sequence,
  11661. * in which the variables are used.
  11662. */
  11663. var gfc = gfp.internal_flags;
  11664.  
  11665. /* fft and energy calculation */
  11666. var wsamp_L = new_float_n([2, Encoder.BLKSIZE]);
  11667. var wsamp_S = new_float_n([2, 3, Encoder.BLKSIZE_s]);
  11668.  
  11669. /* convolution */
  11670. var eb_l = new_float(Encoder.CBANDS + 1);
  11671. var eb_s = new_float(Encoder.CBANDS + 1);
  11672. var thr = new_float(Encoder.CBANDS + 2);
  11673.  
  11674. /* block type */
  11675. var blocktype = new_int(2), uselongblock = new_int(2);
  11676.  
  11677. /* usual variables like loop indices, etc.. */
  11678. var numchn, chn;
  11679. var b, i, j, k;
  11680. var sb, sblock;
  11681.  
  11682. /* variables used for --nspsytune */
  11683. var ns_hpfsmpl = new_float_n([2, 576]);
  11684. var pcfact;
  11685. var mask_idx_l = new_int(Encoder.CBANDS + 2), mask_idx_s = new_int(Encoder.CBANDS + 2);
  11686.  
  11687. Arrays.fill(mask_idx_s, 0);
  11688.  
  11689. numchn = gfc.channels_out;
  11690. /* chn=2 and 3 = Mid and Side channels */
  11691. if (gfp.mode == MPEGMode.JOINT_STEREO)
  11692. numchn = 4;
  11693.  
  11694. if (gfp.VBR == VbrMode.vbr_off)
  11695. pcfact = gfc.ResvMax == 0 ? 0 : ( gfc.ResvSize)
  11696. / gfc.ResvMax * 0.5;
  11697. else if (gfp.VBR == VbrMode.vbr_rh || gfp.VBR == VbrMode.vbr_mtrh
  11698. || gfp.VBR == VbrMode.vbr_mt) {
  11699. pcfact = 0.6;
  11700. } else
  11701. pcfact = 1.0;
  11702.  
  11703. /**********************************************************************
  11704. * Apply HPF of fs/4 to the input signal. This is used for attack
  11705. * detection / handling.
  11706. **********************************************************************/
  11707. /* Don't copy the input buffer into a temporary buffer */
  11708. /* unroll the loop 2 times */
  11709. for (chn = 0; chn < gfc.channels_out; chn++) {
  11710. /* apply high pass filter of fs/4 */
  11711. var firbuf = buffer[chn];
  11712. var firbufPos = bufPos + 576 - 350 - NSFIRLEN + 192;
  11713. for (i = 0; i < 576; i++) {
  11714. var sum1, sum2;
  11715. sum1 = firbuf[firbufPos + i + 10];
  11716. sum2 = 0.0;
  11717. for (j = 0; j < ((NSFIRLEN - 1) / 2) - 1; j += 2) {
  11718. sum1 += fircoef[j]
  11719. * (firbuf[firbufPos + i + j] + firbuf[firbufPos + i
  11720. + NSFIRLEN - j]);
  11721. sum2 += fircoef[j + 1]
  11722. * (firbuf[firbufPos + i + j + 1] + firbuf[firbufPos
  11723. + i + NSFIRLEN - j - 1]);
  11724. }
  11725. ns_hpfsmpl[chn][i] = sum1 + sum2;
  11726. }
  11727. masking_ratio[gr_out][chn].en.assign(gfc.en[chn]);
  11728. masking_ratio[gr_out][chn].thm.assign(gfc.thm[chn]);
  11729. if (numchn > 2) {
  11730. /* MS maskings */
  11731. /* percep_MS_entropy [chn-2] = gfc . pe [chn]; */
  11732. masking_MS_ratio[gr_out][chn].en.assign(gfc.en[chn + 2]);
  11733. masking_MS_ratio[gr_out][chn].thm.assign(gfc.thm[chn + 2]);
  11734. }
  11735. }
  11736.  
  11737. for (chn = 0; chn < numchn; chn++) {
  11738. var wsamp_l;
  11739. var wsamp_s;
  11740. var en_subshort = new_float(12);
  11741. var en_short = [0, 0, 0, 0];
  11742. var attack_intensity = new_float(12);
  11743. var ns_uselongblock = 1;
  11744. var attackThreshold;
  11745. var max = new_float(Encoder.CBANDS), avg = new_float(Encoder.CBANDS);
  11746. var ns_attacks = [0, 0, 0, 0];
  11747. var fftenergy = new_float(Encoder.HBLKSIZE);
  11748. var fftenergy_s = new_float_n([3, Encoder.HBLKSIZE_s]);
  11749.  
  11750. /*
  11751. * rh 20040301: the following loops do access one off the limits so
  11752. * I increase the array dimensions by one and initialize the
  11753. * accessed values to zero
  11754. */
  11755.  
  11756. /***************************************************************
  11757. * determine the block type (window type)
  11758. ***************************************************************/
  11759. /* calculate energies of each sub-shortblocks */
  11760. for (i = 0; i < 3; i++) {
  11761. en_subshort[i] = gfc.nsPsy.last_en_subshort[chn][i + 6];
  11762. attack_intensity[i] = en_subshort[i]
  11763. / gfc.nsPsy.last_en_subshort[chn][i + 4];
  11764. en_short[0] += en_subshort[i];
  11765. }
  11766.  
  11767. if (chn == 2) {
  11768. for (i = 0; i < 576; i++) {
  11769. var l, r;
  11770. l = ns_hpfsmpl[0][i];
  11771. r = ns_hpfsmpl[1][i];
  11772. ns_hpfsmpl[0][i] = l + r;
  11773. ns_hpfsmpl[1][i] = l - r;
  11774. }
  11775. }
  11776. {
  11777. var pf = ns_hpfsmpl[chn & 1];
  11778. var pfPos = 0;
  11779. for (i = 0; i < 9; i++) {
  11780. var pfe = pfPos + 576 / 9;
  11781. var p = 1.;
  11782. for (; pfPos < pfe; pfPos++)
  11783. if (p < Math.abs(pf[pfPos]))
  11784. p = Math.abs(pf[pfPos]);
  11785.  
  11786. gfc.nsPsy.last_en_subshort[chn][i] = en_subshort[i + 3] = p;
  11787. en_short[1 + i / 3] += p;
  11788. if (p > en_subshort[i + 3 - 2]) {
  11789. p = p / en_subshort[i + 3 - 2];
  11790. } else if (en_subshort[i + 3 - 2] > p * 10.0) {
  11791. p = en_subshort[i + 3 - 2] / (p * 10.0);
  11792. } else
  11793. p = 0.0;
  11794. attack_intensity[i + 3] = p;
  11795. }
  11796. }
  11797.  
  11798. if (gfp.analysis) {
  11799. var x = attack_intensity[0];
  11800. for (i = 1; i < 12; i++)
  11801. if (x < attack_intensity[i])
  11802. x = attack_intensity[i];
  11803. gfc.pinfo.ers[gr_out][chn] = gfc.pinfo.ers_save[chn];
  11804. gfc.pinfo.ers_save[chn] = x;
  11805. }
  11806.  
  11807. /* compare energies between sub-shortblocks */
  11808. attackThreshold = (chn == 3) ? gfc.nsPsy.attackthre_s
  11809. : gfc.nsPsy.attackthre;
  11810. for (i = 0; i < 12; i++)
  11811. if (0 == ns_attacks[i / 3]
  11812. && attack_intensity[i] > attackThreshold)
  11813. ns_attacks[i / 3] = (i % 3) + 1;
  11814.  
  11815. /*
  11816. * should have energy change between short blocks, in order to avoid
  11817. * periodic signals
  11818. */
  11819. for (i = 1; i < 4; i++) {
  11820. var ratio;
  11821. if (en_short[i - 1] > en_short[i]) {
  11822. ratio = en_short[i - 1] / en_short[i];
  11823. } else {
  11824. ratio = en_short[i] / en_short[i - 1];
  11825. }
  11826. if (ratio < 1.7) {
  11827. ns_attacks[i] = 0;
  11828. if (i == 1)
  11829. ns_attacks[0] = 0;
  11830. }
  11831. }
  11832.  
  11833. if (ns_attacks[0] != 0 && gfc.nsPsy.lastAttacks[chn] != 0)
  11834. ns_attacks[0] = 0;
  11835.  
  11836. if (gfc.nsPsy.lastAttacks[chn] == 3
  11837. || (ns_attacks[0] + ns_attacks[1] + ns_attacks[2] + ns_attacks[3]) != 0) {
  11838. ns_uselongblock = 0;
  11839.  
  11840. if (ns_attacks[1] != 0 && ns_attacks[0] != 0)
  11841. ns_attacks[1] = 0;
  11842. if (ns_attacks[2] != 0 && ns_attacks[1] != 0)
  11843. ns_attacks[2] = 0;
  11844. if (ns_attacks[3] != 0 && ns_attacks[2] != 0)
  11845. ns_attacks[3] = 0;
  11846. }
  11847.  
  11848. if (chn < 2) {
  11849. uselongblock[chn] = ns_uselongblock;
  11850. } else {
  11851. if (ns_uselongblock == 0) {
  11852. uselongblock[0] = uselongblock[1] = 0;
  11853. }
  11854. }
  11855.  
  11856. /*
  11857. * there is a one granule delay. Copy maskings computed last call
  11858. * into masking_ratio to return to calling program.
  11859. */
  11860. energy[chn] = gfc.tot_ener[chn];
  11861.  
  11862. /*********************************************************************
  11863. * compute FFTs
  11864. *********************************************************************/
  11865. wsamp_s = wsamp_S;
  11866. wsamp_l = wsamp_L;
  11867. compute_ffts(gfp, fftenergy, fftenergy_s, wsamp_l, (chn & 1),
  11868. wsamp_s, (chn & 1), gr_out, chn, buffer, bufPos);
  11869.  
  11870. /*********************************************************************
  11871. * Calculate the energy and the tonality of each partition.
  11872. *********************************************************************/
  11873. calc_energy(gfc, fftenergy, eb_l, max, avg);
  11874. calc_mask_index_l(gfc, max, avg, mask_idx_l);
  11875. /* compute masking thresholds for short blocks */
  11876. for (sblock = 0; sblock < 3; sblock++) {
  11877. var enn, thmm;
  11878. compute_masking_s(gfp, fftenergy_s, eb_s, thr, chn, sblock);
  11879. convert_partition2scalefac_s(gfc, eb_s, thr, chn, sblock);
  11880. /**** short block pre-echo control ****/
  11881. for (sb = 0; sb < Encoder.SBMAX_s; sb++) {
  11882. thmm = gfc.thm[chn].s[sb][sblock];
  11883.  
  11884. thmm *= NS_PREECHO_ATT0;
  11885. if (ns_attacks[sblock] >= 2 || ns_attacks[sblock + 1] == 1) {
  11886. var idx = (sblock != 0) ? sblock - 1 : 2;
  11887. var p = NS_INTERP(gfc.thm[chn].s[sb][idx], thmm,
  11888. NS_PREECHO_ATT1 * pcfact);
  11889. thmm = Math.min(thmm, p);
  11890. }
  11891.  
  11892. if (ns_attacks[sblock] == 1) {
  11893. var idx = (sblock != 0) ? sblock - 1 : 2;
  11894. var p = NS_INTERP(gfc.thm[chn].s[sb][idx], thmm,
  11895. NS_PREECHO_ATT2 * pcfact);
  11896. thmm = Math.min(thmm, p);
  11897. } else if ((sblock != 0 && ns_attacks[sblock - 1] == 3)
  11898. || (sblock == 0 && gfc.nsPsy.lastAttacks[chn] == 3)) {
  11899. var idx = (sblock != 2) ? sblock + 1 : 0;
  11900. var p = NS_INTERP(gfc.thm[chn].s[sb][idx], thmm,
  11901. NS_PREECHO_ATT2 * pcfact);
  11902. thmm = Math.min(thmm, p);
  11903. }
  11904.  
  11905. /* pulse like signal detection for fatboy.wav and so on */
  11906. enn = en_subshort[sblock * 3 + 3]
  11907. + en_subshort[sblock * 3 + 4]
  11908. + en_subshort[sblock * 3 + 5];
  11909. if (en_subshort[sblock * 3 + 5] * 6 < enn) {
  11910. thmm *= 0.5;
  11911. if (en_subshort[sblock * 3 + 4] * 6 < enn)
  11912. thmm *= 0.5;
  11913. }
  11914.  
  11915. gfc.thm[chn].s[sb][sblock] = thmm;
  11916. }
  11917. }
  11918. gfc.nsPsy.lastAttacks[chn] = ns_attacks[2];
  11919.  
  11920. /*********************************************************************
  11921. * convolve the partitioned energy and unpredictability with the
  11922. * spreading function, s3_l[b][k]
  11923. ********************************************************************/
  11924. k = 0;
  11925. {
  11926. for (b = 0; b < gfc.npart_l; b++) {
  11927. /*
  11928. * convolve the partitioned energy with the spreading
  11929. * function
  11930. */
  11931. var kk = gfc.s3ind[b][0];
  11932. var eb2 = eb_l[kk] * tab[mask_idx_l[kk]];
  11933. var ecb = gfc.s3_ll[k++] * eb2;
  11934. while (++kk <= gfc.s3ind[b][1]) {
  11935. eb2 = eb_l[kk] * tab[mask_idx_l[kk]];
  11936. ecb = mask_add(ecb, gfc.s3_ll[k++] * eb2, kk, kk - b,
  11937. gfc, 0);
  11938. }
  11939. ecb *= 0.158489319246111;
  11940. /* pow(10,-0.8) */
  11941.  
  11942. /**** long block pre-echo control ****/
  11943. /**
  11944. * <PRE>
  11945. * dont use long block pre-echo control if previous granule was
  11946. * a short block. This is to avoid the situation:
  11947. * frame0: quiet (very low masking)
  11948. * frame1: surge (triggers short blocks)
  11949. * frame2: regular frame. looks like pre-echo when compared to
  11950. * frame0, but all pre-echo was in frame1.
  11951. * </PRE>
  11952. */
  11953. /*
  11954. * chn=0,1 L and R channels
  11955. *
  11956. * chn=2,3 S and M channels.
  11957. */
  11958.  
  11959. if (gfc.blocktype_old[chn & 1] == Encoder.SHORT_TYPE)
  11960. thr[b] = ecb;
  11961. else
  11962. thr[b] = NS_INTERP(
  11963. Math.min(ecb, Math.min(rpelev
  11964. * gfc.nb_1[chn][b], rpelev2
  11965. * gfc.nb_2[chn][b])), ecb, pcfact);
  11966.  
  11967. gfc.nb_2[chn][b] = gfc.nb_1[chn][b];
  11968. gfc.nb_1[chn][b] = ecb;
  11969. }
  11970. }
  11971. for (; b <= Encoder.CBANDS; ++b) {
  11972. eb_l[b] = 0;
  11973. thr[b] = 0;
  11974. }
  11975. /* compute masking thresholds for long blocks */
  11976. convert_partition2scalefac_l(gfc, eb_l, thr, chn);
  11977. }
  11978. /* end loop over chn */
  11979.  
  11980. if (gfp.mode == MPEGMode.STEREO || gfp.mode == MPEGMode.JOINT_STEREO) {
  11981. if (gfp.interChRatio > 0.0) {
  11982. calc_interchannel_masking(gfp, gfp.interChRatio);
  11983. }
  11984. }
  11985.  
  11986. if (gfp.mode == MPEGMode.JOINT_STEREO) {
  11987. var msfix;
  11988. msfix1(gfc);
  11989. msfix = gfp.msfix;
  11990. if (Math.abs(msfix) > 0.0)
  11991. ns_msfix(gfc, msfix, gfp.ATHlower * gfc.ATH.adjust);
  11992. }
  11993.  
  11994. /***************************************************************
  11995. * determine final block type
  11996. ***************************************************************/
  11997. block_type_set(gfp, uselongblock, blocktype_d, blocktype);
  11998.  
  11999. /*********************************************************************
  12000. * compute the value of PE to return ... no delay and advance
  12001. *********************************************************************/
  12002. for (chn = 0; chn < numchn; chn++) {
  12003. var ppe;
  12004. var ppePos = 0;
  12005. var type;
  12006. var mr;
  12007.  
  12008. if (chn > 1) {
  12009. ppe = percep_MS_entropy;
  12010. ppePos = -2;
  12011. type = Encoder.NORM_TYPE;
  12012. if (blocktype_d[0] == Encoder.SHORT_TYPE
  12013. || blocktype_d[1] == Encoder.SHORT_TYPE)
  12014. type = Encoder.SHORT_TYPE;
  12015. mr = masking_MS_ratio[gr_out][chn - 2];
  12016. } else {
  12017. ppe = percep_entropy;
  12018. ppePos = 0;
  12019. type = blocktype_d[chn];
  12020. mr = masking_ratio[gr_out][chn];
  12021. }
  12022.  
  12023. if (type == Encoder.SHORT_TYPE)
  12024. ppe[ppePos + chn] = pecalc_s(mr, gfc.masking_lower);
  12025. else
  12026. ppe[ppePos + chn] = pecalc_l(mr, gfc.masking_lower);
  12027.  
  12028. if (gfp.analysis)
  12029. gfc.pinfo.pe[gr_out][chn] = ppe[ppePos + chn];
  12030.  
  12031. }
  12032. return 0;
  12033. }
  12034.  
  12035. function vbrpsy_compute_fft_l(gfp, buffer, bufPos, chn, gr_out, fftenergy, wsamp_l, wsamp_lPos) {
  12036. var gfc = gfp.internal_flags;
  12037. if (chn < 2) {
  12038. fft.fft_long(gfc, wsamp_l[wsamp_lPos], chn, buffer, bufPos);
  12039. } else if (chn == 2) {
  12040. /* FFT data for mid and side channel is derived from L & R */
  12041. for (var j = Encoder.BLKSIZE - 1; j >= 0; --j) {
  12042. var l = wsamp_l[wsamp_lPos + 0][j];
  12043. var r = wsamp_l[wsamp_lPos + 1][j];
  12044. wsamp_l[wsamp_lPos + 0][j] = (l + r) * Util.SQRT2 * 0.5;
  12045. wsamp_l[wsamp_lPos + 1][j] = (l - r) * Util.SQRT2 * 0.5;
  12046. }
  12047. }
  12048.  
  12049. /*********************************************************************
  12050. * compute energies
  12051. *********************************************************************/
  12052. fftenergy[0] = NON_LINEAR_SCALE_ENERGY(wsamp_l[wsamp_lPos + 0][0]);
  12053. fftenergy[0] *= fftenergy[0];
  12054.  
  12055. for (var j = Encoder.BLKSIZE / 2 - 1; j >= 0; --j) {
  12056. var re = wsamp_l[wsamp_lPos + 0][Encoder.BLKSIZE / 2 - j];
  12057. var im = wsamp_l[wsamp_lPos + 0][Encoder.BLKSIZE / 2 + j];
  12058. fftenergy[Encoder.BLKSIZE / 2 - j] = NON_LINEAR_SCALE_ENERGY((re
  12059. * re + im * im) * 0.5);
  12060. }
  12061. /* total energy */
  12062. {
  12063. var totalenergy = 0.0;
  12064. for (var j = 11; j < Encoder.HBLKSIZE; j++)
  12065. totalenergy += fftenergy[j];
  12066.  
  12067. gfc.tot_ener[chn] = totalenergy;
  12068. }
  12069.  
  12070. if (gfp.analysis) {
  12071. for (var j = 0; j < Encoder.HBLKSIZE; j++) {
  12072. gfc.pinfo.energy[gr_out][chn][j] = gfc.pinfo.energy_save[chn][j];
  12073. gfc.pinfo.energy_save[chn][j] = fftenergy[j];
  12074. }
  12075. gfc.pinfo.pe[gr_out][chn] = gfc.pe[chn];
  12076. }
  12077. }
  12078.  
  12079. function vbrpsy_compute_fft_s(gfp, buffer, bufPos, chn, sblock, fftenergy_s, wsamp_s, wsamp_sPos) {
  12080. var gfc = gfp.internal_flags;
  12081.  
  12082. if (sblock == 0 && chn < 2) {
  12083. fft.fft_short(gfc, wsamp_s[wsamp_sPos], chn, buffer, bufPos);
  12084. }
  12085. if (chn == 2) {
  12086. /* FFT data for mid and side channel is derived from L & R */
  12087. for (var j = Encoder.BLKSIZE_s - 1; j >= 0; --j) {
  12088. var l = wsamp_s[wsamp_sPos + 0][sblock][j];
  12089. var r = wsamp_s[wsamp_sPos + 1][sblock][j];
  12090. wsamp_s[wsamp_sPos + 0][sblock][j] = (l + r) * Util.SQRT2 * 0.5;
  12091. wsamp_s[wsamp_sPos + 1][sblock][j] = (l - r) * Util.SQRT2 * 0.5;
  12092. }
  12093. }
  12094.  
