/* * MP3 huffman table selecting and bit counting * * Copyright (c) 1999-2005 Takehiro TOMINAGA * Copyright (c) 2002-2005 Gabriel Bouvigne * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Library General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 02111-1307, USA. */ /* $Id: Takehiro.java,v 1.26 2011/05/24 20:48:06 kenchis Exp $ */ //package mp3; //import java.util.Arrays; var common = require('./common.js'); var System = common.System; var VbrMode = common.VbrMode; var Float = common.Float; var ShortBlock = common.ShortBlock; var Util = common.Util; var Arrays = common.Arrays; var new_array_n = common.new_array_n; var new_byte = common.new_byte; var new_double = common.new_double; var new_float = common.new_float; var new_float_n = common.new_float_n; var new_int = common.new_int; var new_int_n = common.new_int_n; var assert = common.assert; var Encoder = require('./Encoder.js'); var Tables = require('./Tables.js'); var GrInfo = require('./GrInfo.js'); var QuantizePVT = require('./QuantizePVT.js'); function Takehiro() { var qupvt = null; this.qupvt = null; this.setModules = function (_qupvt) { this.qupvt = _qupvt; qupvt = _qupvt; } function Bits(b) { this.bits = 0 | b; } var subdv_table = [[0, 0], /* 0 bands */ [0, 0], /* 1 bands */ [0, 0], /* 2 bands */ [0, 0], /* 3 bands */ [0, 0], /* 4 bands */ [0, 1], /* 5 bands */ [1, 1], /* 6 bands */ [1, 1], /* 7 bands */ [1, 2], /* 8 bands */ [2, 2], /* 9 bands */ [2, 3], /* 10 bands */ [2, 3], /* 11 bands */ [3, 4], /* 12 bands */ [3, 4], /* 13 bands */ [3, 4], /* 14 bands */ [4, 5], /* 15 bands */ [4, 5], /* 16 bands */ [4, 6], /* 17 bands */ [5, 6], /* 18 bands */ [5, 6], /* 19 bands */ [5, 7], /* 20 bands */ [6, 7], /* 21 bands */ [6, 7], /* 22 bands */ ]; /** * nonlinear quantization of xr More accurate formula than the ISO formula. * Takes into account the fact that we are quantizing xr . ix, but we want * ix^4/3 to be as close as possible to x^4/3. (taking the nearest int would * mean ix is as close as possible to xr, which is different.) * * From Segher Boessenkool <segher@eastsite.nl> 11/1999 * * 09/2000: ASM code removed in favor of IEEE754 hack by Takehiro Tominaga. * If you need the ASM code, check CVS circa Aug 2000. * * 01/2004: Optimizations by Gabriel Bouvigne */ function quantize_lines_xrpow_01(l, istep, xr, xrPos, ix, ixPos) { var compareval0 = (1.0 - 0.4054) / istep; assert(l > 0); l = l >> 1; while ((l--) != 0) { ix[ixPos++] = (compareval0 > xr[xrPos++]) ? 0 : 1; ix[ixPos++] = (compareval0 > xr[xrPos++]) ? 0 : 1; } } /** * XRPOW_FTOI is a macro to convert floats to ints.<BR> * if XRPOW_FTOI(x) = nearest_int(x), then QUANTFAC(x)=adj43asm[x]<BR> * ROUNDFAC= -0.0946<BR> * * if XRPOW_FTOI(x) = floor(x), then QUANTFAC(x)=asj43[x]<BR> * ROUNDFAC=0.4054<BR> * * Note: using floor() or 0| is extremely slow. On machines where the * TAKEHIRO_IEEE754_HACK code above does not work, it is worthwile to write * some ASM for XRPOW_FTOI(). */ function quantize_lines_xrpow(l, istep, xr, xrPos, ix, ixPos) { assert(l > 0); l = l >> 1; var remaining = l % 2; l = l >> 1; while (l-- != 0) { var x0, x1, x2, x3; var rx0, rx1, rx2, rx3; x0 = xr[xrPos++] * istep; x1 = xr[xrPos++] * istep; rx0 = 0 | x0; x2 = xr[xrPos++] * istep; rx1 = 0 | x1; x3 = xr[xrPos++] * istep; rx2 = 0 | x2; x0 += qupvt.adj43[rx0]; rx3 = 0 | x3; x1 += qupvt.adj43[rx1]; ix[ixPos++] = 0 | x0; x2 += qupvt.adj43[rx2]; ix[ixPos++] = 0 | x1; x3 += qupvt.adj43[rx3]; ix[ixPos++] = 0 | x2; ix[ixPos++] = 0 | x3; } if (remaining != 0) { var x0, x1; var rx0, rx1; x0 = xr[xrPos++] * istep; x1 = xr[xrPos++] * istep; rx0 = 0 | x0; rx1 = 0 | x1; x0 += qupvt.adj43[rx0]; x1 += qupvt.adj43[rx1]; ix[ixPos++] = 0 | x0; ix[ixPos++] = 0 | x1; } } /** * Quantization function This function will select which lines to quantize * and call the proper quantization function */ function quantize_xrpow(xp, pi, istep, codInfo, prevNoise) { /* quantize on xr^(3/4) instead of xr */ var sfb; var sfbmax; var j = 0; var prev_data_use; var accumulate = 0; var accumulate01 = 0; var xpPos = 0; var iData = pi; var iDataPos = 0; var acc_iData = iData; var acc_iDataPos = 0; var acc_xp = xp; var acc_xpPos = 0; /* * Reusing previously computed data does not seems to work if global * gain is changed. Finding why it behaves this way would allow to use a * cache of previously computed values (let's 10 cached values per sfb) * that would probably provide a noticeable speedup */ prev_data_use = (prevNoise != null && (codInfo.global_gain == prevNoise.global_gain)); if (codInfo.block_type == Encoder.SHORT_TYPE) sfbmax = 38; else sfbmax = 21; for (sfb = 0; sfb <= sfbmax; sfb++) { var step = -1; if (prev_data_use || codInfo.block_type == Encoder.NORM_TYPE) { step = codInfo.global_gain - ((codInfo.scalefac[sfb] + (codInfo.preflag != 0 ? qupvt.pretab[sfb] : 0)) << (codInfo.scalefac_scale + 1)) - codInfo.subblock_gain[codInfo.window[sfb]] * 8; } assert(codInfo.width[sfb] >= 0); if (prev_data_use && (prevNoise.step[sfb] == step)) { /* * do not recompute this part, but compute accumulated lines */ if (accumulate != 0) { quantize_lines_xrpow(accumulate, istep, acc_xp, acc_xpPos, acc_iData, acc_iDataPos); accumulate = 0; } if (accumulate01 != 0) { quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_xpPos, acc_iData, acc_iDataPos); accumulate01 = 0; } } else { /* should compute this part */ var l = codInfo.width[sfb]; if ((j + codInfo.width[sfb]) > codInfo.max_nonzero_coeff) { /* do not compute upper zero part */ var usefullsize; usefullsize = codInfo.max_nonzero_coeff - j + 1; Arrays.fill(pi, codInfo.max_nonzero_coeff, 576, 0); l = usefullsize; if (l < 0) { l = 0; } /* no need to compute higher sfb values */ sfb = sfbmax + 1; } /* accumulate lines to quantize */ if (0 == accumulate && 0 == accumulate01) { acc_iData = iData; acc_iDataPos = iDataPos; acc_xp = xp; acc_xpPos = xpPos; } if (prevNoise != null && prevNoise.sfb_count1 > 0 && sfb >= prevNoise.sfb_count1 && prevNoise.step[sfb] > 0 && step >= prevNoise.step[sfb]) { if (accumulate != 0) { quantize_lines_xrpow(accumulate, istep, acc_xp, acc_xpPos, acc_iData, acc_iDataPos); accumulate = 0; acc_iData = iData; acc_iDataPos = iDataPos; acc_xp = xp; acc_xpPos = xpPos; } accumulate01 += l; } else { if (accumulate01 != 0) { quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_xpPos, acc_iData, acc_iDataPos); accumulate01 = 0; acc_iData = iData; acc_iDataPos = iDataPos; acc_xp = xp; acc_xpPos = xpPos; } accumulate += l; } if (l <= 0) { /* * rh: 20040215 may happen due to "prev_data_use" * optimization */ if (accumulate01 != 0) { quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_xpPos, acc_iData, acc_iDataPos); accumulate01 = 0; } if (accumulate != 0) { quantize_lines_xrpow(accumulate, istep, acc_xp, acc_xpPos, acc_iData, acc_iDataPos); accumulate = 0; } break; /* ends for-loop */ } } if (sfb <= sfbmax) { iDataPos += codInfo.width[sfb]; xpPos += codInfo.width[sfb]; j += codInfo.width[sfb]; } } if (accumulate != 0) { /* last data part */ quantize_lines_xrpow(