  12095. /*********************************************************************
  12096. * compute energies
  12097. *********************************************************************/
  12098. fftenergy_s[sblock][0] = wsamp_s[wsamp_sPos + 0][sblock][0];
  12099. fftenergy_s[sblock][0] *= fftenergy_s[sblock][0];
  12100. for (var j = Encoder.BLKSIZE_s / 2 - 1; j >= 0; --j) {
  12101. var re = wsamp_s[wsamp_sPos + 0][sblock][Encoder.BLKSIZE_s / 2 - j];
  12102. var im = wsamp_s[wsamp_sPos + 0][sblock][Encoder.BLKSIZE_s / 2 + j];
  12103. fftenergy_s[sblock][Encoder.BLKSIZE_s / 2 - j] = NON_LINEAR_SCALE_ENERGY((re
  12104. * re + im * im) * 0.5);
  12105. }
  12106. }
  12107.  
  12108. /**
  12109. * compute loudness approximation (used for ATH auto-level adjustment)
  12110. */
  12111. function vbrpsy_compute_loudness_approximation_l(gfp, gr_out, chn, fftenergy) {
  12112. var gfc = gfp.internal_flags;
  12113. if (gfp.athaa_loudapprox == 2 && chn < 2) {
  12114. // no loudness for mid/side ch
  12115. gfc.loudness_sq[gr_out][chn] = gfc.loudness_sq_save[chn];
  12116. gfc.loudness_sq_save[chn] = psycho_loudness_approx(fftenergy, gfc);
  12117. }
  12118. }
  12119.  
  12120. var fircoef_ = [-8.65163e-18 * 2,
  12121. -0.00851586 * 2, -6.74764e-18 * 2, 0.0209036 * 2,
  12122. -3.36639e-17 * 2, -0.0438162 * 2, -1.54175e-17 * 2,
  12123. 0.0931738 * 2, -5.52212e-17 * 2, -0.313819 * 2];
  12124.  
  12125. /**
  12126. * Apply HPF of fs/4 to the input signal. This is used for attack detection
  12127. * / handling.
  12128. */
  12129. function vbrpsy_attack_detection(gfp, buffer, bufPos, gr_out, masking_ratio, masking_MS_ratio, energy, sub_short_factor, ns_attacks, uselongblock) {
  12130. var ns_hpfsmpl = new_float_n([2, 576]);
  12131. var gfc = gfp.internal_flags;
  12132. var n_chn_out = gfc.channels_out;
  12133. /* chn=2 and 3 = Mid and Side channels */
  12134. var n_chn_psy = (gfp.mode == MPEGMode.JOINT_STEREO) ? 4 : n_chn_out;
  12135. /* Don't copy the input buffer into a temporary buffer */
  12136. /* unroll the loop 2 times */
  12137. for (var chn = 0; chn < n_chn_out; chn++) {
  12138. /* apply high pass filter of fs/4 */
  12139. firbuf = buffer[chn];
  12140. var firbufPos = bufPos + 576 - 350 - NSFIRLEN + 192;
  12141. for (var i = 0; i < 576; i++) {
  12142. var sum1, sum2;
  12143. sum1 = firbuf[firbufPos + i + 10];
  12144. sum2 = 0.0;
  12145. for (var j = 0; j < ((NSFIRLEN - 1) / 2) - 1; j += 2) {
  12146. sum1 += fircoef_[j]
  12147. * (firbuf[firbufPos + i + j] + firbuf[firbufPos + i
  12148. + NSFIRLEN - j]);
  12149. sum2 += fircoef_[j + 1]
  12150. * (firbuf[firbufPos + i + j + 1] + firbuf[firbufPos
  12151. + i + NSFIRLEN - j - 1]);
  12152. }
  12153. ns_hpfsmpl[chn][i] = sum1 + sum2;
  12154. }
  12155. masking_ratio[gr_out][chn].en.assign(gfc.en[chn]);
  12156. masking_ratio[gr_out][chn].thm.assign(gfc.thm[chn]);
  12157. if (n_chn_psy > 2) {
  12158. /* MS maskings */
  12159. /* percep_MS_entropy [chn-2] = gfc . pe [chn]; */
  12160. masking_MS_ratio[gr_out][chn].en.assign(gfc.en[chn + 2]);
  12161. masking_MS_ratio[gr_out][chn].thm.assign(gfc.thm[chn + 2]);
  12162. }
  12163. }
  12164. for (var chn = 0; chn < n_chn_psy; chn++) {
  12165. var attack_intensity = new_float(12);
  12166. var en_subshort = new_float(12);
  12167. var en_short = [0, 0, 0, 0];
  12168. var pf = ns_hpfsmpl[chn & 1];
  12169. var pfPos = 0;
  12170. var attackThreshold = (chn == 3) ? gfc.nsPsy.attackthre_s
  12171. : gfc.nsPsy.attackthre;
  12172. var ns_uselongblock = 1;
  12173.  
  12174. if (chn == 2) {
  12175. for (var i = 0, j = 576; j > 0; ++i, --j) {
  12176. var l = ns_hpfsmpl[0][i];
  12177. var r = ns_hpfsmpl[1][i];
  12178. ns_hpfsmpl[0][i] = l + r;
  12179. ns_hpfsmpl[1][i] = l - r;
  12180. }
  12181. }
  12182. /***************************************************************
  12183. * determine the block type (window type)
  12184. ***************************************************************/
  12185. /* calculate energies of each sub-shortblocks */
  12186. for (var i = 0; i < 3; i++) {
  12187. en_subshort[i] = gfc.nsPsy.last_en_subshort[chn][i + 6];
  12188. attack_intensity[i] = en_subshort[i]
  12189. / gfc.nsPsy.last_en_subshort[chn][i + 4];
  12190. en_short[0] += en_subshort[i];
  12191. }
  12192.  
  12193. for (var i = 0; i < 9; i++) {
  12194. var pfe = pfPos + 576 / 9;
  12195. var p = 1.;
  12196. for (; pfPos < pfe; pfPos++)
  12197. if (p < Math.abs(pf[pfPos]))
  12198. p = Math.abs(pf[pfPos]);
  12199.  
  12200. gfc.nsPsy.last_en_subshort[chn][i] = en_subshort[i + 3] = p;
  12201. en_short[1 + i / 3] += p;
  12202. if (p > en_subshort[i + 3 - 2]) {
  12203. p = p / en_subshort[i + 3 - 2];
  12204. } else if (en_subshort[i + 3 - 2] > p * 10.0) {
  12205. p = en_subshort[i + 3 - 2] / (p * 10.0);
  12206. } else {
  12207. p = 0.0;
  12208. }
  12209. attack_intensity[i + 3] = p;
  12210. }
  12211. /* pulse like signal detection for fatboy.wav and so on */
  12212. for (var i = 0; i < 3; ++i) {
  12213. var enn = en_subshort[i * 3 + 3]
  12214. + en_subshort[i * 3 + 4] + en_subshort[i * 3 + 5];
  12215. var factor = 1.;
  12216. if (en_subshort[i * 3 + 5] * 6 < enn) {
  12217. factor *= 0.5;
  12218. if (en_subshort[i * 3 + 4] * 6 < enn) {
  12219. factor *= 0.5;
  12220. }
  12221. }
  12222. sub_short_factor[chn][i] = factor;
  12223. }
  12224.  
  12225. if (gfp.analysis) {
  12226. var x = attack_intensity[0];
  12227. for (var i = 1; i < 12; i++) {
  12228. if (x < attack_intensity[i]) {
  12229. x = attack_intensity[i];
  12230. }
  12231. }
  12232. gfc.pinfo.ers[gr_out][chn] = gfc.pinfo.ers_save[chn];
  12233. gfc.pinfo.ers_save[chn] = x;
  12234. }
  12235.  
  12236. /* compare energies between sub-shortblocks */
  12237. for (var i = 0; i < 12; i++) {
  12238. if (0 == ns_attacks[chn][i / 3]
  12239. && attack_intensity[i] > attackThreshold) {
  12240. ns_attacks[chn][i / 3] = (i % 3) + 1;
  12241. }
  12242. }
  12243.  
  12244. /*
  12245. * should have energy change between short blocks, in order to avoid
  12246. * periodic signals
  12247. */
  12248. /* Good samples to show the effect are Trumpet test songs */
  12249. /*
  12250. * GB: tuned (1) to avoid too many short blocks for test sample
  12251. * TRUMPET
  12252. */
  12253. /*
  12254. * RH: tuned (2) to let enough short blocks through for test sample
  12255. * FSOL and SNAPS
  12256. */
  12257. for (var i = 1; i < 4; i++) {
  12258. var u = en_short[i - 1];
  12259. var v = en_short[i];
  12260. var m = Math.max(u, v);
  12261. if (m < 40000) { /* (2) */
  12262. if (u < 1.7 * v && v < 1.7 * u) { /* (1) */
  12263. if (i == 1 && ns_attacks[chn][0] <= ns_attacks[chn][i]) {
  12264. ns_attacks[chn][0] = 0;
  12265. }
  12266. ns_attacks[chn][i] = 0;
  12267. }
  12268. }
  12269. }
  12270.  
  12271. if (ns_attacks[chn][0] <= gfc.nsPsy.lastAttacks[chn]) {
  12272. ns_attacks[chn][0] = 0;
  12273. }
  12274.  
  12275. if (gfc.nsPsy.lastAttacks[chn] == 3
  12276. || (ns_attacks[chn][0] + ns_attacks[chn][1]
  12277. + ns_attacks[chn][2] + ns_attacks[chn][3]) != 0) {
  12278. ns_uselongblock = 0;
  12279.  
  12280. if (ns_attacks[chn][1] != 0 && ns_attacks[chn][0] != 0) {
  12281. ns_attacks[chn][1] = 0;
  12282. }
  12283. if (ns_attacks[chn][2] != 0 && ns_attacks[chn][1] != 0) {
  12284. ns_attacks[chn][2] = 0;
  12285. }
  12286. if (ns_attacks[chn][3] != 0 && ns_attacks[chn][2] != 0) {
  12287. ns_attacks[chn][3] = 0;
  12288. }
  12289. }
  12290. if (chn < 2) {
  12291. uselongblock[chn] = ns_uselongblock;
  12292. } else {
  12293. if (ns_uselongblock == 0) {
  12294. uselongblock[0] = uselongblock[1] = 0;
  12295. }
  12296. }
  12297.  
  12298. /*
  12299. * there is a one granule delay. Copy maskings computed last call
  12300. * into masking_ratio to return to calling program.
  12301. */
  12302. energy[chn] = gfc.tot_ener[chn];
  12303. }
  12304. }
  12305.  
  12306. function vbrpsy_skip_masking_s(gfc, chn, sblock) {
  12307. if (sblock == 0) {
  12308. for (var b = 0; b < gfc.npart_s; b++) {
  12309. gfc.nb_s2[chn][b] = gfc.nb_s1[chn][b];
  12310. gfc.nb_s1[chn][b] = 0;
  12311. }
  12312. }
  12313. }
  12314.  
  12315. function vbrpsy_skip_masking_l(gfc, chn) {
  12316. for (var b = 0; b < gfc.npart_l; b++) {
  12317. gfc.nb_2[chn][b] = gfc.nb_1[chn][b];
  12318. gfc.nb_1[chn][b] = 0;
  12319. }
  12320. }
  12321.  
  12322. function psyvbr_calc_mask_index_s(gfc, max, avg, mask_idx) {
  12323. var last_tab_entry = tab.length - 1;
  12324. var b = 0;
  12325. var a = avg[b] + avg[b + 1];
  12326. if (a > 0.0) {
  12327. var m = max[b];
  12328. if (m < max[b + 1])
  12329. m = max[b + 1];
  12330. a = 20.0 * (m * 2.0 - a)
  12331. / (a * (gfc.numlines_s[b] + gfc.numlines_s[b + 1] - 1));
  12332. var k = 0 | a;
  12333. if (k > last_tab_entry)
  12334. k = last_tab_entry;
  12335. mask_idx[b] = k;
  12336. } else {
  12337. mask_idx[b] = 0;
  12338. }
  12339.  
  12340. for (b = 1; b < gfc.npart_s - 1; b++) {
  12341. a = avg[b - 1] + avg[b] + avg[b + 1];
  12342. if (a > 0.0) {
  12343. var m = max[b - 1];
  12344. if (m < max[b])
  12345. m = max[b];
  12346. if (m < max[b + 1])
  12347. m = max[b + 1];
  12348. a = 20.0
  12349. * (m * 3.0 - a)
  12350. / (a * (gfc.numlines_s[b - 1] + gfc.numlines_s[b]
  12351. + gfc.numlines_s[b + 1] - 1));
  12352. var k = 0 | a;
  12353. if (k > last_tab_entry)
  12354. k = last_tab_entry;
  12355. mask_idx[b] = k;
  12356. } else {
  12357. mask_idx[b] = 0;
  12358. }
  12359. }
  12360.  
  12361. a = avg[b - 1] + avg[b];
  12362. if (a > 0.0) {
  12363. var m = max[b - 1];
  12364. if (m < max[b])
  12365. m = max[b];
  12366. a = 20.0 * (m * 2.0 - a)
  12367. / (a * (gfc.numlines_s[b - 1] + gfc.numlines_s[b] - 1));
  12368. var k = 0 | a;
  12369. if (k > last_tab_entry)
  12370. k = last_tab_entry;
  12371. mask_idx[b] = k;
  12372. } else {
  12373. mask_idx[b] = 0;
  12374. }
  12375. }
  12376.  
  12377. function vbrpsy_compute_masking_s(gfp, fftenergy_s, eb, thr, chn, sblock) {
  12378. var gfc = gfp.internal_flags;
  12379. var max = new float[Encoder.CBANDS], avg = new_float(Encoder.CBANDS);
  12380. var i, j, b;
  12381. var mask_idx_s = new int[Encoder.CBANDS];
  12382.  
  12383. for (b = j = 0; b < gfc.npart_s; ++b) {
  12384. var ebb = 0, m = 0;
  12385. var n = gfc.numlines_s[b];
  12386. for (i = 0; i < n; ++i, ++j) {
  12387. var el = fftenergy_s[sblock][j];
  12388. ebb += el;
  12389. if (m < el)
  12390. m = el;
  12391. }
  12392. eb[b] = ebb;
  12393. max[b] = m;
  12394. avg[b] = ebb / n;
  12395. }
  12396. for (; b < Encoder.CBANDS; ++b) {
  12397. max[b] = 0;
  12398. avg[b] = 0;
  12399. }
  12400. psyvbr_calc_mask_index_s(gfc, max, avg, mask_idx_s);
  12401. for (j = b = 0; b < gfc.npart_s; b++) {
  12402. var kk = gfc.s3ind_s[b][0];
  12403. var last = gfc.s3ind_s[b][1];
  12404. var dd, dd_n;
  12405. var x, ecb, avg_mask;
  12406. dd = mask_idx_s[kk];
  12407. dd_n = 1;
  12408. ecb = gfc.s3_ss[j] * eb[kk] * tab[mask_idx_s[kk]];
  12409. ++j;
  12410. ++kk;
  12411. while (kk <= last) {
  12412. dd += mask_idx_s[kk];
  12413. dd_n += 1;
  12414. x = gfc.s3_ss[j] * eb[kk] * tab[mask_idx_s[kk]];
  12415. ecb = vbrpsy_mask_add(ecb, x, kk - b);
  12416. ++j;
  12417. ++kk;
  12418. }
  12419. dd = (1 + 2 * dd) / (2 * dd_n);
  12420. avg_mask = tab[dd] * 0.5;
  12421. ecb *= avg_mask;
  12422. thr[b] = ecb;
  12423. gfc.nb_s2[chn][b] = gfc.nb_s1[chn][b];
  12424. gfc.nb_s1[chn][b] = ecb;
  12425. {
  12426. /*
  12427. * if THR exceeds EB, the quantization routines will take the
  12428. * difference from other bands. in case of strong tonal samples
  12429. * (tonaltest.wav) this leads to heavy distortions. that's why
  12430. * we limit THR here.
  12431. */
  12432. x = max[b];
  12433. x *= gfc.minval_s[b];
  12434. x *= avg_mask;
  12435. if (thr[b] > x) {
  12436. thr[b] = x;
  12437. }
  12438. }
  12439. if (gfc.masking_lower > 1) {
  12440. thr[b] *= gfc.masking_lower;
  12441. }
  12442. if (thr[b] > eb[b]) {
  12443. thr[b] = eb[b];
  12444. }
  12445. if (gfc.masking_lower < 1) {
  12446. thr[b] *= gfc.masking_lower;
  12447. }
  12448.  
  12449. }
  12450. for (; b < Encoder.CBANDS; ++b) {
  12451. eb[b] = 0;
  12452. thr[b] = 0;
  12453. }
  12454. }
  12455.  
  12456. function vbrpsy_compute_masking_l(gfc, fftenergy, eb_l, thr, chn) {
  12457. var max = new_float(Encoder.CBANDS), avg = new_float(Encoder.CBANDS);
  12458. var mask_idx_l = new_int(Encoder.CBANDS + 2);
  12459. var b;
  12460.  
  12461. /*********************************************************************
  12462. * Calculate the energy and the tonality of each partition.
  12463. *********************************************************************/
  12464. calc_energy(gfc, fftenergy, eb_l, max, avg);
  12465. calc_mask_index_l(gfc, max, avg, mask_idx_l);
  12466.  
  12467. /*********************************************************************
  12468. * convolve the partitioned energy and unpredictability with the
  12469. * spreading function, s3_l[b][k]
  12470. ********************************************************************/
  12471. var k = 0;
  12472. for (b = 0; b < gfc.npart_l; b++) {
  12473. var x, ecb, avg_mask, t;
  12474. /* convolve the partitioned energy with the spreading function */
  12475. var kk = gfc.s3ind[b][0];
  12476. var last = gfc.s3ind[b][1];
  12477. var dd = 0, dd_n = 0;
  12478. dd = mask_idx_l[kk];
  12479. dd_n += 1;
  12480. ecb = gfc.s3_ll[k] * eb_l[kk] * tab[mask_idx_l[kk]];
  12481. ++k;
  12482. ++kk;
  12483. while (kk <= last) {
  12484. dd += mask_idx_l[kk];
  12485. dd_n += 1;
  12486. x = gfc.s3_ll[k] * eb_l[kk] * tab[mask_idx_l[kk]];
  12487. t = vbrpsy_mask_add(ecb, x, kk - b);
  12488. ecb = t;
  12489. ++k;
  12490. ++kk;
  12491. }
  12492. dd = (1 + 2 * dd) / (2 * dd_n);
  12493. avg_mask = tab[dd] * 0.5;
  12494. ecb *= avg_mask;
  12495.  
  12496. /**** long block pre-echo control ****/
  12497. /**
  12498. * <PRE>
  12499. * dont use long block pre-echo control if previous granule was
  12500. * a short block. This is to avoid the situation:
  12501. * frame0: quiet (very low masking)
  12502. * frame1: surge (triggers short blocks)
  12503. * frame2: regular frame. looks like pre-echo when compared to
  12504. * frame0, but all pre-echo was in frame1.
  12505. * </PRE>
  12506. */
  12507. /*
  12508. * chn=0,1 L and R channels chn=2,3 S and M channels.
  12509. */
  12510. if (gfc.blocktype_old[chn & 0x01] == Encoder.SHORT_TYPE) {
  12511. var ecb_limit = rpelev * gfc.nb_1[chn][b];
  12512. if (ecb_limit > 0) {
  12513. thr[b] = Math.min(ecb, ecb_limit);
  12514. } else {
  12515. /**
  12516. * <PRE>
  12517. * Robert 071209:
  12518. * Because we don't calculate long block psy when we know a granule
  12519. * should be of short blocks, we don't have any clue how the granule
  12520. * before would have looked like as a long block. So we have to guess
  12521. * a little bit for this END_TYPE block.
  12522. * Most of the time we get away with this sloppyness. (fingers crossed :)
  12523. * The speed increase is worth it.
  12524. * </PRE>
  12525. */
  12526. thr[b] = Math.min(ecb, eb_l[b] * NS_PREECHO_ATT2);
  12527. }
  12528. } else {
  12529. var ecb_limit_2 = rpelev2 * gfc.nb_2[chn][b];
  12530. var ecb_limit_1 = rpelev * gfc.nb_1[chn][b];
  12531. var ecb_limit;
  12532. if (ecb_limit_2 <= 0) {
  12533. ecb_limit_2 = ecb;
  12534. }
  12535. if (ecb_limit_1 <= 0) {
  12536. ecb_limit_1 = ecb;
  12537. }
  12538. if (gfc.blocktype_old[chn & 0x01] == Encoder.NORM_TYPE) {
  12539. ecb_limit = Math.min(ecb_limit_1, ecb_limit_2);
  12540. } else {
  12541. ecb_limit = ecb_limit_1;
  12542. }
  12543. thr[b] = Math.min(ecb, ecb_limit);
  12544. }
  12545. gfc.nb_2[chn][b] = gfc.nb_1[chn][b];
  12546. gfc.nb_1[chn][b] = ecb;
  12547. {
  12548. /*
  12549. * if THR exceeds EB, the quantization routines will take the
  12550. * difference from other bands. in case of strong tonal samples
  12551. * (tonaltest.wav) this leads to heavy distortions. that's why
  12552. * we limit THR here.
  12553. */
  12554. x = max[b];
  12555. x *= gfc.minval_l[b];
  12556. x *= avg_mask;
  12557. if (thr[b] > x) {
  12558. thr[b] = x;
  12559. }
  12560. }
  12561. if (gfc.masking_lower > 1) {
  12562. thr[b] *= gfc.masking_lower;
  12563. }
  12564. if (thr[b] > eb_l[b]) {
  12565. thr[b] = eb_l[b];
  12566. }
  12567. if (gfc.masking_lower < 1) {
  12568. thr[b] *= gfc.masking_lower;
  12569. }
  12570. }
  12571. for (; b < Encoder.CBANDS; ++b) {
  12572. eb_l[b] = 0;
  12573. thr[b] = 0;
  12574. }
  12575. }
  12576.  
  12577. function vbrpsy_compute_block_type(gfp, uselongblock) {
  12578. var gfc = gfp.internal_flags;
  12579.  
  12580. if (gfp.short_blocks == ShortBlock.short_block_coupled
  12581. /* force both channels to use the same block type */
  12582. /* this is necessary if the frame is to be encoded in ms_stereo. */
  12583. /* But even without ms_stereo, FhG does this */
  12584. && !(uselongblock[0] != 0 && uselongblock[1] != 0))
  12585. uselongblock[0] = uselongblock[1] = 0;
  12586.  
  12587. for (var chn = 0; chn < gfc.channels_out; chn++) {
  12588. /* disable short blocks */
  12589. if (gfp.short_blocks == ShortBlock.short_block_dispensed) {
  12590. uselongblock[chn] = 1;
  12591. }
  12592. if (gfp.short_blocks == ShortBlock.short_block_forced) {
  12593. uselongblock[chn] = 0;
  12594. }
  12595. }
  12596. }
  12597.  
  12598. function vbrpsy_apply_block_type(gfp, uselongblock, blocktype_d) {
  12599. var gfc = gfp.internal_flags;
  12600.  
  12601. /*
  12602. * update the blocktype of the previous granule, since it depends on
  12603. * what happend in this granule
  12604. */
  12605. for (var chn = 0; chn < gfc.channels_out; chn++) {
  12606. var blocktype = Encoder.NORM_TYPE;
  12607. /* disable short blocks */
  12608.  
  12609. if (uselongblock[chn] != 0) {
  12610. /* no attack : use long blocks */
  12611. if (gfc.blocktype_old[chn] == Encoder.SHORT_TYPE)
  12612. blocktype = Encoder.STOP_TYPE;
  12613. } else {
  12614. /* attack : use short blocks */
  12615. blocktype = Encoder.SHORT_TYPE;
  12616. if (gfc.blocktype_old[chn] == Encoder.NORM_TYPE) {
  12617. gfc.blocktype_old[chn] = Encoder.START_TYPE;
  12618. }
  12619. if (gfc.blocktype_old[chn] == Encoder.STOP_TYPE)
  12620. gfc.blocktype_old[chn] = Encoder.SHORT_TYPE;
  12621. }
  12622.  
  12623. blocktype_d[chn] = gfc.blocktype_old[chn];
  12624. // value returned to calling program
  12625. gfc.blocktype_old[chn] = blocktype;
  12626. // save for next call to l3psy_anal
  12627. }
  12628. }
  12629.  
  12630. /**
  12631. * compute M/S thresholds from Johnston & Ferreira 1992 ICASSP paper
  12632. */
  12633. function vbrpsy_compute_MS_thresholds(eb, thr, cb_mld, ath_cb, athadjust, msfix, n) {
  12634. var msfix2 = msfix * 2;
  12635. var athlower = msfix > 0 ? Math.pow(10, athadjust) : 1;
  12636. var rside, rmid;
  12637. for (var b = 0; b < n; ++b) {
  12638. var ebM = eb[2][b];
  12639. var ebS = eb[3][b];
  12640. var thmL = thr[0][b];
  12641. var thmR = thr[1][b];
  12642. var thmM = thr[2][b];
  12643. var thmS = thr[3][b];
  12644.  
  12645. /* use this fix if L & R masking differs by 2db or less */
  12646. if (thmL <= 1.58 * thmR && thmR <= 1.58 * thmL) {
  12647. var mld_m = cb_mld[b] * ebS;
  12648. var mld_s = cb_mld[b] * ebM;
  12649. rmid = Math.max(thmM, Math.min(thmS, mld_m));
  12650. rside = Math.max(thmS, Math.min(thmM, mld_s));
  12651. } else {
  12652. rmid = thmM;
  12653. rside = thmS;
  12654. }
  12655. if (msfix > 0) {
  12656. /***************************************************************/
  12657. /* Adjust M/S maskings if user set "msfix" */
  12658. /***************************************************************/
  12659. /* Naoki Shibata 2000 */
  12660. var thmLR, thmMS;
  12661. var ath = ath_cb[b] * athlower;
  12662. thmLR = Math.min(Math.max(thmL, ath), Math.max(thmR, ath));
  12663. thmM = Math.max(rmid, ath);
  12664. thmS = Math.max(rside, ath);
  12665. thmMS = thmM + thmS;
  12666. if (thmMS > 0 && (thmLR * msfix2) < thmMS) {
  12667. var f = thmLR * msfix2 / thmMS;
  12668. thmM *= f;
  12669. thmS *= f;
  12670. }
  12671. rmid = Math.min(thmM, rmid);
  12672. rside = Math.min(thmS, rside);
  12673. }
  12674. if (rmid > ebM) {
  12675. rmid = ebM;
  12676. }
  12677. if (rside > ebS) {
  12678. rside = ebS;
  12679. }
  12680. thr[2][b] = rmid;
  12681. thr[3][b] = rside;
  12682. }
  12683. }
  12684.  
  12685. this.L3psycho_anal_vbr = function (gfp, buffer, bufPos, gr_out, masking_ratio, masking_MS_ratio, percep_entropy, percep_MS_entropy, energy, blocktype_d) {
  12686. var gfc = gfp.internal_flags;
  12687.  
  12688. /* fft and energy calculation */
  12689. var wsamp_l;
  12690. var wsamp_s;
  12691. var fftenergy = new_float(Encoder.HBLKSIZE);
  12692. var fftenergy_s = new_float_n([3, Encoder.HBLKSIZE_s]);
  12693. var wsamp_L = new_float_n([2, Encoder.BLKSIZE]);
  12694. var wsamp_S = new_float_n([2, 3, Encoder.BLKSIZE_s]);
  12695. var eb = new_float_n([4, Encoder.CBANDS]), thr = new_float_n([4, Encoder.CBANDS]);
  12696. var sub_short_factor = new_float_n([4, 3]);
  12697. var pcfact = 0.6;
  12698.  
  12699. /* block type */
  12700. var ns_attacks = [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0],
  12701. [0, 0, 0, 0]];
  12702. var uselongblock = new_int(2);
  12703.  
  12704. /* usual variables like loop indices, etc.. */
  12705.  
  12706. /* chn=2 and 3 = Mid and Side channels */
  12707. var n_chn_psy = (gfp.mode == MPEGMode.JOINT_STEREO) ? 4
  12708. : gfc.channels_out;
  12709.  
  12710. vbrpsy_attack_detection(gfp, buffer, bufPos, gr_out, masking_ratio,
  12711. masking_MS_ratio, energy, sub_short_factor, ns_attacks,
  12712. uselongblock);
  12713.  
  12714. vbrpsy_compute_block_type(gfp, uselongblock);
  12715.  
  12716. /* LONG BLOCK CASE */
  12717. {
  12718. for (var chn = 0; chn < n_chn_psy; chn++) {
  12719. var ch01 = chn & 0x01;
  12720. wsamp_l = wsamp_L;
  12721. vbrpsy_compute_fft_l(gfp, buffer, bufPos, chn, gr_out,
  12722. fftenergy, wsamp_l, ch01);
  12723.  
  12724. vbrpsy_compute_loudness_approximation_l(gfp, gr_out, chn,
  12725. fftenergy);
  12726.  
  12727. if (uselongblock[ch01] != 0) {
  12728. vbrpsy_compute_masking_l(gfc, fftenergy, eb[chn], thr[chn],
  12729. chn);
  12730. } else {
  12731. vbrpsy_skip_masking_l(gfc, chn);
  12732. }
  12733. }
  12734. if ((uselongblock[0] + uselongblock[1]) == 2) {
  12735. /* M/S channel */
  12736. if (gfp.mode == MPEGMode.JOINT_STEREO) {
  12737. vbrpsy_compute_MS_thresholds(eb, thr, gfc.mld_cb_l,
  12738. gfc.ATH.cb_l, gfp.ATHlower * gfc.ATH.adjust,
  12739. gfp.msfix, gfc.npart_l);
  12740. }
  12741. }
  12742. /* TODO: apply adaptive ATH masking here ?? */
  12743. for (var chn = 0; chn < n_chn_psy; chn++) {
  12744. var ch01 = chn & 0x01;
  12745. if (uselongblock[ch01] != 0) {
  12746. convert_partition2scalefac_l(gfc, eb[chn], thr[chn], chn);
  12747. }
  12748. }
  12749. }
  12750.  
  12751. /* SHORT BLOCKS CASE */
  12752. {
  12753. for (var sblock = 0; sblock < 3; sblock++) {
  12754. for (var chn = 0; chn < n_chn_psy; ++chn) {
  12755. var ch01 = chn & 0x01;
  12756.  
  12757. if (uselongblock[ch01] != 0) {
  12758. vbrpsy_skip_masking_s(gfc, chn, sblock);
  12759. } else {
  12760. /* compute masking thresholds for short blocks */
  12761. wsamp_s = wsamp_S;
  12762. vbrpsy_compute_fft_s(gfp, buffer, bufPos, chn, sblock,
  12763. fftenergy_s, wsamp_s, ch01);
  12764. vbrpsy_compute_masking_s(gfp, fftenergy_s, eb[chn],
  12765. thr[chn], chn, sblock);
  12766. }
  12767. }
  12768. if ((uselongblock[0] + uselongblock[1]) == 0) {
  12769. /* M/S channel */
  12770. if (gfp.mode == MPEGMode.JOINT_STEREO) {
  12771. vbrpsy_compute_MS_thresholds(eb, thr, gfc.mld_cb_s,
  12772. gfc.ATH.cb_s, gfp.ATHlower * gfc.ATH.adjust,
  12773. gfp.msfix, gfc.npart_s);
  12774. }
  12775. /* L/R channel */
  12776. }
  12777. /* TODO: apply adaptive ATH masking here ?? */
  12778. for (var chn = 0; chn < n_chn_psy; ++chn) {
  12779. var ch01 = chn & 0x01;
  12780. if (0 == uselongblock[ch01]) {
  12781. convert_partition2scalefac_s(gfc, eb[chn], thr[chn],
  12782. chn, sblock);
  12783. }
  12784. }
  12785. }
  12786.  
  12787. /**** short block pre-echo control ****/
  12788. for (var chn = 0; chn < n_chn_psy; chn++) {
  12789. var ch01 = chn & 0x01;
  12790.  
  12791. if (uselongblock[ch01] != 0) {
  12792. continue;
  12793. }
  12794. for (var sb = 0; sb < Encoder.SBMAX_s; sb++) {
  12795. var new_thmm = new_float(3);
  12796. for (var sblock = 0; sblock < 3; sblock++) {
  12797. var thmm = gfc.thm[chn].s[sb][sblock];
  12798. thmm *= NS_PREECHO_ATT0;
  12799.  
  12800. if (ns_attacks[chn][sblock] >= 2
  12801. || ns_attacks[chn][sblock + 1] == 1) {
  12802. var idx = (sblock != 0) ? sblock - 1 : 2;
  12803. var p = NS_INTERP(gfc.thm[chn].s[sb][idx], thmm,
  12804. NS_PREECHO_ATT1 * pcfact);
  12805. thmm = Math.min(thmm, p);
  12806. } else if (ns_attacks[chn][sblock] == 1) {
  12807. var idx = (sblock != 0) ? sblock - 1 : 2;
  12808. var p = NS_INTERP(gfc.thm[chn].s[sb][idx], thmm,
  12809. NS_PREECHO_ATT2 * pcfact);
  12810. thmm = Math.min(thmm, p);
  12811. } else if ((sblock != 0 && ns_attacks[chn][sblock - 1] == 3)
  12812. || (sblock == 0 && gfc.nsPsy.lastAttacks[chn] == 3)) {
  12813. var idx = (sblock != 2) ? sblock + 1 : 0;
  12814. var p = NS_INTERP(gfc.thm[chn].s[sb][idx], thmm,
  12815. NS_PREECHO_ATT2 * pcfact);
  12816. thmm = Math.min(thmm, p);
  12817. }
  12818.  
  12819. /* pulse like signal detection for fatboy.wav and so on */
  12820. thmm *= sub_short_factor[chn][sblock];
  12821.  
  12822. new_thmm[sblock] = thmm;
  12823. }
  12824. for (var sblock = 0; sblock < 3; sblock++) {
  12825. gfc.thm[chn].s[sb][sblock] = new_thmm[sblock];
  12826. }
  12827. }
  12828. }
  12829. }
  12830. for (var chn = 0; chn < n_chn_psy; chn++) {
  12831. gfc.nsPsy.lastAttacks[chn] = ns_attacks[chn][2];
  12832. }
  12833.  
  12834. /***************************************************************
  12835. * determine final block type
  12836. ***************************************************************/
  12837. vbrpsy_apply_block_type(gfp, uselongblock, blocktype_d);
  12838.  
  12839. /*********************************************************************
  12840. * compute the value of PE to return ... no delay and advance
  12841. *********************************************************************/
  12842. for (var chn = 0; chn < n_chn_psy; chn++) {
  12843. var ppe;
  12844. var ppePos;
  12845. var type;
  12846. var mr;
  12847.  
  12848. if (chn > 1) {
  12849. ppe = percep_MS_entropy;
  12850. ppePos = -2;
  12851. type = Encoder.NORM_TYPE;
  12852. if (blocktype_d[0] == Encoder.SHORT_TYPE
  12853. || blocktype_d[1] == Encoder.SHORT_TYPE)
  12854. type = Encoder.SHORT_TYPE;
  12855. mr = masking_MS_ratio[gr_out][chn - 2];
  12856. } else {
  12857. ppe = percep_entropy;
  12858. ppePos = 0;
  12859. type = blocktype_d[chn];
  12860. mr = masking_ratio[gr_out][chn];
  12861. }
  12862.  
  12863. if (type == Encoder.SHORT_TYPE) {
  12864. ppe[ppePos + chn] = pecalc_s(mr, gfc.masking_lower);
  12865. } else {
  12866. ppe[ppePos + chn] = pecalc_l(mr, gfc.masking_lower);
  12867. }
  12868.  
  12869. if (gfp.analysis) {
  12870. gfc.pinfo.pe[gr_out][chn] = ppe[ppePos + chn];
  12871. }
  12872. }
  12873. return 0;
  12874. }
  12875.  
  12876. function s3_func_x(bark, hf_slope) {
  12877. var tempx = bark, tempy;
  12878.  
  12879. if (tempx >= 0) {
  12880. tempy = -tempx * 27;
  12881. } else {
  12882. tempy = tempx * hf_slope;
  12883. }
  12884. if (tempy <= -72.0) {
  12885. return 0;
  12886. }
  12887. return Math.exp(tempy * LN_TO_LOG10);
  12888. }
  12889.  
  12890. function norm_s3_func_x(hf_slope) {
  12891. var lim_a = 0, lim_b = 0;
  12892. {
  12893. var x = 0, l, h;
  12894. for (x = 0; s3_func_x(x, hf_slope) > 1e-20; x -= 1)
  12895. ;
  12896. l = x;
  12897. h = 0;
  12898. while (Math.abs(h - l) > 1e-12) {
  12899. x = (h + l) / 2;
  12900. if (s3_func_x(x, hf_slope) > 0) {
  12901. h = x;
  12902. } else {
  12903. l = x;
  12904. }
  12905. }
  12906. lim_a = l;
  12907. }
  12908. {
  12909. var x = 0, l, h;
  12910. for (x = 0; s3_func_x(x, hf_slope) > 1e-20; x += 1)
  12911. ;
  12912. l = 0;
  12913. h = x;
  12914. while (Math.abs(h - l) > 1e-12) {
  12915. x = (h + l) / 2;
  12916. if (s3_func_x(x, hf_slope) > 0) {
  12917. l = x;
  12918. } else {
  12919. h = x;
  12920. }
  12921. }
  12922. lim_b = h;
  12923. }
  12924. {
  12925. var sum = 0;
  12926. var m = 1000;
  12927. var i;
  12928. for (i = 0; i <= m; ++i) {
  12929. var x = lim_a + i * (lim_b - lim_a) / m;
  12930. var y = s3_func_x(x, hf_slope);
  12931. sum += y;
  12932. }
  12933. {
  12934. var norm = (m + 1) / (sum * (lim_b - lim_a));
  12935. /* printf( "norm = %lf\n",norm); */
  12936. return norm;
  12937. }
  12938. }
  12939. }
  12940.  
  12941. /**
  12942. * The spreading function. Values returned in units of energy
  12943. */
  12944. function s3_func(bark) {
  12945. var tempx, x, tempy, temp;
  12946. tempx = bark;
  12947. if (tempx >= 0)
  12948. tempx *= 3;
  12949. else
  12950. tempx *= 1.5;
  12951.  
  12952. if (tempx >= 0.5 && tempx <= 2.5) {
  12953. temp = tempx - 0.5;
  12954. x = 8.0 * (temp * temp - 2.0 * temp);
  12955. } else
  12956. x = 0.0;
  12957. tempx += 0.474;
  12958. tempy = 15.811389 + 7.5 * tempx - 17.5
  12959. * Math.sqrt(1.0 + tempx * tempx);
  12960.  
  12961. if (tempy <= -60.0)
  12962. return 0.0;
  12963.  
  12964. tempx = Math.exp((x + tempy) * LN_TO_LOG10);
  12965.  
  12966. /**
  12967. * <PRE>
  12968. * Normalization. The spreading function should be normalized so that:
  12969. * +inf
  12970. * /
  12971. * | s3 [ bark ] d(bark) = 1
  12972. * /
  12973. * -inf
  12974. * </PRE>
  12975. */
  12976. tempx /= .6609193;
  12977. return tempx;
  12978. }
  12979.  
  12980. /**
  12981. * see for example "Zwicker: Psychoakustik, 1982; ISBN 3-540-11401-7
  12982. */
  12983. function freq2bark(freq) {
  12984. /* input: freq in hz output: barks */
  12985. if (freq < 0)
  12986. freq = 0;
  12987. freq = freq * 0.001;
  12988. return 13.0 * Math.atan(.76 * freq) + 3.5
  12989. * Math.atan(freq * freq / (7.5 * 7.5));
  12990. }
  12991.  
  12992. function init_numline(numlines, bo, bm, bval, bval_width, mld, bo_w, sfreq, blksize, scalepos, deltafreq, sbmax) {
  12993. var b_frq = new_float(Encoder.CBANDS + 1);
  12994. var sample_freq_frac = sfreq / (sbmax > 15 ? 2 * 576 : 2 * 192);
  12995. var partition = new_int(Encoder.HBLKSIZE);
  12996. var i;
  12997. sfreq /= blksize;
  12998. var j = 0;
  12999. var ni = 0;
  13000. /* compute numlines, the number of spectral lines in each partition band */
  13001. /* each partition band should be about DELBARK wide. */
  13002. for (i = 0; i < Encoder.CBANDS; i++) {
  13003. var bark1;
  13004. var j2;
  13005. bark1 = freq2bark(sfreq * j);
  13006.  
  13007. b_frq[i] = sfreq * j;
  13008.  
  13009. for (j2 = j; freq2bark(sfreq * j2) - bark1 < DELBARK
  13010. && j2 <= blksize / 2; j2++)
  13011. ;
  13012.  
  13013. numlines[i] = j2 - j;
  13014. ni = i + 1;
  13015.  
  13016. while (j < j2) {
  13017. partition[j++] = i;
  13018. }
  13019. if (j > blksize / 2) {
  13020. j = blksize / 2;
  13021. ++i;
  13022. break;
  13023. }
  13024. }
  13025. b_frq[i] = sfreq * j;
  13026.  
  13027. for (var sfb = 0; sfb < sbmax; sfb++) {
  13028. var i1, i2, start, end;
  13029. var arg;
  13030. start = scalepos[sfb];
  13031. end = scalepos[sfb + 1];
  13032.  
  13033. i1 = 0 | Math.floor(.5 + deltafreq * (start - .5));
  13034. if (i1 < 0)
  13035. i1 = 0;
  13036. i2 = 0 | Math.floor(.5 + deltafreq * (end - .5));
  13037.  
  13038. if (i2 > blksize / 2)
  13039. i2 = blksize / 2;
  13040.  
  13041. bm[sfb] = (partition[i1] + partition[i2]) / 2;
  13042. bo[sfb] = partition[i2];
  13043. var f_tmp = sample_freq_frac * end;
  13044. /*
  13045. * calculate how much of this band belongs to current scalefactor
  13046. * band
  13047. */
  13048. bo_w[sfb] = (f_tmp - b_frq[bo[sfb]])
  13049. / (b_frq[bo[sfb] + 1] - b_frq[bo[sfb]]);
  13050. if (bo_w[sfb] < 0) {
  13051. bo_w[sfb] = 0;
  13052. } else {
  13053. if (bo_w[sfb] > 1) {
  13054. bo_w[sfb] = 1;
  13055. }
  13056. }
  13057. /* setup stereo demasking thresholds */
  13058. /* formula reverse enginerred from plot in paper */
  13059. arg = freq2bark(sfreq * scalepos[sfb] * deltafreq);
  13060. arg = ( Math.min(arg, 15.5) / 15.5);
  13061.  
  13062. mld[sfb] = Math.pow(10.0,
  13063. 1.25 * (1 - Math.cos(Math.PI * arg)) - 2.5);
  13064. }
  13065.  
  13066. /* compute bark values of each critical band */
  13067. j = 0;
  13068. for (var k = 0; k < ni; k++) {
  13069. var w = numlines[k];
  13070. var bark1, bark2;
  13071.  
  13072. bark1 = freq2bark(sfreq * (j));
  13073. bark2 = freq2bark(sfreq * (j + w - 1));
  13074. bval[k] = .5 * (bark1 + bark2);
  13075.  
  13076. bark1 = freq2bark(sfreq * (j - .5));
  13077. bark2 = freq2bark(sfreq * (j + w - .5));
  13078. bval_width[k] = bark2 - bark1;
  13079. j += w;
  13080. }
  13081.  
  13082. return ni;
  13083. }
  13084.  
  13085. function init_s3_values(s3ind, npart, bval, bval_width, norm, use_old_s3) {
  13086. var s3 = new_float_n([Encoder.CBANDS, Encoder.CBANDS]);
  13087. /*
  13088. * The s3 array is not linear in the bark scale.
  13089. *
  13090. * bval[x] should be used to get the bark value.
  13091. */
  13092. var j;
  13093. var numberOfNoneZero = 0;
  13094.  
  13095. /**
  13096. * <PRE>
  13097. * s[i][j], the value of the spreading function,
  13098. * centered at band j (masker), for band i (maskee)
  13099. *
  13100. * i.e.: sum over j to spread into signal barkval=i
  13101. * NOTE: i and j are used opposite as in the ISO docs
  13102. * </PRE>
  13103. */
  13104. if (use_old_s3) {
  13105. for (var i = 0; i < npart; i++) {
  13106. for (j = 0; j < npart; j++) {
  13107. var v = s3_func(bval[i] - bval[j]) * bval_width[j];
  13108. s3[i][j] = v * norm[i];
  13109. }
  13110. }
  13111. } else {
  13112. for (j = 0; j < npart; j++) {
  13113. var hf_slope = 15 + Math.min(21 / bval[j], 12);
  13114. var s3_x_norm = norm_s3_func_x(hf_slope);
  13115. for (var i = 0; i < npart; i++) {
  13116. var v = s3_x_norm
  13117. * s3_func_x(bval[i] - bval[j], hf_slope)
  13118. * bval_width[j];
  13119. s3[i][j] = v * norm[i];
  13120. }
  13121. }
  13122. }
  13123. for (var i = 0; i < npart; i++) {
  13124. for (j = 0; j < npart; j++) {
  13125. if (s3[i][j] > 0.0)
  13126. break;
  13127. }
  13128. s3ind[i][0] = j;
  13129.  
  13130. for (j = npart - 1; j > 0; j--) {
  13131. if (s3[i][j] > 0.0)
  13132. break;
  13133. }
  13134. s3ind[i][1] = j;
  13135. numberOfNoneZero += (s3ind[i][1] - s3ind[i][0] + 1);
  13136. }
  13137.  
  13138. var p = new_float(numberOfNoneZero);
  13139. var k = 0;
  13140. for (var i = 0; i < npart; i++)
  13141. for (j = s3ind[i][0]; j <= s3ind[i][1]; j++)
  13142. p[k++] = s3[i][j];
  13143.  
  13144. return p;
  13145. }
  13146.  
  13147. function stereo_demask(f) {
  13148. /* setup stereo demasking thresholds */
  13149. /* formula reverse enginerred from plot in paper */
  13150. var arg = freq2bark(f);
  13151. arg = (Math.min(arg, 15.5) / 15.5);
  13152.  
  13153. return Math.pow(10.0,
  13154. 1.25 * (1 - Math.cos(Math.PI * arg)) - 2.5);
  13155. }
  13156.  
  13157. /**
  13158. * NOTE: the bitrate reduction from the inter-channel masking effect is low
  13159. * compared to the chance of getting annyoing artefacts. L3psycho_anal_vbr
  13160. * does not use this feature. (Robert 071216)
  13161. */
  13162. this.psymodel_init = function (gfp) {
  13163. var gfc = gfp.internal_flags;
  13164. var i;
  13165. var useOldS3 = true;
  13166. var bvl_a = 13, bvl_b = 24;
  13167. var snr_l_a = 0, snr_l_b = 0;
  13168. var snr_s_a = -8.25, snr_s_b = -4.5;
  13169. var bval = new_float(Encoder.CBANDS);
  13170. var bval_width = new_float(Encoder.CBANDS);
  13171. var norm = new_float(Encoder.CBANDS);
  13172. var sfreq = gfp.out_samplerate;
  13173.  
  13174. switch (gfp.experimentalZ) {
  13175. default:
  13176. case 0:
  13177. useOldS3 = true;
  13178. break;
  13179. case 1:
  13180. useOldS3 = (gfp.VBR == VbrMode.vbr_mtrh || gfp.VBR == VbrMode.vbr_mt) ? false
  13181. : true;
  13182. break;
  13183. case 2:
  13184. useOldS3 = false;
  13185. break;
  13186. case 3:
  13187. bvl_a = 8;
  13188. snr_l_a = -1.75;
  13189. snr_l_b = -0.0125;
  13190. snr_s_a = -8.25;
  13191. snr_s_b = -2.25;
  13192. break;
  13193. }
  13194. gfc.ms_ener_ratio_old = .25;
  13195. gfc.blocktype_old[0] = gfc.blocktype_old[1] = Encoder.NORM_TYPE;
  13196. // the vbr header is long blocks
  13197.  
  13198. for (i = 0; i < 4; ++i) {
  13199. for (var j = 0; j < Encoder.CBANDS; ++j) {
  13200. gfc.nb_1[i][j] = 1e20;
  13201. gfc.nb_2[i][j] = 1e20;
  13202. gfc.nb_s1[i][j] = gfc.nb_s2[i][j] = 1.0;
  13203. }
  13204. for (var sb = 0; sb < Encoder.SBMAX_l; sb++) {
  13205. gfc.en[i].l[sb] = 1e20;
  13206. gfc.thm[i].l[sb] = 1e20;
  13207. }
  13208. for (var j = 0; j < 3; ++j) {
  13209. for (var sb = 0; sb < Encoder.SBMAX_s; sb++) {
  13210. gfc.en[i].s[sb][j] = 1e20;
  13211. gfc.thm[i].s[sb][j] = 1e20;
  13212. }
  13213. gfc.nsPsy.lastAttacks[i] = 0;
  13214. }
  13215. for (var j = 0; j < 9; j++)
  13216. gfc.nsPsy.last_en_subshort[i][j] = 10.;
  13217. }
  13218.  
  13219. /* init. for loudness approx. -jd 2001 mar 27 */
  13220. gfc.loudness_sq_save[0] = gfc.loudness_sq_save[1] = 0.0;
  13221.  
  13222. /*************************************************************************
  13223. * now compute the psychoacoustic model specific constants
  13224. ************************************************************************/
  13225. /* compute numlines, bo, bm, bval, bval_width, mld */
  13226.  
  13227. gfc.npart_l = init_numline(gfc.numlines_l, gfc.bo_l, gfc.bm_l, bval,
  13228. bval_width, gfc.mld_l, gfc.PSY.bo_l_weight, sfreq,
  13229. Encoder.BLKSIZE, gfc.scalefac_band.l, Encoder.BLKSIZE
  13230. / (2.0 * 576), Encoder.SBMAX_l);
  13231. /* compute the spreading function */
  13232. for (i = 0; i < gfc.npart_l; i++) {
  13233. var snr = snr_l_a;
  13234. if (bval[i] >= bvl_a) {
  13235. snr = snr_l_b * (bval[i] - bvl_a) / (bvl_b - bvl_a) + snr_l_a
  13236. * (bvl_b - bval[i]) / (bvl_b - bvl_a);
  13237. }
  13238. norm[i] = Math.pow(10.0, snr / 10.0);
  13239. if (gfc.numlines_l[i] > 0) {
  13240. gfc.rnumlines_l[i] = 1.0 / gfc.numlines_l[i];
  13241. } else {
  13242. gfc.rnumlines_l[i] = 0;
  13243. }
  13244. }
  13245. gfc.s3_ll = init_s3_values(gfc.s3ind, gfc.npart_l, bval, bval_width,
  13246. norm, useOldS3);
  13247.  
  13248. /* compute long block specific values, ATH and MINVAL */
  13249. var j = 0;
  13250. for (i = 0; i < gfc.npart_l; i++) {
  13251. var x;
  13252.  
  13253. /* ATH */
  13254. x = Float.MAX_VALUE;
  13255. for (var k = 0; k < gfc.numlines_l[i]; k++, j++) {
  13256. var freq = sfreq * j / (1000.0 * Encoder.BLKSIZE);
  13257. var level;
  13258. /*
  13259. * ATH below 100 Hz constant, not further climbing
  13260. */
  13261. level = this.ATHformula(freq * 1000, gfp) - 20;
  13262. // scale to FFT units; returned value is in dB
  13263. level = Math.pow(10., 0.1 * level);
  13264. // convert from dB . energy
  13265. level *= gfc.numlines_l[i];
  13266. if (x > level)
  13267. x = level;
  13268. }
  13269. gfc.ATH.cb_l[i] = x;
  13270.  
  13271. /*
  13272. * MINVAL. For low freq, the strength of the masking is limited by
  13273. * minval this is an ISO MPEG1 thing, dont know if it is really
  13274. * needed
  13275. */
  13276. /*
  13277. * FIXME: it does work to reduce low-freq problems in S53-Wind-Sax
  13278. * and lead-voice samples, but introduces some 3 kbps bit bloat too.
  13279. * TODO: Further refinement of the shape of this hack.
  13280. */
  13281. x = -20 + bval[i] * 20 / 10;
  13282. if (x > 6) {
  13283. x = 100;
  13284. }
  13285. if (x < -15) {
  13286. x = -15;
  13287. }
  13288. x -= 8.;
  13289. gfc.minval_l[i] = (Math.pow(10.0, x / 10.) * gfc.numlines_l[i]);
  13290. }
  13291.  
  13292. /************************************************************************
  13293. * do the same things for short blocks
  13294. ************************************************************************/
  13295. gfc.npart_s = init_numline(gfc.numlines_s, gfc.bo_s, gfc.bm_s, bval,
  13296. bval_width, gfc.mld_s, gfc.PSY.bo_s_weight, sfreq,
  13297. Encoder.BLKSIZE_s, gfc.scalefac_band.s, Encoder.BLKSIZE_s
  13298. / (2.0 * 192), Encoder.SBMAX_s);
  13299.  
  13300. /* SNR formula. short block is normalized by SNR. is it still right ? */
  13301. j = 0;
  13302. for (i = 0; i < gfc.npart_s; i++) {
  13303. var x;
  13304. var snr = snr_s_a;
  13305. if (bval[i] >= bvl_a) {
  13306. snr = snr_s_b * (bval[i] - bvl_a) / (bvl_b - bvl_a) + snr_s_a
  13307. * (bvl_b - bval[i]) / (bvl_b - bvl_a);
  13308. }
  13309. norm[i] = Math.pow(10.0, snr / 10.0);
  13310.  
  13311. /* ATH */
  13312. x = Float.MAX_VALUE;
  13313. for (var k = 0; k < gfc.numlines_s[i]; k++, j++) {
  13314. var freq = sfreq * j / (1000.0 * Encoder.BLKSIZE_s);
  13315. var level;
  13316. /* freq = Min(.1,freq); */
  13317. /*
  13318. * ATH below 100 Hz constant, not
  13319. * further climbing
  13320. */
  13321. level = this.ATHformula(freq * 1000, gfp) - 20;
  13322. // scale to FFT units; returned value is in dB
  13323. level = Math.pow(10., 0.1 * level);
  13324. // convert from dB . energy
  13325. level *= gfc.numlines_s[i];
  13326. if (x > level)
  13327. x = level;
  13328. }
  13329. gfc.ATH.cb_s[i] = x;
  13330.  
  13331. /*
  13332. * MINVAL. For low freq, the strength of the masking is limited by
  13333. * minval this is an ISO MPEG1 thing, dont know if it is really
  13334. * needed
  13335. */
  13336. x = (-7.0 + bval[i] * 7.0 / 12.0);
  13337. if (bval[i] > 12) {
  13338. x *= 1 + Math.log(1 + x) * 3.1;
  13339. }
  13340. if (bval[i] < 12) {
  13341. x *= 1 + Math.log(1 - x) * 2.3;
  13342. }
  13343. if (x < -15) {
  13344. x = -15;
  13345. }
  13346. x -= 8;
  13347. gfc.minval_s[i] = Math.pow(10.0, x / 10)
  13348. * gfc.numlines_s[i];
  13349. }
  13350.  
  13351. gfc.s3_ss = init_s3_values(gfc.s3ind_s, gfc.npart_s, bval, bval_width,
  13352. norm, useOldS3);
  13353.  
  13354. init_mask_add_max_values();
  13355. fft.init_fft(gfc);
  13356.  
  13357. /* setup temporal masking */
  13358. gfc.decay = Math.exp(-1.0 * LOG10
  13359. / (temporalmask_sustain_sec * sfreq / 192.0));
  13360.  
  13361. {
  13362. var msfix;
  13363. msfix = NS_MSFIX;
  13364. if ((gfp.exp_nspsytune & 2) != 0)
  13365. msfix = 1.0;
  13366. if (Math.abs(gfp.msfix) > 0.0)
  13367. msfix = gfp.msfix;
  13368. gfp.msfix = msfix;
  13369.  
  13370. /*
  13371. * spread only from npart_l bands. Normally, we use the spreading
  13372. * function to convolve from npart_l down to npart_l bands
  13373. */
  13374. for (var b = 0; b < gfc.npart_l; b++)
  13375. if (gfc.s3ind[b][1] > gfc.npart_l - 1)
  13376. gfc.s3ind[b][1] = gfc.npart_l - 1;
  13377. }
  13378.  
  13379. /*
  13380. * prepare for ATH auto adjustment: we want to decrease the ATH by 12 dB
  13381. * per second
  13382. */
  13383. var frame_duration = (576. * gfc.mode_gr / sfreq);
  13384. gfc.ATH.decay = Math.pow(10., -12. / 10. * frame_duration);
  13385. gfc.ATH.adjust = 0.01;
  13386. /* minimum, for leading low loudness */
  13387. gfc.ATH.adjustLimit = 1.0;
  13388. /* on lead, allow adjust up to maximum */
  13389.  
  13390.  
  13391. if (gfp.ATHtype != -1) {
  13392. /* compute equal loudness weights (eql_w) */
  13393. var freq;
  13394. var freq_inc = gfp.out_samplerate
  13395. / (Encoder.BLKSIZE);
  13396. var eql_balance = 0.0;
  13397. freq = 0.0;
  13398. for (i = 0; i < Encoder.BLKSIZE / 2; ++i) {
  13399. /* convert ATH dB to relative power (not dB) */
  13400. /* to determine eql_w */
  13401. freq += freq_inc;
  13402. gfc.ATH.eql_w[i] = 1. / Math.pow(10, this.ATHformula(freq, gfp) / 10);
  13403. eql_balance += gfc.ATH.eql_w[i];
  13404. }
  13405. eql_balance = 1.0 / eql_balance;
  13406. for (i = Encoder.BLKSIZE / 2; --i >= 0;) { /* scale weights */
  13407. gfc.ATH.eql_w[i] *= eql_balance;
  13408. }
  13409. }
  13410. {
  13411. for (var b = j = 0; b < gfc.npart_s; ++b) {
  13412. for (i = 0; i < gfc.numlines_s[b]; ++i) {
  13413. ++j;
  13414. }
  13415. }
  13416. for (var b = j = 0; b < gfc.npart_l; ++b) {
  13417. for (i = 0; i < gfc.numlines_l[b]; ++i) {
  13418. ++j;
  13419. }
  13420. }
  13421. }
  13422. j = 0;
  13423. for (i = 0; i < gfc.npart_l; i++) {
  13424. var freq = sfreq * (j + gfc.numlines_l[i] / 2) / (1.0 * Encoder.BLKSIZE);
  13425. gfc.mld_cb_l[i] = stereo_demask(freq);
  13426. j += gfc.numlines_l[i];
  13427. }
  13428. for (; i < Encoder.CBANDS; ++i) {
  13429. gfc.mld_cb_l[i] = 1;
  13430. }
  13431. j = 0;
  13432. for (i = 0; i < gfc.npart_s; i++) {
  13433. var freq = sfreq * (j + gfc.numlines_s[i] / 2) / (1.0 * Encoder.BLKSIZE_s);
  13434. gfc.mld_cb_s[i] = stereo_demask(freq);
  13435. j += gfc.numlines_s[i];
  13436. }
  13437. for (; i < Encoder.CBANDS; ++i) {
  13438. gfc.mld_cb_s[i] = 1;
  13439. }
  13440. return 0;
  13441. }
  13442.  
  13443. /**
  13444. * Those ATH formulas are returning their minimum value for input = -1
  13445. */
  13446. function ATHformula_GB(f, value) {
  13447. /**
  13448. * <PRE>
  13449. * from Painter & Spanias
  13450. * modified by Gabriel Bouvigne to better fit the reality
  13451. * ath = 3.640 * pow(f,-0.8)
  13452. * - 6.800 * exp(-0.6*pow(f-3.4,2.0))
  13453. * + 6.000 * exp(-0.15*pow(f-8.7,2.0))
  13454. * + 0.6* 0.001 * pow(f,4.0);
  13455. *
  13456. *
  13457. * In the past LAME was using the Painter &Spanias formula.
  13458. * But we had some recurrent problems with HF content.
  13459. * We measured real ATH values, and found the older formula
  13460. * to be inaccurate in the higher part. So we made this new
  13461. * formula and this solved most of HF problematic test cases.
  13462. * The tradeoff is that in VBR mode it increases a lot the
  13463. * bitrate.
  13464. * </PRE>
  13465. */
  13466.  
  13467. /*
  13468. * This curve can be adjusted according to the VBR scale: it adjusts
  13469. * from something close to Painter & Spanias on V9 up to Bouvigne's
  13470. * formula for V0. This way the VBR bitrate is more balanced according
  13471. * to the -V value.
  13472. */
  13473.  
  13474. // the following Hack allows to ask for the lowest value
  13475. if (f < -.3)
  13476. f = 3410;
  13477.  
  13478. // convert to khz
  13479. f /= 1000;
  13480. f = Math.max(0.1, f);
  13481. var ath = 3.640 * Math.pow(f, -0.8) - 6.800
  13482. * Math.exp(-0.6 * Math.pow(f - 3.4, 2.0)) + 6.000
  13483. * Math.exp(-0.15 * Math.pow(f - 8.7, 2.0))
  13484. + (0.6 + 0.04 * value) * 0.001 * Math.pow(f, 4.0);
  13485. return ath;
  13486. }
  13487.  
  13488. this.ATHformula = function (f, gfp) {
  13489. var ath;
  13490. switch (gfp.ATHtype) {
  13491. case 0:
  13492. ath = ATHformula_GB(f, 9);
  13493. break;
  13494. case 1:
  13495. // over sensitive, should probably be removed
  13496. ath = ATHformula_GB(f, -1);
  13497. break;
  13498. case 2:
  13499. ath = ATHformula_GB(f, 0);
  13500. break;
  13501. case 3:
  13502. // modification of GB formula by Roel
  13503. ath = ATHformula_GB(f, 1) + 6;
  13504. break;
  13505. case 4:
  13506. ath = ATHformula_GB(f, gfp.ATHcurve);
  13507. break;
  13508. default:
  13509. ath = ATHformula_GB(f, 0);
  13510. break;
  13511. }
  13512. return ath;
  13513. }
  13514.  
  13515. }
  13516.  
  13517.  
  13518.  
  13519. function Lame() {
  13520. var self = this;
  13521. var LAME_MAXALBUMART = (128 * 1024);
  13522.  
  13523. Lame.V9 = 410;
  13524. Lame.V8 = 420;
  13525. Lame.V7 = 430;
  13526. Lame.V6 = 440;
  13527. Lame.V5 = 450;
  13528. Lame.V4 = 460;
  13529. Lame.V3 = 470;
  13530. Lame.V2 = 480;
  13531. Lame.V1 = 490;
  13532. Lame.V0 = 500;
  13533.  
  13534. /* still there for compatibility */
  13535.  
  13536. Lame.R3MIX = 1000;
  13537. Lame.STANDARD = 1001;
  13538. Lame.EXTREME = 1002;
  13539. Lame.INSANE = 1003;
  13540. Lame.STANDARD_FAST = 1004;
  13541. Lame.EXTREME_FAST = 1005;
  13542. Lame.MEDIUM = 1006;
  13543. Lame.MEDIUM_FAST = 1007;
  13544.  
  13545. /**
  13546. * maximum size of mp3buffer needed if you encode at most 1152 samples for
  13547. * each call to lame_encode_buffer. see lame_encode_buffer() below
  13548. * (LAME_MAXMP3BUFFER is now obsolete)
  13549. */
  13550. var LAME_MAXMP3BUFFER = (16384 + LAME_MAXALBUMART);
  13551. Lame.LAME_MAXMP3BUFFER = LAME_MAXMP3BUFFER;
  13552.  
  13553. var ga;
  13554. var bs;
  13555. var p;
  13556. var qupvt;
  13557. var qu;
  13558. var psy = new PsyModel();
  13559. var vbr;
  13560. var ver;
  13561. var id3;
  13562. var mpglib;
  13563. this.enc = new Encoder();
  13564.  
  13565. this.setModules = function (_ga, _bs, _p, _qupvt, _qu, _vbr, _ver, _id3, _mpglib) {
  13566. ga = _ga;
  13567. bs = _bs;
  13568. p = _p;
  13569. qupvt = _qupvt;
  13570. qu = _qu;
  13571. vbr = _vbr;
  13572. ver = _ver;
  13573. id3 = _id3;
  13574. mpglib = _mpglib;
  13575. this.enc.setModules(bs, psy, qupvt, vbr);
  13576. }
  13577.  
  13578. /**
  13579. * PSY Model related stuff
  13580. */
  13581. function PSY() {
  13582. /**
  13583. * The dbQ stuff.
  13584. */
  13585. this.mask_adjust = 0.;
  13586. /**
  13587. * The dbQ stuff.
  13588. */
  13589. this.mask_adjust_short = 0.;
  13590. /* at transition from one scalefactor band to next */
  13591. /**
  13592. * Band weight long scalefactor bands.
  13593. */
  13594. this.bo_l_weight = new_float(Encoder.SBMAX_l);
  13595. /**
  13596. * Band weight short scalefactor bands.
  13597. */
  13598. this.bo_s_weight = new_float(Encoder.SBMAX_s);
  13599. }
  13600.  
  13601. function LowPassHighPass() {
  13602. this.lowerlimit = 0.;
  13603. }
  13604.  
  13605. function BandPass(bitrate, lPass) {
  13606. this.lowpass = lPass;
  13607. }
  13608.  
  13609. var LAME_ID = 0xFFF88E3B;
  13610.  
  13611. function lame_init_old(gfp) {
  13612. var gfc;
  13613.  
  13614. gfp.class_id = LAME_ID;
  13615.  
  13616. gfc = gfp.internal_flags = new LameInternalFlags();
  13617.  
  13618. /* Global flags. set defaults here for non-zero values */
  13619. /* see lame.h for description */
  13620. /*
  13621. * set integer values to -1 to mean that LAME will compute the best
  13622. * value, UNLESS the calling program as set it (and the value is no
  13623. * longer -1)
  13624. */
  13625.  
  13626. gfp.mode = MPEGMode.NOT_SET;
  13627. gfp.original = 1;
  13628. gfp.in_samplerate = 44100;
  13629. gfp.num_channels = 2;
  13630. gfp.num_samples = -1;
  13631.  
  13632. gfp.bWriteVbrTag = true;
  13633. gfp.quality = -1;
  13634. gfp.short_blocks = null;
  13635. gfc.subblock_gain = -1;
  13636.  
  13637. gfp.lowpassfreq = 0;
  13638. gfp.highpassfreq = 0;
  13639. gfp.lowpasswidth = -1;
  13640. gfp.highpasswidth = -1;
  13641.  
  13642. gfp.VBR = VbrMode.vbr_off;
  13643. gfp.VBR_q = 4;
  13644. gfp.ATHcurve = -1;
  13645. gfp.VBR_mean_bitrate_kbps = 128;
  13646. gfp.VBR_min_bitrate_kbps = 0;
  13647. gfp.VBR_max_bitrate_kbps = 0;
  13648. gfp.VBR_hard_min = 0;
  13649. gfc.VBR_min_bitrate = 1;
  13650. /* not 0 ????? */
  13651. gfc.VBR_max_bitrate = 13;
  13652. /* not 14 ????? */
  13653.  
  13654. gfp.quant_comp = -1;
  13655. gfp.quant_comp_short = -1;
  13656.  
  13657. gfp.msfix = -1;
  13658.  
  13659. gfc.resample_ratio = 1;
  13660.  
  13661. gfc.OldValue[0] = 180;
  13662. gfc.OldValue[1] = 180;
  13663. gfc.CurrentStep[0] = 4;
  13664. gfc.CurrentStep[1] = 4;
  13665. gfc.masking_lower = 1;
  13666. gfc.nsPsy.attackthre = -1;
  13667. gfc.nsPsy.attackthre_s = -1;
  13668.  
  13669. gfp.scale = -1;
  13670.  
  13671. gfp.athaa_type = -1;
  13672. gfp.ATHtype = -1;
  13673. /* default = -1 = set in lame_init_params */
  13674. gfp.athaa_loudapprox = -1;
  13675. /* 1 = flat loudness approx. (total energy) */
  13676. /* 2 = equal loudness curve */
  13677. gfp.athaa_sensitivity = 0.0;
  13678. /* no offset */
  13679. gfp.useTemporal = null;
  13680. gfp.interChRatio = -1;
  13681.  
  13682. /*
  13683. * The reason for int mf_samples_to_encode = ENCDELAY + POSTDELAY;
  13684. * ENCDELAY = internal encoder delay. And then we have to add
  13685. * POSTDELAY=288 because of the 50% MDCT overlap. A 576 MDCT granule
  13686. * decodes to 1152 samples. To synthesize the 576 samples centered under
  13687. * this granule we need the previous granule for the first 288 samples
  13688. * (no problem), and the next granule for the next 288 samples (not
  13689. * possible if this is last granule). So we need to pad with 288 samples
  13690. * to make sure we can encode the 576 samples we are interested in.
  13691. */
  13692. gfc.mf_samples_to_encode = Encoder.ENCDELAY + Encoder.POSTDELAY;
  13693. gfp.encoder_padding = 0;
  13694. gfc.mf_size = Encoder.ENCDELAY - Encoder.MDCTDELAY;
  13695. /*
  13696. * we pad input with this many 0's
  13697. */
  13698.  
  13699. gfp.findReplayGain = false;
  13700. gfp.decode_on_the_fly = false;
  13701.  
  13702. gfc.decode_on_the_fly = false;
  13703. gfc.findReplayGain = false;
  13704. gfc.findPeakSample = false;
  13705.  
  13706. gfc.RadioGain = 0;
  13707. gfc.AudiophileGain = 0;
  13708. gfc.noclipGainChange = 0;
  13709. gfc.noclipScale = -1.0;
  13710.  
  13711. gfp.preset = 0;
  13712.  
  13713. gfp.write_id3tag_automatic = true;
  13714. return 0;
  13715. }
  13716.  
  13717. this.lame_init = function () {
  13718. var gfp = new LameGlobalFlags();
  13719.  
  13720. var ret = lame_init_old(gfp);
  13721. if (ret != 0) {
  13722. return null;
  13723. }
  13724.  
  13725. gfp.lame_allocated_gfp = 1;
  13726. return gfp;
  13727. }
  13728.  
  13729. function filter_coef(x) {
  13730. if (x > 1.0)
  13731. return 0.0;
  13732. if (x <= 0.0)
  13733. return 1.0;
  13734.  
  13735. return Math.cos(Math.PI / 2 * x);
  13736. }
  13737.  
  13738. this.nearestBitrateFullIndex = function (bitrate) {
  13739. /* borrowed from DM abr presets */
  13740.  
  13741. var full_bitrate_table = [8, 16, 24, 32, 40, 48, 56, 64, 80,
  13742. 96, 112, 128, 160, 192, 224, 256, 320];
  13743.  
  13744. var lower_range = 0, lower_range_kbps = 0, upper_range = 0, upper_range_kbps = 0;
  13745.  
  13746. /* We assume specified bitrate will be 320kbps */
  13747. upper_range_kbps = full_bitrate_table[16];
  13748. upper_range = 16;
  13749. lower_range_kbps = full_bitrate_table[16];
  13750. lower_range = 16;
  13751.  
  13752. /*
  13753. * Determine which significant bitrates the value specified falls
  13754. * between, if loop ends without breaking then we were correct above
  13755. * that the value was 320
  13756. */
  13757. for (var b = 0; b < 16; b++) {
  13758. if ((Math.max(bitrate, full_bitrate_table[b + 1])) != bitrate) {
  13759. upper_range_kbps = full_bitrate_table[b + 1];
  13760. upper_range = b + 1;
  13761. lower_range_kbps = full_bitrate_table[b];
  13762. lower_range = (b);
  13763. break;
  13764. /* We found upper range */
  13765. }
  13766. }
  13767.  
  13768. /* Determine which range the value specified is closer to */
  13769. if ((upper_range_kbps - bitrate) > (bitrate - lower_range_kbps)) {
  13770. return lower_range;
  13771. }
  13772. return upper_range;
  13773. }
  13774.  
  13775. function optimum_samplefreq(lowpassfreq, input_samplefreq) {
  13776. /*
  13777. * Rules:
  13778. *
  13779. * - if possible, sfb21 should NOT be used
  13780. */
  13781. var suggested_samplefreq = 44100;
  13782.  
  13783. if (input_samplefreq >= 48000)
  13784. suggested_samplefreq = 48000;
  13785. else if (input_samplefreq >= 44100)
  13786. suggested_samplefreq = 44100;
  13787. else if (input_samplefreq >= 32000)
  13788. suggested_samplefreq = 32000;
  13789. else if (input_samplefreq >= 24000)
  13790. suggested_samplefreq = 24000;
  13791. else if (input_samplefreq >= 22050)
  13792. suggested_samplefreq = 22050;
  13793. else if (input_samplefreq >= 16000)
  13794. suggested_samplefreq = 16000;
  13795. else if (input_samplefreq >= 12000)
  13796. suggested_samplefreq = 12000;
  13797. else if (input_samplefreq >= 11025)
  13798. suggested_samplefreq = 11025;
  13799. else if (input_samplefreq >= 8000)
  13800. suggested_samplefreq = 8000;
  13801.  
  13802. if (lowpassfreq == -1)
  13803. return suggested_samplefreq;
  13804.  
  13805. if (lowpassfreq <= 15960)
  13806. suggested_samplefreq = 44100;
  13807. if (lowpassfreq <= 15250)
  13808. suggested_samplefreq = 32000;
  13809. if (lowpassfreq <= 11220)
  13810. suggested_samplefreq = 24000;
  13811. if (lowpassfreq <= 9970)
  13812. suggested_samplefreq = 22050;
  13813. if (lowpassfreq <= 7230)
  13814. suggested_samplefreq = 16000;
  13815. if (lowpassfreq <= 5420)
  13816. suggested_samplefreq = 12000;
  13817. if (lowpassfreq <= 4510)
  13818. suggested_samplefreq = 11025;
  13819. if (lowpassfreq <= 3970)
  13820. suggested_samplefreq = 8000;
  13821.  
  13822. if (input_samplefreq < suggested_samplefreq) {
  13823. /*
  13824. * choose a valid MPEG sample frequency above the input sample
  13825. * frequency to avoid SFB21/12 bitrate bloat rh 061115
  13826. */
  13827. if (input_samplefreq > 44100) {
  13828. return 48000;
  13829. }
  13830. if (input_samplefreq > 32000) {
  13831. return 44100;
  13832. }
  13833. if (input_samplefreq > 24000) {
  13834. return 32000;
  13835. }
  13836. if (input_samplefreq > 22050) {
  13837. return 24000;
  13838. }
  13839. if (input_samplefreq > 16000) {
  13840. return 22050;
  13841. }
  13842. if (input_samplefreq > 12000) {
  13843. return 16000;
  13844. }
  13845. if (input_samplefreq > 11025) {
  13846. return 12000;
  13847. }
  13848. if (input_samplefreq > 8000) {
  13849. return 11025;
  13850. }
  13851. return 8000;
  13852. }
  13853. return suggested_samplefreq;
  13854. }
  13855.  
  13856. /**
  13857. * convert samp freq in Hz to index
  13858. */
  13859. function SmpFrqIndex(sample_freq, gpf) {
  13860. switch (sample_freq) {
  13861. case 44100:
  13862. gpf.version = 1;
  13863. return 0;
  13864. case 48000:
  13865. gpf.version = 1;
  13866. return 1;
  13867. case 32000:
  13868. gpf.version = 1;
  13869. return 2;
  13870. case 22050:
  13871. gpf.version = 0;
  13872. return 0;
  13873. case 24000:
  13874. gpf.version = 0;
  13875. return 1;
  13876. case 16000:
  13877. gpf.version = 0;
  13878. return 2;
  13879. case 11025:
  13880. gpf.version = 0;
  13881. return 0;
  13882. case 12000:
  13883. gpf.version = 0;
  13884. return 1;
  13885. case 8000:
  13886. gpf.version = 0;
  13887. return 2;
  13888. default:
  13889. gpf.version = 0;
  13890. return -1;
  13891. }
  13892. }
  13893.  
  13894. /**
  13895. * @param bRate
  13896. * legal rates from 8 to 320
  13897. */
  13898. function FindNearestBitrate(bRate, version, samplerate) {
  13899. /* MPEG-1 or MPEG-2 LSF */
  13900. if (samplerate < 16000)
  13901. version = 2;
  13902.  
  13903. var bitrate = Tables.bitrate_table[version][1];
  13904.  
  13905. for (var i = 2; i <= 14; i++) {
  13906. if (Tables.bitrate_table[version][i] > 0) {
  13907. if (Math.abs(Tables.bitrate_table[version][i] - bRate) < Math
  13908. .abs(bitrate - bRate))
  13909. bitrate = Tables.bitrate_table[version][i];
  13910. }
  13911. }
  13912. return bitrate;
  13913. }
  13914.  
  13915. /**
  13916. * @param bRate
  13917. * legal rates from 32 to 448 kbps
  13918. * @param version
  13919. * MPEG-1 or MPEG-2/2.5 LSF
  13920. */
  13921. function BitrateIndex(bRate, version, samplerate) {
  13922. /* convert bitrate in kbps to index */
  13923. if (samplerate < 16000)
  13924. version = 2;
  13925. for (var i = 0; i <= 14; i++) {
  13926. if (Tables.bitrate_table[version][i] > 0) {
  13927. if (Tables.bitrate_table[version][i] == bRate) {
  13928. return i;
  13929. }
  13930. }
  13931. }
  13932. return -1;
  13933. }
  13934.  
  13935. function optimum_bandwidth(lh, bitrate) {
  13936. /**
  13937. * <PRE>
  13938. * Input:
  13939. * bitrate total bitrate in kbps
  13940. *
  13941. * Output:
  13942. * lowerlimit: best lowpass frequency limit for input filter in Hz
  13943. * upperlimit: best highpass frequency limit for input filter in Hz
  13944. * </PRE>
  13945. */
  13946. var freq_map = [new BandPass(8, 2000),
  13947. new BandPass(16, 3700), new BandPass(24, 3900),
  13948. new BandPass(32, 5500), new BandPass(40, 7000),
  13949. new BandPass(48, 7500), new BandPass(56, 10000),
  13950. new BandPass(64, 11000), new BandPass(80, 13500),
  13951. new BandPass(96, 15100), new BandPass(112, 15600),
  13952. new BandPass(128, 17000), new BandPass(160, 17500),
  13953. new BandPass(192, 18600), new BandPass(224, 19400),
  13954. new BandPass(256, 19700), new BandPass(320, 20500)];
  13955.  
  13956. var table_index = self.nearestBitrateFullIndex(bitrate);
  13957. lh.lowerlimit = freq_map[table_index].lowpass;
  13958. }
  13959.  
  13960. function lame_init_params_ppflt(gfp) {
  13961. var gfc = gfp.internal_flags;
  13962. /***************************************************************/
  13963. /* compute info needed for polyphase filter (filter type==0, default) */
  13964. /***************************************************************/
  13965.  
  13966. var lowpass_band = 32;
  13967. var highpass_band = -1;
  13968.  
  13969. if (gfc.lowpass1 > 0) {
  13970. var minband = 999;
  13971. for (var band = 0; band <= 31; band++) {
  13972. var freq = (band / 31.0);
  13973. /* this band and above will be zeroed: */
  13974. if (freq >= gfc.lowpass2) {
  13975. lowpass_band = Math.min(lowpass_band, band);
  13976. }
  13977. if (gfc.lowpass1 < freq && freq < gfc.lowpass2) {
  13978. minband = Math.min(minband, band);
  13979. }
  13980. }
  13981.  
  13982. /*
  13983. * compute the *actual* transition band implemented by the polyphase
  13984. * filter
  13985. */
  13986. if (minband == 999) {
  13987. gfc.lowpass1 = (lowpass_band - .75) / 31.0;
  13988. } else {
  13989. gfc.lowpass1 = (minband - .75) / 31.0;
  13990. }
  13991. gfc.lowpass2 = lowpass_band / 31.0;
  13992. }
  13993.  
  13994. /*
  13995. * make sure highpass filter is within 90% of what the effective
  13996. * highpass frequency will be
  13997. */
  13998. if (gfc.highpass2 > 0) {
  13999. if (gfc.highpass2 < .9 * (.75 / 31.0)) {
  14000. gfc.highpass1 = 0;
  14001. gfc.highpass2 = 0;
  14002. System.err.println("Warning: highpass filter disabled. "
  14003. + "highpass frequency too small\n");
  14004. }
  14005. }
  14006.  
  14007. if (gfc.highpass2 > 0) {
  14008. var maxband = -1;
  14009. for (var band = 0; band <= 31; band++) {
  14010. var freq = band / 31.0;
  14011. /* this band and below will be zereod */
  14012. if (freq <= gfc.highpass1) {
  14013. highpass_band = Math.max(highpass_band, band);
  14014. }
  14015. if (gfc.highpass1 < freq && freq < gfc.highpass2) {
  14016. maxband = Math.max(maxband, band);
  14017. }
  14018. }
  14019. /*
  14020. * compute the *actual* transition band implemented by the polyphase
  14021. * filter
  14022. */
  14023. gfc.highpass1 = highpass_band / 31.0;
  14024. if (maxband == -1) {
  14025. gfc.highpass2 = (highpass_band + .75) / 31.0;
  14026. } else {
  14027. gfc.highpass2 = (maxband + .75) / 31.0;
  14028. }
  14029. }
  14030.  
  14031. for (var band = 0; band < 32; band++) {
  14032. var fc1, fc2;
  14033. var freq = band / 31.0;
  14034. if (gfc.highpass2 > gfc.highpass1) {
  14035. fc1 = filter_coef((gfc.highpass2 - freq)
  14036. / (gfc.highpass2 - gfc.highpass1 + 1e-20));
  14037. } else {
  14038. fc1 = 1.0;
  14039. }
  14040. if (gfc.lowpass2 > gfc.lowpass1) {
  14041. fc2 = filter_coef((freq - gfc.lowpass1)
  14042. / (gfc.lowpass2 - gfc.lowpass1 + 1e-20));
  14043. } else {
  14044. fc2 = 1.0;
  14045. }
  14046. gfc.amp_filter[band] = (fc1 * fc2);
  14047. }
  14048. }
  14049.  
  14050. function lame_init_qval(gfp) {
  14051. var gfc = gfp.internal_flags;
  14052.  
  14053. switch (gfp.quality) {
  14054. default:
  14055. case 9: /* no psymodel, no noise shaping */
  14056. gfc.psymodel = 0;
  14057. gfc.noise_shaping = 0;
  14058. gfc.noise_shaping_amp = 0;
  14059. gfc.noise_shaping_stop = 0;
  14060. gfc.use_best_huffman = 0;
  14061. gfc.full_outer_loop = 0;
  14062. break;
  14063.  
  14064. case 8:
  14065. gfp.quality = 7;
  14066. //$FALL-THROUGH$
  14067. case 7:
  14068. /*
  14069. * use psymodel (for short block and m/s switching), but no noise
  14070. * shapping
  14071. */
  14072. gfc.psymodel = 1;
  14073. gfc.noise_shaping = 0;
  14074. gfc.noise_shaping_amp = 0;
  14075. gfc.noise_shaping_stop = 0;
  14076. gfc.use_best_huffman = 0;
  14077. gfc.full_outer_loop = 0;
  14078. break;
  14079.  
  14080. case 6:
  14081. gfc.psymodel = 1;
  14082. if (gfc.noise_shaping == 0)
  14083. gfc.noise_shaping = 1;
  14084. gfc.noise_shaping_amp = 0;
  14085. gfc.noise_shaping_stop = 0;
  14086. if (gfc.subblock_gain == -1)
  14087. gfc.subblock_gain = 1;
  14088. gfc.use_best_huffman = 0;
  14089. gfc.full_outer_loop = 0;
  14090. break;
  14091.  
  14092. case 5:
  14093. gfc.psymodel = 1;
  14094. if (gfc.noise_shaping == 0)
  14095. gfc.noise_shaping = 1;
  14096. gfc.noise_shaping_amp = 0;
  14097. gfc.noise_shaping_stop = 0;
  14098. if (gfc.subblock_gain == -1)
  14099. gfc.subblock_gain = 1;
  14100. gfc.use_best_huffman = 0;
  14101. gfc.full_outer_loop = 0;
  14102. break;
  14103.  
  14104. case 4:
  14105. gfc.psymodel = 1;
  14106. if (gfc.noise_shaping == 0)
  14107. gfc.noise_shaping = 1;
  14108. gfc.noise_shaping_amp = 0;
  14109. gfc.noise_shaping_stop = 0;
  14110. if (gfc.subblock_gain == -1)
  14111. gfc.subblock_gain = 1;
  14112. gfc.use_best_huffman = 1;
  14113. gfc.full_outer_loop = 0;
  14114. break;
  14115.  
  14116. case 3:
  14117. gfc.psymodel = 1;
  14118. if (gfc.noise_shaping == 0)
  14119. gfc.noise_shaping = 1;
  14120. gfc.noise_shaping_amp = 1;
  14121. gfc.noise_shaping_stop = 1;
  14122. if (gfc.subblock_gain == -1)
  14123. gfc.subblock_gain = 1;
  14124. gfc.use_best_huffman = 1;
  14125. gfc.full_outer_loop = 0;
  14126. break;
  14127.  
  14128. case 2:
  14129. gfc.psymodel = 1;
  14130. if (gfc.noise_shaping == 0)
  14131. gfc.noise_shaping = 1;
  14132. if (gfc.substep_shaping == 0)
  14133. gfc.substep_shaping = 2;
  14134. gfc.noise_shaping_amp = 1;
  14135. gfc.noise_shaping_stop = 1;
  14136. if (gfc.subblock_gain == -1)
  14137. gfc.subblock_gain = 1;
  14138. gfc.use_best_huffman = 1;
  14139. /* inner loop */
  14140. gfc.full_outer_loop = 0;
  14141. break;
  14142.  
  14143. case 1:
  14144. gfc.psymodel = 1;
  14145. if (gfc.noise_shaping == 0)
  14146. gfc.noise_shaping = 1;
  14147. if (gfc.substep_shaping == 0)
  14148. gfc.substep_shaping = 2;
  14149. gfc.noise_shaping_amp = 2;
  14150. gfc.noise_shaping_stop = 1;
  14151. if (gfc.subblock_gain == -1)
  14152. gfc.subblock_gain = 1;
  14153. gfc.use_best_huffman = 1;
  14154. gfc.full_outer_loop = 0;
  14155. break;
  14156.  
  14157. case 0:
  14158. gfc.psymodel = 1;
  14159. if (gfc.noise_shaping == 0)
  14160. gfc.noise_shaping = 1;
  14161. if (gfc.substep_shaping == 0)
  14162. gfc.substep_shaping = 2;
  14163. gfc.noise_shaping_amp = 2;
  14164. gfc.noise_shaping_stop = 1;
  14165. if (gfc.subblock_gain == -1)
  14166. gfc.subblock_gain = 1;
  14167. gfc.use_best_huffman = 1;
  14168. /*
  14169. * type 2 disabled because of it slowness, in favor of full outer
  14170. * loop search
  14171. */
  14172. gfc.full_outer_loop = 0;
  14173. /*
  14174. * full outer loop search disabled because of audible distortions it
  14175. * may generate rh 060629
  14176. */
  14177. break;
  14178. }
  14179.  
  14180. }
  14181.  
  14182. function lame_init_bitstream(gfp) {
  14183. var gfc = gfp.internal_flags;
  14184. gfp.frameNum = 0;
  14185.  
  14186. if (gfp.write_id3tag_automatic) {
  14187. id3.id3tag_write_v2(gfp);
  14188. }
  14189. /* initialize histogram data optionally used by frontend */
  14190.  
  14191. gfc.bitrate_stereoMode_Hist = new_int_n([16, 4 + 1]);
  14192. gfc.bitrate_blockType_Hist = new_int_n([16, 4 + 1 + 1]);
  14193.  
  14194. gfc.PeakSample = 0.0;
  14195.  
  14196. /* Write initial VBR Header to bitstream and init VBR data */
  14197. if (gfp.bWriteVbrTag)
  14198. vbr.InitVbrTag(gfp);
  14199. }
  14200.  
  14201. /********************************************************************
  14202. * initialize internal params based on data in gf (globalflags struct filled
  14203. * in by calling program)
  14204. *
  14205. * OUTLINE:
  14206. *
  14207. * We first have some complex code to determine bitrate, output samplerate
  14208. * and mode. It is complicated by the fact that we allow the user to set
  14209. * some or all of these parameters, and need to determine best possible
  14210. * values for the rest of them:
  14211. *
  14212. * 1. set some CPU related flags 2. check if we are mono.mono, stereo.mono
  14213. * or stereo.stereo 3. compute bitrate and output samplerate: user may have
  14214. * set compression ratio user may have set a bitrate user may have set a
  14215. * output samplerate 4. set some options which depend on output samplerate
  14216. * 5. compute the actual compression ratio 6. set mode based on compression
  14217. * ratio
  14218. *
  14219. * The remaining code is much simpler - it just sets options based on the
  14220. * mode & compression ratio:
  14221. *
  14222. * set allow_diff_short based on mode select lowpass filter based on
  14223. * compression ratio & mode set the bitrate index, and min/max bitrates for
  14224. * VBR modes disable VBR tag if it is not appropriate initialize the
  14225. * bitstream initialize scalefac_band data set sideinfo_len (based on
  14226. * channels, CRC, out_samplerate) write an id3v2 tag into the bitstream
  14227. * write VBR tag into the bitstream set mpeg1/2 flag estimate the number of
  14228. * frames (based on a lot of data)
  14229. *
  14230. * now we set more flags: nspsytune: see code VBR modes see code CBR/ABR see
  14231. * code
  14232. *
  14233. * Finally, we set the algorithm flags based on the gfp.quality value
  14234. * lame_init_qval(gfp);
  14235. *
  14236. ********************************************************************/
  14237. this.lame_init_params = function (gfp) {
  14238. var gfc = gfp.internal_flags;
  14239.  
  14240. gfc.Class_ID = 0;
  14241. if (gfc.ATH == null)
  14242. gfc.ATH = new ATH();
  14243. if (gfc.PSY == null)
  14244. gfc.PSY = new PSY();
  14245. if (gfc.rgdata == null)
  14246. gfc.rgdata = new ReplayGain();
  14247.  
  14248. gfc.channels_in = gfp.num_channels;
  14249. if (gfc.channels_in == 1)
  14250. gfp.mode = MPEGMode.MONO;
  14251. gfc.channels_out = (gfp.mode == MPEGMode.MONO) ? 1 : 2;
  14252. gfc.mode_ext = Encoder.MPG_MD_MS_LR;
  14253. if (gfp.mode == MPEGMode.MONO)
  14254. gfp.force_ms = false;
  14255. /*
  14256. * don't allow forced mid/side stereo for mono output
  14257. */
  14258.  
  14259. if (gfp.VBR == VbrMode.vbr_off && gfp.VBR_mean_bitrate_kbps != 128
  14260. && gfp.brate == 0)
  14261. gfp.brate = gfp.VBR_mean_bitrate_kbps;
  14262.  
  14263. if (gfp.VBR == VbrMode.vbr_off || gfp.VBR == VbrMode.vbr_mtrh
  14264. || gfp.VBR == VbrMode.vbr_mt) {
  14265. /* these modes can handle free format condition */
  14266. } else {
  14267. gfp.free_format = false;
  14268. /* mode can't be mixed with free format */
  14269. }
  14270.  
  14271. if (gfp.VBR == VbrMode.vbr_off && gfp.brate == 0) {
  14272. /* no bitrate or compression ratio specified, use 11.025 */
  14273. if (BitStream.EQ(gfp.compression_ratio, 0))
  14274. gfp.compression_ratio = 11.025;
  14275. /*
  14276. * rate to compress a CD down to exactly 128000 bps
  14277. */
  14278. }
  14279.  
  14280. /* find bitrate if user specify a compression ratio */
  14281. if (gfp.VBR == VbrMode.vbr_off && gfp.compression_ratio > 0) {
  14282.  
  14283. if (gfp.out_samplerate == 0)
  14284. gfp.out_samplerate = map2MP3Frequency((int)(0.97 * gfp.in_samplerate));
  14285. /*
  14286. * round up with a margin of 3 %
  14287. */
  14288.  
  14289. /*
  14290. * choose a bitrate for the output samplerate which achieves
  14291. * specified compression ratio
  14292. */
  14293. gfp.brate = 0 | (gfp.out_samplerate * 16 * gfc.channels_out / (1.e3 * gfp.compression_ratio));
  14294.  
  14295. /* we need the version for the bitrate table look up */
  14296. gfc.samplerate_index = SmpFrqIndex(gfp.out_samplerate, gfp);
  14297.  
  14298. if (!gfp.free_format) /*
  14299. * for non Free Format find the nearest allowed
  14300. * bitrate
  14301. */
  14302. gfp.brate = FindNearestBitrate(gfp.brate, gfp.version,
  14303. gfp.out_samplerate);
  14304. }
  14305.  
  14306. if (gfp.out_samplerate != 0) {
  14307. if (gfp.out_samplerate < 16000) {
  14308. gfp.VBR_mean_bitrate_kbps = Math.max(gfp.VBR_mean_bitrate_kbps,
  14309. 8);
  14310. gfp.VBR_mean_bitrate_kbps = Math.min(gfp.VBR_mean_bitrate_kbps,
  14311. 64);
  14312. } else if (gfp.out_samplerate < 32000) {
  14313. gfp.VBR_mean_bitrate_kbps = Math.max(gfp.VBR_mean_bitrate_kbps,
  14314. 8);
  14315. gfp.VBR_mean_bitrate_kbps = Math.min(gfp.VBR_mean_bitrate_kbps,
  14316. 160);
  14317. } else {
  14318. gfp.VBR_mean_bitrate_kbps = Math.max(gfp.VBR_mean_bitrate_kbps,
  14319. 32);
  14320. gfp.VBR_mean_bitrate_kbps = Math.min(gfp.VBR_mean_bitrate_kbps,
  14321. 320);
  14322. }
  14323. }
  14324.  
  14325. /****************************************************************/
  14326. /* if a filter has not been enabled, see if we should add one: */
  14327. /****************************************************************/
  14328. if (gfp.lowpassfreq == 0) {
  14329. var lowpass = 16000.;
  14330.  
  14331. switch (gfp.VBR) {
  14332. case VbrMode.vbr_off:
  14333. {
  14334. var lh = new LowPassHighPass();
  14335. optimum_bandwidth(lh, gfp.brate);
  14336. lowpass = lh.lowerlimit;
  14337. break;
  14338. }
  14339. case VbrMode.vbr_abr:
  14340. {
  14341. var lh = new LowPassHighPass();
  14342. optimum_bandwidth(lh, gfp.VBR_mean_bitrate_kbps);
  14343. lowpass = lh.lowerlimit;
  14344. break;
  14345. }
  14346. case VbrMode.vbr_rh:
  14347. {
  14348. var x = [19500, 19000, 18600, 18000, 17500, 16000,
  14349. 15600, 14900, 12500, 10000, 3950];
  14350. if (0 <= gfp.VBR_q && gfp.VBR_q <= 9) {
  14351. var a = x[gfp.VBR_q], b = x[gfp.VBR_q + 1], m = gfp.VBR_q_frac;
  14352. lowpass = linear_int(a, b, m);
  14353. } else {
  14354. lowpass = 19500;
  14355. }
  14356. break;
  14357. }
  14358. default:
  14359. {
  14360. var x = [19500, 19000, 18500, 18000, 17500, 16500,
  14361. 15500, 14500, 12500, 9500, 3950];
  14362. if (0 <= gfp.VBR_q && gfp.VBR_q <= 9) {
  14363. var a = x[gfp.VBR_q], b = x[gfp.VBR_q + 1], m = gfp.VBR_q_frac;
  14364. lowpass = linear_int(a, b, m);
  14365. } else {
  14366. lowpass = 19500;
  14367. }
  14368. }
  14369. }
  14370. if (gfp.mode == MPEGMode.MONO
  14371. && (gfp.VBR == VbrMode.vbr_off || gfp.VBR == VbrMode.vbr_abr))
  14372. lowpass *= 1.5;
  14373.  
  14374. gfp.lowpassfreq = lowpass | 0;
  14375. }
  14376.  
  14377. if (gfp.out_samplerate == 0) {
  14378. if (2 * gfp.lowpassfreq > gfp.in_samplerate) {
  14379. gfp.lowpassfreq = gfp.in_samplerate / 2;
  14380. }
  14381. gfp.out_samplerate = optimum_samplefreq(gfp.lowpassfreq | 0,
  14382. gfp.in_samplerate);
  14383. }
  14384.  
  14385. gfp.lowpassfreq = Math.min(20500, gfp.lowpassfreq);
  14386. gfp.lowpassfreq = Math.min(gfp.out_samplerate / 2, gfp.lowpassfreq);
  14387.  
  14388. if (gfp.VBR == VbrMode.vbr_off) {
  14389. gfp.compression_ratio = gfp.out_samplerate * 16 * gfc.channels_out
  14390. / (1.e3 * gfp.brate);
  14391. }
  14392. if (gfp.VBR == VbrMode.vbr_abr) {
  14393. gfp.compression_ratio = gfp.out_samplerate * 16 * gfc.channels_out
  14394. / (1.e3 * gfp.VBR_mean_bitrate_kbps);
  14395. }
  14396.  
  14397. /*
  14398. * do not compute ReplayGain values and do not find the peak sample if
  14399. * we can't store them
  14400. */
  14401. if (!gfp.bWriteVbrTag) {
  14402. gfp.findReplayGain = false;
  14403. gfp.decode_on_the_fly = false;
  14404. gfc.findPeakSample = false;
  14405. }
  14406. gfc.findReplayGain = gfp.findReplayGain;
  14407. gfc.decode_on_the_fly = gfp.decode_on_the_fly;
  14408.  
  14409. if (gfc.decode_on_the_fly)
  14410. gfc.findPeakSample = true;
  14411.  
  14412. if (gfc.findReplayGain) {
  14413. if (ga.InitGainAnalysis(gfc.rgdata, gfp.out_samplerate) == GainAnalysis.INIT_GAIN_ANALYSIS_ERROR) {
  14414. gfp.internal_flags = null;
  14415. return -6;
  14416. }
  14417. }
  14418.  
  14419. if (gfc.decode_on_the_fly && !gfp.decode_only) {
  14420. if (gfc.hip != null) {
  14421. mpglib.hip_decode_exit(gfc.hip);
  14422. }
  14423. gfc.hip = mpglib.hip_decode_init();
  14424. }
  14425.  
  14426. gfc.mode_gr = gfp.out_samplerate <= 24000 ? 1 : 2;
  14427. /*
  14428. * Number of granules per frame
  14429. */
  14430. gfp.framesize = 576 * gfc.mode_gr;
  14431. gfp.encoder_delay = Encoder.ENCDELAY;
  14432.  
  14433. gfc.resample_ratio = gfp.in_samplerate / gfp.out_samplerate;
  14434.  
  14435. /**
  14436. * <PRE>
  14437. * sample freq bitrate compression ratio
  14438. * [kHz] [kbps/channel] for 16 bit input
  14439. * 44.1 56 12.6
  14440. * 44.1 64 11.025
  14441. * 44.1 80 8.82
  14442. * 22.05 24 14.7
  14443. * 22.05 32 11.025
  14444. * 22.05 40 8.82
  14445. * 16 16 16.0
  14446. * 16 24 10.667
  14447. * </PRE>
  14448. */
  14449. /**
  14450. * <PRE>
  14451. * For VBR, take a guess at the compression_ratio.
  14452. * For example:
  14453. *
  14454. * VBR_q compression like
  14455. * - 4.4 320 kbps/44 kHz
  14456. * 0...1 5.5 256 kbps/44 kHz
  14457. * 2 7.3 192 kbps/44 kHz
  14458. * 4 8.8 160 kbps/44 kHz
  14459. * 6 11 128 kbps/44 kHz
  14460. * 9 14.7 96 kbps
  14461. *
  14462. * for lower bitrates, downsample with --resample
  14463. * </PRE>
  14464. */
  14465. switch (gfp.VBR) {
  14466. case VbrMode.vbr_mt:
  14467. case VbrMode.vbr_rh:
  14468. case VbrMode.vbr_mtrh:
  14469. {
  14470. /* numbers are a bit strange, but they determine the lowpass value */
  14471. var cmp = [5.7, 6.5, 7.3, 8.2, 10, 11.9, 13, 14,
  14472. 15, 16.5];
  14473. gfp.compression_ratio = cmp[gfp.VBR_q];
  14474. }
  14475. break;
  14476. case VbrMode.vbr_abr:
  14477. gfp.compression_ratio = gfp.out_samplerate * 16 * gfc.channels_out
  14478. / (1.e3 * gfp.VBR_mean_bitrate_kbps);
  14479. break;
  14480. default:
  14481. gfp.compression_ratio = gfp.out_samplerate * 16 * gfc.channels_out
  14482. / (1.e3 * gfp.brate);
  14483. break;
  14484. }
  14485.  
  14486. /*
  14487. * mode = -1 (not set by user) or mode = MONO (because of only 1 input
  14488. * channel). If mode has not been set, then select J-STEREO
  14489. */
  14490. if (gfp.mode == MPEGMode.NOT_SET) {
  14491. gfp.mode = MPEGMode.JOINT_STEREO;
  14492. }
  14493.  
  14494. /* apply user driven high pass filter */
  14495. if (gfp.highpassfreq > 0) {
  14496. gfc.highpass1 = 2. * gfp.highpassfreq;
  14497.  
  14498. if (gfp.highpasswidth >= 0)
  14499. gfc.highpass2 = 2. * (gfp.highpassfreq + gfp.highpasswidth);
  14500. else
  14501. /* 0% above on default */
  14502. gfc.highpass2 = (1 + 0.00) * 2. * gfp.highpassfreq;
  14503.  
  14504. gfc.highpass1 /= gfp.out_samplerate;
  14505. gfc.highpass2 /= gfp.out_samplerate;
  14506. } else {
  14507. gfc.highpass1 = 0;
  14508. gfc.highpass2 = 0;
  14509. }
  14510. /* apply user driven low pass filter */
  14511. if (gfp.lowpassfreq > 0) {
  14512. gfc.lowpass2 = 2. * gfp.lowpassfreq;
  14513. if (gfp.lowpasswidth >= 0) {
  14514. gfc.lowpass1 = 2. * (gfp.lowpassfreq - gfp.lowpasswidth);
  14515. if (gfc.lowpass1 < 0) /* has to be >= 0 */
  14516. gfc.lowpass1 = 0;
  14517. } else { /* 0% below on default */
  14518. gfc.lowpass1 = (1 - 0.00) * 2. * gfp.lowpassfreq;
  14519. }
  14520. gfc.lowpass1 /= gfp.out_samplerate;
  14521. gfc.lowpass2 /= gfp.out_samplerate;
  14522. } else {
  14523. gfc.lowpass1 = 0;
  14524. gfc.lowpass2 = 0;
  14525. }
  14526.  
  14527. /**********************************************************************/
  14528. /* compute info needed for polyphase filter (filter type==0, default) */
  14529. /**********************************************************************/
  14530. lame_init_params_ppflt(gfp);
  14531. /*******************************************************
  14532. * samplerate and bitrate index
  14533. *******************************************************/
  14534. gfc.samplerate_index = SmpFrqIndex(gfp.out_samplerate, gfp);
  14535. if (gfc.samplerate_index < 0) {
  14536. gfp.internal_flags = null;
  14537. return -1;
  14538. }
  14539.  
  14540. if (gfp.VBR == VbrMode.vbr_off) {
  14541. if (gfp.free_format) {
  14542. gfc.bitrate_index = 0;
  14543. } else {
  14544. gfp.brate = FindNearestBitrate(gfp.brate, gfp.version,
  14545. gfp.out_samplerate);
  14546. gfc.bitrate_index = BitrateIndex(gfp.brate, gfp.version,
  14547. gfp.out_samplerate);
  14548. if (gfc.bitrate_index <= 0) {
  14549. gfp.internal_flags = null;
  14550. return -1;
  14551. }
  14552. }
  14553. } else {
  14554. gfc.bitrate_index = 1;
  14555. }
  14556.  
  14557. /* for CBR, we will write an "info" tag. */
  14558.  
  14559. if (gfp.analysis)
  14560. gfp.bWriteVbrTag = false;
  14561.  
  14562. /* some file options not allowed if output is: not specified or stdout */
  14563. if (gfc.pinfo != null)
  14564. gfp.bWriteVbrTag = false;
  14565. /* disable Xing VBR tag */
  14566.  
  14567. bs.init_bit_stream_w(gfc);
  14568.  
  14569. var j = gfc.samplerate_index + (3 * gfp.version) + 6
  14570. * (gfp.out_samplerate < 16000 ? 1 : 0);
  14571. for (var i = 0; i < Encoder.SBMAX_l + 1; i++)
  14572. gfc.scalefac_band.l[i] = qupvt.sfBandIndex[j].l[i];
  14573.  
  14574. for (var i = 0; i < Encoder.PSFB21 + 1; i++) {
  14575. var size = (gfc.scalefac_band.l[22] - gfc.scalefac_band.l[21])
  14576. / Encoder.PSFB21;
  14577. var start = gfc.scalefac_band.l[21] + i * size;
  14578. gfc.scalefac_band.psfb21[i] = start;
  14579. }
  14580. gfc.scalefac_band.psfb21[Encoder.PSFB21] = 576;
  14581.  
  14582. for (var i = 0; i < Encoder.SBMAX_s + 1; i++)
  14583. gfc.scalefac_band.s[i] = qupvt.sfBandIndex[j].s[i];
  14584.  
  14585. for (var i = 0; i < Encoder.PSFB12 + 1; i++) {
  14586. var size = (gfc.scalefac_band.s[13] - gfc.scalefac_band.s[12])
  14587. / Encoder.PSFB12;
  14588. var start = gfc.scalefac_band.s[12] + i * size;
  14589. gfc.scalefac_band.psfb12[i] = start;
  14590. }
  14591. gfc.scalefac_band.psfb12[Encoder.PSFB12] = 192;
  14592. /* determine the mean bitrate for main data */
  14593. if (gfp.version == 1) /* MPEG 1 */
  14594. gfc.sideinfo_len = (gfc.channels_out == 1) ? 4 + 17 : 4 + 32;
  14595. else
  14596. /* MPEG 2 */
  14597. gfc.sideinfo_len = (gfc.channels_out == 1) ? 4 + 9 : 4 + 17;
  14598.  
  14599. if (gfp.error_protection)
  14600. gfc.sideinfo_len += 2;
  14601.  
  14602. lame_init_bitstream(gfp);
  14603.  
  14604. gfc.Class_ID = LAME_ID;
  14605.  
  14606. {
  14607. var k;
  14608.  
  14609. for (k = 0; k < 19; k++)
  14610. gfc.nsPsy.pefirbuf[k] = 700 * gfc.mode_gr * gfc.channels_out;
  14611.  
  14612. if (gfp.ATHtype == -1)
  14613. gfp.ATHtype = 4;
  14614. }
  14615.  
  14616. switch (gfp.VBR) {
  14617.  
  14618. case VbrMode.vbr_mt:
  14619. gfp.VBR = VbrMode.vbr_mtrh;
  14620. //$FALL-THROUGH$
  14621. case VbrMode.vbr_mtrh:
  14622. {
  14623. if (gfp.useTemporal == null) {
  14624. gfp.useTemporal = false;
  14625. /* off by default for this VBR mode */
  14626. }
  14627.  
  14628. p.apply_preset(gfp, 500 - (gfp.VBR_q * 10), 0);
  14629. /**
  14630. * <PRE>
  14631. * The newer VBR code supports only a limited
  14632. * subset of quality levels:
  14633. * 9-5=5 are the same, uses x^3/4 quantization
  14634. * 4-0=0 are the same 5 plus best huffman divide code
  14635. * </PRE>
  14636. */
  14637. if (gfp.quality < 0)
  14638. gfp.quality = LAME_DEFAULT_QUALITY;
  14639. if (gfp.quality < 5)
  14640. gfp.quality = 0;
  14641. if (gfp.quality > 5)
  14642. gfp.quality = 5;
  14643.  
  14644. gfc.PSY.mask_adjust = gfp.maskingadjust;
  14645. gfc.PSY.mask_adjust_short = gfp.maskingadjust_short;
  14646.  
  14647. /*
  14648. * sfb21 extra only with MPEG-1 at higher sampling rates
  14649. */
  14650. if (gfp.experimentalY)
  14651. gfc.sfb21_extra = false;
  14652. else
  14653. gfc.sfb21_extra = (gfp.out_samplerate > 44000);
  14654.  
  14655. gfc.iteration_loop = new VBRNewIterationLoop(qu);
  14656. break;
  14657.  
  14658. }
  14659. case VbrMode.vbr_rh:
  14660. {
  14661.  
  14662. p.apply_preset(gfp, 500 - (gfp.VBR_q * 10), 0);
  14663.  
  14664. gfc.PSY.mask_adjust = gfp.maskingadjust;
  14665. gfc.PSY.mask_adjust_short = gfp.maskingadjust_short;
  14666.  
  14667. /*
  14668. * sfb21 extra only with MPEG-1 at higher sampling rates
  14669. */
  14670. if (gfp.experimentalY)
  14671. gfc.sfb21_extra = false;
  14672. else
  14673. gfc.sfb21_extra = (gfp.out_samplerate > 44000);
  14674.  
  14675. /*
  14676. * VBR needs at least the output of GPSYCHO, so we have to garantee
  14677. * that by setting a minimum quality level, actually level 6 does
  14678. * it. down to level 6
  14679. */
  14680. if (gfp.quality > 6)
  14681. gfp.quality = 6;
  14682.  
  14683. if (gfp.quality < 0)
  14684. gfp.quality = LAME_DEFAULT_QUALITY;
  14685.  
  14686. gfc.iteration_loop = new VBROldIterationLoop(qu);
  14687. break;
  14688. }
  14689.  
  14690. default: /* cbr/abr */
  14691. {
  14692. var vbrmode;
  14693.  
  14694. /*
  14695. * no sfb21 extra with CBR code
  14696. */
  14697. gfc.sfb21_extra = false;
  14698.  
  14699. if (gfp.quality < 0)
  14700. gfp.quality = LAME_DEFAULT_QUALITY;
  14701.  
  14702. vbrmode = gfp.VBR;
  14703. if (vbrmode == VbrMode.vbr_off)
  14704. gfp.VBR_mean_bitrate_kbps = gfp.brate;
  14705. /* second, set parameters depending on bitrate */
  14706. p.apply_preset(gfp, gfp.VBR_mean_bitrate_kbps, 0);
  14707. gfp.VBR = vbrmode;
  14708.  
  14709. gfc.PSY.mask_adjust = gfp.maskingadjust;
  14710. gfc.PSY.mask_adjust_short = gfp.maskingadjust_short;
  14711.  
  14712. if (vbrmode == VbrMode.vbr_off) {
  14713. gfc.iteration_loop = new CBRNewIterationLoop(qu);
  14714. } else {
  14715. gfc.iteration_loop = new ABRIterationLoop(qu);
  14716. }
  14717. break;
  14718. }
  14719. }
  14720. /* initialize default values common for all modes */
  14721.  
  14722. if (gfp.VBR != VbrMode.vbr_off) { /* choose a min/max bitrate for VBR */
  14723. /* if the user didn't specify VBR_max_bitrate: */
  14724. gfc.VBR_min_bitrate = 1;
  14725. /*
  14726. * default: allow 8 kbps (MPEG-2) or 32 kbps (MPEG-1)
  14727. */
  14728. gfc.VBR_max_bitrate = 14;
  14729. /*
  14730. * default: allow 160 kbps (MPEG-2) or 320 kbps (MPEG-1)
  14731. */
  14732. if (gfp.out_samplerate < 16000)
  14733. gfc.VBR_max_bitrate = 8;
  14734. /* default: allow 64 kbps (MPEG-2.5) */
  14735. if (gfp.VBR_min_bitrate_kbps != 0) {
  14736. gfp.VBR_min_bitrate_kbps = FindNearestBitrate(
  14737. gfp.VBR_min_bitrate_kbps, gfp.version,
  14738. gfp.out_samplerate);
  14739. gfc.VBR_min_bitrate = BitrateIndex(gfp.VBR_min_bitrate_kbps,
  14740. gfp.version, gfp.out_samplerate);
  14741. if (gfc.VBR_min_bitrate < 0)
  14742. return -1;
  14743. }
  14744. if (gfp.VBR_max_bitrate_kbps != 0) {
  14745. gfp.VBR_max_bitrate_kbps = FindNearestBitrate(
  14746. gfp.VBR_max_bitrate_kbps, gfp.version,
  14747. gfp.out_samplerate);
  14748. gfc.VBR_max_bitrate = BitrateIndex(gfp.VBR_max_bitrate_kbps,
  14749. gfp.version, gfp.out_samplerate);
  14750. if (gfc.VBR_max_bitrate < 0)
  14751. return -1;
  14752. }
  14753. gfp.VBR_min_bitrate_kbps = Tables.bitrate_table[gfp.version][gfc.VBR_min_bitrate];
  14754. gfp.VBR_max_bitrate_kbps = Tables.bitrate_table[gfp.version][gfc.VBR_max_bitrate];
  14755. gfp.VBR_mean_bitrate_kbps = Math.min(
  14756. Tables.bitrate_table[gfp.version][gfc.VBR_max_bitrate],
  14757. gfp.VBR_mean_bitrate_kbps);
  14758. gfp.VBR_mean_bitrate_kbps = Math.max(
  14759. Tables.bitrate_table[gfp.version][gfc.VBR_min_bitrate],
  14760. gfp.VBR_mean_bitrate_kbps);
  14761. }
  14762.  
  14763. /* just another daily changing developer switch */
  14764. if (gfp.tune) {
  14765. gfc.PSY.mask_adjust += gfp.tune_value_a;
  14766. gfc.PSY.mask_adjust_short += gfp.tune_value_a;
  14767. }
  14768.  
  14769. /* initialize internal qval settings */
  14770. lame_init_qval(gfp);
  14771. /*
  14772. * automatic ATH adjustment on
  14773. */
  14774. if (gfp.athaa_type < 0)
  14775. gfc.ATH.useAdjust = 3;
  14776. else
  14777. gfc.ATH.useAdjust = gfp.athaa_type;
  14778.  
  14779. /* initialize internal adaptive ATH settings -jd */
  14780. gfc.ATH.aaSensitivityP = Math.pow(10.0, gfp.athaa_sensitivity
  14781. / -10.0);
  14782.  
  14783. if (gfp.short_blocks == null) {
  14784. gfp.short_blocks = ShortBlock.short_block_allowed;
  14785. }
  14786.  
  14787. /*
  14788. * Note Jan/2003: Many hardware decoders cannot handle short blocks in
  14789. * regular stereo mode unless they are coupled (same type in both
  14790. * channels) it is a rare event (1 frame per min. or so) that LAME would
  14791. * use uncoupled short blocks, so lets turn them off until we decide how
  14792. * to handle this. No other encoders allow uncoupled short blocks, even
  14793. * though it is in the standard.
  14794. */
  14795. /*
  14796. * rh 20040217: coupling makes no sense for mono and dual-mono streams
  14797. */
  14798. if (gfp.short_blocks == ShortBlock.short_block_allowed
  14799. && (gfp.mode == MPEGMode.JOINT_STEREO || gfp.mode == MPEGMode.STEREO)) {
  14800. gfp.short_blocks = ShortBlock.short_block_coupled;
  14801. }
  14802.  
  14803. if (gfp.quant_comp < 0)
  14804. gfp.quant_comp = 1;
  14805. if (gfp.quant_comp_short < 0)
  14806. gfp.quant_comp_short = 0;
  14807.  
  14808. if (gfp.msfix < 0)
  14809. gfp.msfix = 0;
  14810.  
  14811. /* select psychoacoustic model */
  14812. gfp.exp_nspsytune = gfp.exp_nspsytune | 1;
  14813.  
  14814. if (gfp.internal_flags.nsPsy.attackthre < 0)
  14815. gfp.internal_flags.nsPsy.attackthre = PsyModel.NSATTACKTHRE;
  14816. if (gfp.internal_flags.nsPsy.attackthre_s < 0)
  14817. gfp.internal_flags.nsPsy.attackthre_s = PsyModel.NSATTACKTHRE_S;
  14818.  
  14819.  
  14820. if (gfp.scale < 0)
  14821. gfp.scale = 1;
  14822.  
  14823. if (gfp.ATHtype < 0)
  14824. gfp.ATHtype = 4;
  14825.  
  14826. if (gfp.ATHcurve < 0)
  14827. gfp.ATHcurve = 4;
  14828.  
  14829. if (gfp.athaa_loudapprox < 0)
  14830. gfp.athaa_loudapprox = 2;
  14831.  
  14832. if (gfp.interChRatio < 0)
  14833. gfp.interChRatio = 0;
  14834.  
  14835. if (gfp.useTemporal == null)
  14836. gfp.useTemporal = true;
  14837. /* on by default */
  14838.  
  14839. /*
  14840. * padding method as described in
  14841. * "MPEG-Layer3 / Bitstream Syntax and Decoding" by Martin Sieler, Ralph
  14842. * Sperschneider
  14843. *
  14844. * note: there is no padding for the very first frame
  14845. *
  14846. * Robert Hegemann 2000-06-22
  14847. */
  14848. gfc.slot_lag = gfc.frac_SpF = 0;
  14849. if (gfp.VBR == VbrMode.vbr_off)
  14850. gfc.slot_lag = gfc.frac_SpF = (((gfp.version + 1) * 72000 * gfp.brate) % gfp.out_samplerate) | 0;
  14851.  
  14852. qupvt.iteration_init(gfp);
  14853. psy.psymodel_init(gfp);
  14854. return 0;
  14855. }
  14856.  
  14857. function update_inbuffer_size(gfc, nsamples) {
  14858. if (gfc.in_buffer_0 == null || gfc.in_buffer_nsamples < nsamples) {
  14859. gfc.in_buffer_0 = new_float(nsamples);
  14860. gfc.in_buffer_1 = new_float(nsamples);
  14861. gfc.in_buffer_nsamples = nsamples;
  14862. }
  14863. }
  14864.  
  14865. this.lame_encode_flush = function (gfp, mp3buffer, mp3bufferPos, mp3buffer_size) {
  14866. var gfc = gfp.internal_flags;
  14867. var buffer = new_short_n([2, 1152]);
  14868. var imp3 = 0, mp3count, mp3buffer_size_remaining;
  14869.  
  14870. /*
  14871. * we always add POSTDELAY=288 padding to make sure granule with real
  14872. * data can be complety decoded (because of 50% overlap with next
  14873. * granule
  14874. */
  14875. var end_padding;
  14876. var frames_left;
  14877. var samples_to_encode = gfc.mf_samples_to_encode - Encoder.POSTDELAY;
  14878. var mf_needed = calcNeeded(gfp);
  14879.  
  14880. /* Was flush already called? */
  14881. if (gfc.mf_samples_to_encode < 1) {
  14882. return 0;
  14883. }
  14884. mp3count = 0;
  14885.  
  14886. if (gfp.in_samplerate != gfp.out_samplerate) {
  14887. /*
  14888. * delay due to resampling; needs to be fixed, if resampling code
  14889. * gets changed
  14890. */
  14891. samples_to_encode += 16. * gfp.out_samplerate / gfp.in_samplerate;
  14892. }
  14893. end_padding = gfp.framesize - (samples_to_encode % gfp.framesize);
  14894. if (end_padding < 576)
  14895. end_padding += gfp.framesize;
  14896. gfp.encoder_padding = end_padding;
  14897.  
  14898. frames_left = (samples_to_encode + end_padding) / gfp.framesize;
  14899.  
  14900. /*
  14901. * send in a frame of 0 padding until all internal sample buffers are
  14902. * flushed
  14903. */
  14904. while (frames_left > 0 && imp3 >= 0) {
  14905. var bunch = mf_needed - gfc.mf_size;
  14906. var frame_num = gfp.frameNum;
  14907.  
  14908. bunch *= gfp.in_samplerate;
  14909. bunch /= gfp.out_samplerate;
  14910. if (bunch > 1152)
  14911. bunch = 1152;
  14912. if (bunch < 1)
  14913. bunch = 1;
  14914.  
  14915. mp3buffer_size_remaining = mp3buffer_size - mp3count;
  14916.  
  14917. /* if user specifed buffer size = 0, dont check size */
  14918. if (mp3buffer_size == 0)
  14919. mp3buffer_size_remaining = 0;
  14920.  
  14921. imp3 = this.lame_encode_buffer(gfp, buffer[0], buffer[1], bunch,
  14922. mp3buffer, mp3bufferPos, mp3buffer_size_remaining);
  14923.  
  14924. mp3bufferPos += imp3;
  14925. mp3count += imp3;
  14926. frames_left -= (frame_num != gfp.frameNum) ? 1 : 0;
  14927. }
  14928. /*
  14929. * Set gfc.mf_samples_to_encode to 0, so we may detect and break loops
  14930. * calling it more than once in a row.
  14931. */
  14932. gfc.mf_samples_to_encode = 0;
  14933.  
  14934. if (imp3 < 0) {
  14935. /* some type of fatal error */
  14936. return imp3;
  14937. }
  14938.  
  14939. mp3buffer_size_remaining = mp3buffer_size - mp3count;
  14940. /* if user specifed buffer size = 0, dont check size */
  14941. if (mp3buffer_size == 0)
  14942. mp3buffer_size_remaining = 0;
  14943.  
  14944. /* mp3 related stuff. bit buffer might still contain some mp3 data */
  14945. bs.flush_bitstream(gfp);
  14946. imp3 = bs.copy_buffer(gfc, mp3buffer, mp3bufferPos,
  14947. mp3buffer_size_remaining, 1);
  14948. if (imp3 < 0) {
  14949. /* some type of fatal error */
  14950. return imp3;
  14951. }
  14952. mp3bufferPos += imp3;
  14953. mp3count += imp3;
  14954. mp3buffer_size_remaining = mp3buffer_size - mp3count;
  14955. /* if user specifed buffer size = 0, dont check size */
  14956. if (mp3buffer_size == 0)
  14957. mp3buffer_size_remaining = 0;
  14958.  
  14959. if (gfp.write_id3tag_automatic) {
  14960. /* write a id3 tag to the bitstream */
  14961. id3.id3tag_write_v1(gfp);
  14962.  
  14963. imp3 = bs.copy_buffer(gfc, mp3buffer, mp3bufferPos,
  14964. mp3buffer_size_remaining, 0);
  14965.  
  14966. if (imp3 < 0) {
  14967. return imp3;
  14968. }
  14969. mp3count += imp3;
  14970. }
  14971. return mp3count;
  14972. };
  14973.  
  14974. this.lame_encode_buffer = function (gfp, buffer_l, buffer_r, nsamples, mp3buf, mp3bufPos, mp3buf_size) {
  14975. var gfc = gfp.internal_flags;
  14976. var in_buffer = [null, null];
  14977.  
  14978. if (gfc.Class_ID != LAME_ID)
  14979. return -3;
  14980.  
  14981. if (nsamples == 0)
  14982. return 0;
  14983.  
  14984. update_inbuffer_size(gfc, nsamples);
  14985.  
  14986. in_buffer[0] = gfc.in_buffer_0;
  14987. in_buffer[1] = gfc.in_buffer_1;
  14988.  
  14989. /* make a copy of input buffer, changing type to sample_t */
  14990. for (var i = 0; i < nsamples; i++) {
  14991. in_buffer[0][i] = buffer_l[i];
  14992. if (gfc.channels_in > 1)
  14993. in_buffer[1][i] = buffer_r[i];
  14994. }
  14995.  
  14996. return lame_encode_buffer_sample(gfp, in_buffer[0], in_buffer[1],
  14997. nsamples, mp3buf, mp3bufPos, mp3buf_size);
  14998. }
  14999.  
  15000. function calcNeeded(gfp) {
  15001. var mf_needed = Encoder.BLKSIZE + gfp.framesize - Encoder.FFTOFFSET;
  15002. /*
  15003. * amount needed for FFT
  15004. */
  15005. mf_needed = Math.max(mf_needed, 512 + gfp.framesize - 32);
  15006.  
  15007. return mf_needed;
  15008. }
  15009.  
  15010. function lame_encode_buffer_sample(gfp, buffer_l, buffer_r, nsamples, mp3buf, mp3bufPos, mp3buf_size) {
  15011. var gfc = gfp.internal_flags;
  15012. var mp3size = 0, ret, i, ch, mf_needed;
  15013. var mp3out;
  15014. var mfbuf = [null, null];
  15015. var in_buffer = [null, null];
  15016.  
  15017. if (gfc.Class_ID != LAME_ID)
  15018. return -3;
  15019.  
  15020. if (nsamples == 0)
  15021. return 0;
  15022.  
  15023. /* copy out any tags that may have been written into bitstream */
  15024. mp3out = bs.copy_buffer(gfc, mp3buf, mp3bufPos, mp3buf_size, 0);
  15025. if (mp3out < 0)
  15026. return mp3out;
  15027. /* not enough buffer space */
  15028. mp3bufPos += mp3out;
  15029. mp3size += mp3out;
  15030.  
  15031. in_buffer[0] = buffer_l;
  15032. in_buffer[1] = buffer_r;
  15033.  
  15034. /* Apply user defined re-scaling */
  15035.  
  15036. /* user selected scaling of the samples */
  15037. if (BitStream.NEQ(gfp.scale, 0) && BitStream.NEQ(gfp.scale, 1.0)) {
  15038. for (i = 0; i < nsamples; ++i) {
  15039. in_buffer[0][i] *= gfp.scale;
  15040. if (gfc.channels_out == 2)
  15041. in_buffer[1][i] *= gfp.scale;
  15042. }
  15043. }
  15044.  
  15045. /* user selected scaling of the channel 0 (left) samples */
  15046. if (BitStream.NEQ(gfp.scale_left, 0)
  15047. && BitStream.NEQ(gfp.scale_left, 1.0)) {
  15048. for (i = 0; i < nsamples; ++i) {
  15049. in_buffer[0][i] *= gfp.scale_left;
  15050. }
  15051. }
  15052.  
  15053. /* user selected scaling of the channel 1 (right) samples */
  15054. if (BitStream.NEQ(gfp.scale_right, 0)
  15055. && BitStream.NEQ(gfp.scale_right, 1.0)) {
  15056. for (i = 0; i < nsamples; ++i) {
  15057. in_buffer[1][i] *= gfp.scale_right;
  15058. }
  15059. }
  15060.  
  15061. /* Downsample to Mono if 2 channels in and 1 channel out */
  15062. if (gfp.num_channels == 2 && gfc.channels_out == 1) {
  15063. for (i = 0; i < nsamples; ++i) {
  15064. in_buffer[0][i] = 0.5 * ( in_buffer[0][i] + in_buffer[1][i]);
  15065. in_buffer[1][i] = 0.0;
  15066. }
  15067. }
  15068.  
  15069. mf_needed = calcNeeded(gfp);
  15070.  
  15071. mfbuf[0] = gfc.mfbuf[0];
  15072. mfbuf[1] = gfc.mfbuf[1];
  15073.  
  15074. var in_bufferPos = 0;
  15075. while (nsamples > 0) {
  15076. var in_buffer_ptr = [null, null];
  15077. var n_in = 0;
  15078. /* number of input samples processed with fill_buffer */
  15079. var n_out = 0;
  15080. /* number of samples output with fill_buffer */
  15081. /* n_in <> n_out if we are resampling */
  15082.  
  15083. in_buffer_ptr[0] = in_buffer[0];
  15084. in_buffer_ptr[1] = in_buffer[1];
  15085. /* copy in new samples into mfbuf, with resampling */
  15086. var inOut = new InOut();
  15087. fill_buffer(gfp, mfbuf, in_buffer_ptr, in_bufferPos, nsamples,
  15088. inOut);
  15089. n_in = inOut.n_in;
  15090. n_out = inOut.n_out;
  15091.  
  15092. /* compute ReplayGain of resampled input if requested */
  15093. if (gfc.findReplayGain && !gfc.decode_on_the_fly)
  15094. if (ga.AnalyzeSamples(gfc.rgdata, mfbuf[0], gfc.mf_size,
  15095. mfbuf[1], gfc.mf_size, n_out, gfc.channels_out) == GainAnalysis.GAIN_ANALYSIS_ERROR)
  15096. return -6;
  15097.  
  15098. /* update in_buffer counters */
  15099. nsamples -= n_in;
  15100. in_bufferPos += n_in;
  15101. if (gfc.channels_out == 2)
  15102. ;// in_bufferPos += n_in;
  15103.  
  15104. /* update mfbuf[] counters */
  15105. gfc.mf_size += n_out;
  15106.  
  15107. /*
  15108. * lame_encode_flush may have set gfc.mf_sample_to_encode to 0 so we
  15109. * have to reinitialize it here when that happened.
  15110. */
  15111. if (gfc.mf_samples_to_encode < 1) {
  15112. gfc.mf_samples_to_encode = Encoder.ENCDELAY + Encoder.POSTDELAY;
  15113. }
  15114. gfc.mf_samples_to_encode += n_out;
  15115.  
  15116. if (gfc.mf_size >= mf_needed) {
  15117. /* encode the frame. */
  15118. /* mp3buf = pointer to current location in buffer */
  15119. /* mp3buf_size = size of original mp3 output buffer */
  15120. /* = 0 if we should not worry about the */
  15121. /* buffer size because calling program is */
  15122. /* to lazy to compute it */
  15123. /* mp3size = size of data written to buffer so far */
  15124. /* mp3buf_size-mp3size = amount of space avalable */
  15125.  
  15126. var buf_size = mp3buf_size - mp3size;
  15127. if (mp3buf_size == 0)
  15128. buf_size = 0;
  15129.  
  15130. ret = lame_encode_frame(gfp, mfbuf[0], mfbuf[1], mp3buf,
  15131. mp3bufPos, buf_size);
  15132.  
  15133. if (ret < 0)
  15134. return ret;
  15135. mp3bufPos += ret;
  15136. mp3size += ret;
  15137.  
  15138. /* shift out old samples */
  15139. gfc.mf_size -= gfp.framesize;
  15140. gfc.mf_samples_to_encode -= gfp.framesize;
  15141. for (ch = 0; ch < gfc.channels_out; ch++)
  15142. for (i = 0; i < gfc.mf_size; i++)
  15143. mfbuf[ch][i] = mfbuf[ch][i + gfp.framesize];
  15144. }
  15145. }
  15146.  
  15147. return mp3size;
  15148. }
  15149.  
  15150. function lame_encode_frame(gfp, inbuf_l, inbuf_r, mp3buf, mp3bufPos, mp3buf_size) {
  15151. var ret = self.enc.lame_encode_mp3_frame(gfp, inbuf_l, inbuf_r, mp3buf,
  15152. mp3bufPos, mp3buf_size);
  15153. gfp.frameNum++;
  15154. return ret;
  15155. }
  15156.  
  15157. function InOut() {
  15158. this.n_in = 0;
  15159. this.n_out = 0;
  15160. }
  15161.  
  15162.  
  15163. function NumUsed() {
  15164. this.num_used = 0;
  15165. }
  15166.  
  15167. /**
  15168. * Greatest common divisor.
  15169. * <p>
  15170. * Joint work of Euclid and M. Hendry
  15171. */
  15172. function gcd(i, j) {
  15173. return j != 0 ? gcd(j, i % j) : i;
  15174. }
  15175.  
  15176. /**
  15177. * Resampling via FIR filter, blackman window.
  15178. */
  15179. function blackman(x, fcn, l) {
  15180. /*
  15181. * This algorithm from: SIGNAL PROCESSING ALGORITHMS IN FORTRAN AND C
  15182. * S.D. Stearns and R.A. David, Prentice-Hall, 1992
  15183. */
  15184. var wcn = (Math.PI * fcn);
  15185.  
  15186. x /= l;
  15187. if (x < 0)
  15188. x = 0;
  15189. if (x > 1)
  15190. x = 1;
  15191. var x2 = x - .5;
  15192.  
  15193. var bkwn = 0.42 - 0.5 * Math.cos(2 * x * Math.PI) + 0.08 * Math.cos(4 * x * Math.PI);
  15194. if (Math.abs(x2) < 1e-9)
  15195. return (wcn / Math.PI);
  15196. else
  15197. return (bkwn * Math.sin(l * wcn * x2) / (Math.PI * l * x2));
  15198. }
  15199.  
  15200. function fill_buffer_resample(gfp, outbuf, outbufPos, desired_len, inbuf, in_bufferPos, len, num_used, ch) {
  15201. var gfc = gfp.internal_flags;
  15202. var i, j = 0, k;
  15203. /* number of convolution functions to pre-compute */
  15204. var bpc = gfp.out_samplerate
  15205. / gcd(gfp.out_samplerate, gfp.in_samplerate);
  15206. if (bpc > LameInternalFlags.BPC)
  15207. bpc = LameInternalFlags.BPC;
  15208.  
  15209. var intratio = (Math.abs(gfc.resample_ratio
  15210. - Math.floor(.5 + gfc.resample_ratio)) < .0001) ? 1 : 0;
  15211. var fcn = 1.00 / gfc.resample_ratio;
  15212. if (fcn > 1.00)
  15213. fcn = 1.00;
  15214. var filter_l = 31;
  15215. if (0 == filter_l % 2)
  15216. --filter_l;
  15217. /* must be odd */
  15218. filter_l += intratio;
  15219. /* unless resample_ratio=int, it must be even */
  15220.  
  15221. var BLACKSIZE = filter_l + 1;
  15222. /* size of data needed for FIR */
  15223.  
  15224. if (gfc.fill_buffer_resample_init == 0) {
  15225. gfc.inbuf_old[0] = new_float(BLACKSIZE);
  15226. gfc.inbuf_old[1] = new_float(BLACKSIZE);
  15227. for (i = 0; i <= 2 * bpc; ++i)
  15228. gfc.blackfilt[i] = new_float(BLACKSIZE);
  15229.  
  15230. gfc.itime[0] = 0;
  15231. gfc.itime[1] = 0;
  15232.  
  15233. /* precompute blackman filter coefficients */
  15234. for (j = 0; j <= 2 * bpc; j++) {
  15235. var sum = 0.;
  15236. var offset = (j - bpc) / (2. * bpc);
  15237. for (i = 0; i <= filter_l; i++)
  15238. sum += gfc.blackfilt[j][i] = blackman(i - offset, fcn,
  15239. filter_l);
  15240. for (i = 0; i <= filter_l; i++)
  15241. gfc.blackfilt[j][i] /= sum;
  15242. }
  15243. gfc.fill_buffer_resample_init = 1;
  15244. }
  15245.  
  15246. var inbuf_old = gfc.inbuf_old[ch];
  15247.  
  15248. /* time of j'th element in inbuf = itime + j/ifreq; */
  15249. /* time of k'th element in outbuf = j/ofreq */
  15250. for (k = 0; k < desired_len; k++) {
  15251. var time0;
  15252. var joff;
  15253.  
  15254. time0 = k * gfc.resample_ratio;
  15255. /* time of k'th output sample */
  15256. j = 0 | Math.floor(time0 - gfc.itime[ch]);
  15257.  
  15258. /* check if we need more input data */
  15259. if ((filter_l + j - filter_l / 2) >= len)
  15260. break;
  15261.  
  15262. /* blackman filter. by default, window centered at j+.5(filter_l%2) */
  15263. /* but we want a window centered at time0. */
  15264. var offset = (time0 - gfc.itime[ch] - (j + .5 * (filter_l % 2)));
  15265.  
  15266. /* find the closest precomputed window for this offset: */
  15267. joff = 0 | Math.floor((offset * 2 * bpc) + bpc + .5);
  15268. var xvalue = 0.;
  15269. for (i = 0; i <= filter_l; ++i) {
  15270. /* force integer index */
  15271. var j2 = 0 | (i + j - filter_l / 2);
  15272. var y;
  15273. y = (j2 < 0) ? inbuf_old[BLACKSIZE + j2] : inbuf[in_bufferPos
  15274. + j2];
  15275. xvalue += y * gfc.blackfilt[joff][i];
  15276. }
  15277. outbuf[outbufPos + k] = xvalue;
  15278. }
  15279.  
  15280. /* k = number of samples added to outbuf */
  15281. /* last k sample used data from [j-filter_l/2,j+filter_l-filter_l/2] */
  15282.  
  15283. /* how many samples of input data were used: */
  15284. num_used.num_used = Math.min(len, filter_l + j - filter_l / 2);
  15285.  
  15286. /*
  15287. * adjust our input time counter. Incriment by the number of samples
  15288. * used, then normalize so that next output sample is at time 0, next
  15289. * input buffer is at time itime[ch]
  15290. */
  15291. gfc.itime[ch] += num_used.num_used - k * gfc.resample_ratio;
  15292.  
  15293. /* save the last BLACKSIZE samples into the inbuf_old buffer */
  15294. if (num_used.num_used >= BLACKSIZE) {
  15295. for (i = 0; i < BLACKSIZE; i++)
  15296. inbuf_old[i] = inbuf[in_bufferPos + num_used.num_used + i
  15297. - BLACKSIZE];
  15298. } else {
  15299. /* shift in num_used.num_used samples into inbuf_old */
  15300. var n_shift = BLACKSIZE - num_used.num_used;
  15301. /*
  15302. * number of samples to
  15303. * shift
  15304. */
  15305.  
  15306. /*
  15307. * shift n_shift samples by num_used.num_used, to make room for the
  15308. * num_used new samples
  15309. */
  15310. for (i = 0; i < n_shift; ++i)
  15311. inbuf_old[i] = inbuf_old[i + num_used.num_used];
  15312.  
  15313. /* shift in the num_used.num_used samples */
  15314. for (j = 0; i < BLACKSIZE; ++i, ++j)
  15315. inbuf_old[i] = inbuf[in_bufferPos + j];
  15316.  
  15317. }
  15318. return k;
  15319. /* return the number samples created at the new samplerate */
  15320. }
  15321.  
  15322. function fill_buffer(gfp, mfbuf, in_buffer, in_bufferPos, nsamples, io) {
  15323. var gfc = gfp.internal_flags;
  15324.  
  15325. /* copy in new samples into mfbuf, with resampling if necessary */
  15326. if ((gfc.resample_ratio < .9999) || (gfc.resample_ratio > 1.0001)) {
  15327. for (var ch = 0; ch < gfc.channels_out; ch++) {
  15328. var numUsed = new NumUsed();
  15329. io.n_out = fill_buffer_resample(gfp, mfbuf[ch], gfc.mf_size,
  15330. gfp.framesize, in_buffer[ch], in_bufferPos, nsamples,
  15331. numUsed, ch);
  15332. io.n_in = numUsed.num_used;
  15333. }
  15334. } else {
  15335. io.n_out = Math.min(gfp.framesize, nsamples);
  15336. io.n_in = io.n_out;
  15337. for (var i = 0; i < io.n_out; ++i) {
  15338. mfbuf[0][gfc.mf_size + i] = in_buffer[0][in_bufferPos + i];
  15339. if (gfc.channels_out == 2)
  15340. mfbuf[1][gfc.mf_size + i] = in_buffer[1][in_bufferPos + i];
  15341. }
  15342. }
  15343. }
  15344.  
  15345. }
  15346.  
  15347.  
  15348.  
  15349. function GetAudio() {
  15350. var parse;
  15351. var mpg;
  15352.  
  15353. this.setModules = function (parse2, mpg2) {
  15354. parse = parse2;
  15355. mpg = mpg2;
  15356. }
  15357. }
  15358.  
  15359.  
  15360. function Parse() {
  15361. var ver;
  15362. var id3;
  15363. var pre;
  15364.  
  15365. this.setModules = function (ver2, id32, pre2) {
  15366. ver = ver2;
  15367. id3 = id32;
  15368. pre = pre2;
  15369. }
  15370. }
  15371.  
  15372. function MPGLib() {
  15373. }
  15374.  
  15375. function ID3Tag() {
  15376. var bits;
  15377. var ver;
  15378.  
  15379. this.setModules = function (_bits, _ver) {
  15380. bits = _bits;
  15381. ver = _ver;
  15382. }
  15383. }
  15384.  
  15385. function Mp3Encoder(channels, samplerate, kbps) {
  15386. if (arguments.length != 3) {
  15387. console.error('WARN: Mp3Encoder(channels, samplerate, kbps) not specified');
  15388. channels = 1;
  15389. samplerate = 44100;
  15390. kbps = 128;
  15391. }
  15392. var lame = new Lame();
  15393. var gaud = new GetAudio();
  15394. var ga = new GainAnalysis();
  15395. var bs = new BitStream();
  15396. var p = new Presets();
  15397. var qupvt = new QuantizePVT();
  15398. var qu = new Quantize();
  15399. var vbr = new VBRTag();
  15400. var ver = new Version();
  15401. var id3 = new ID3Tag();
  15402. var rv = new Reservoir();
  15403. var tak = new Takehiro();
  15404. var parse = new Parse();
  15405. var mpg = new MPGLib();
  15406.  
  15407. lame.setModules(ga, bs, p, qupvt, qu, vbr, ver, id3, mpg);
  15408. bs.setModules(ga, mpg, ver, vbr);
  15409. id3.setModules(bs, ver);
  15410. p.setModules(lame);
  15411. qu.setModules(bs, rv, qupvt, tak);
  15412. qupvt.setModules(tak, rv, lame.enc.psy);
  15413. rv.setModules(bs);
  15414. tak.setModules(qupvt);
  15415. vbr.setModules(lame, bs, ver);
  15416. gaud.setModules(parse, mpg);
  15417. parse.setModules(ver, id3, p);
  15418.  
  15419. var gfp = lame.lame_init();
  15420.  
  15421. gfp.num_channels = channels;
  15422. gfp.in_samplerate = samplerate;
  15423. gfp.brate = kbps;
  15424. gfp.mode = MPEGMode.STEREO;
  15425. gfp.quality = 3;
  15426. gfp.bWriteVbrTag = false;
  15427. gfp.disable_reservoir = true;
  15428. gfp.write_id3tag_automatic = false;
  15429.  
  15430. var retcode = lame.lame_init_params(gfp);
  15431. var maxSamples = 1152;
  15432. var mp3buf_size = 0 | (1.25 * maxSamples + 7200);
  15433. var mp3buf = new_byte(mp3buf_size);
  15434.  
  15435. this.encodeBuffer = function (left, right) {
  15436. if (channels == 1) {
  15437. right = left;
  15438. }
  15439. if (left.length > maxSamples) {
  15440. maxSamples = left.length;
  15441. mp3buf_size = 0 | (1.25 * maxSamples + 7200);
  15442. mp3buf = new_byte(mp3buf_size);
  15443. }
  15444.  
  15445. var _sz = lame.lame_encode_buffer(gfp, left, right, left.length, mp3buf, 0, mp3buf_size);
  15446. return new Int8Array(mp3buf.subarray(0, _sz));
  15447. };
  15448.  
  15449. this.flush = function () {
  15450. var _sz = lame.lame_encode_flush(gfp, mp3buf, 0, mp3buf_size);
  15451. return new Int8Array(mp3buf.subarray(0, _sz));
  15452. };
  15453. }
  15454.  
  15455. function WavHeader() {
  15456. this.dataOffset = 0;
  15457. this.dataLen = 0;
  15458. this.channels = 0;
  15459. this.sampleRate = 0;
  15460. }
  15461.  
  15462. function fourccToInt(fourcc) {
  15463. return fourcc.charCodeAt(0) << 24 | fourcc.charCodeAt(1) << 16 | fourcc.charCodeAt(2) << 8 | fourcc.charCodeAt(3);
  15464. }
  15465.  
  15466. WavHeader.RIFF = fourccToInt("RIFF");
  15467. WavHeader.WAVE = fourccToInt("WAVE");
  15468. WavHeader.fmt_ = fourccToInt("fmt ");
  15469. WavHeader.data = fourccToInt("data");
  15470.  
  15471. WavHeader.readHeader = function (dataView) {
  15472. var w = new WavHeader();
  15473.  
  15474. var header = dataView.getUint32(0, false);
  15475. if (WavHeader.RIFF != header) {
  15476. return;
  15477. }
  15478. var fileLen = dataView.getUint32(4, true);
  15479. if (WavHeader.WAVE != dataView.getUint32(8, false)) {
  15480. return;
  15481. }
  15482. if (WavHeader.fmt_ != dataView.getUint32(12, false)) {
  15483. return;
  15484. }
  15485. var fmtLen = dataView.getUint32(16, true);
  15486. var pos = 16 + 4;
  15487. switch (fmtLen) {
  15488. case 16:
  15489. case 18:
  15490. w.channels = dataView.getUint16(pos + 2, true);
  15491. w.sampleRate = dataView.getUint32(pos + 4, true);
  15492. break;
  15493. default:
  15494. throw 'extended fmt chunk not implemented';
  15495. }
  15496. pos += fmtLen;
  15497. var data = WavHeader.data;
  15498. var len = 0;
  15499. while (data != header) {
  15500. header = dataView.getUint32(pos, false);
  15501. len = dataView.getUint32(pos + 4, true);
  15502. if (data == header) {
  15503. break;
  15504. }
  15505. pos += (len + 8);
  15506. }
  15507. w.dataLen = len;
  15508. w.dataOffset = pos + 8;
  15509. return w;
  15510. };
  15511.  
  15512. L3Side.SFBMAX = (Encoder.SBMAX_s * 3);
  15513. //testFullLength();
  15514. lamejs.Mp3Encoder = Mp3Encoder;
  15515. lamejs.WavHeader = WavHeader;
  15516. }
  15517. //fs=require('fs');
  15518. lamejs();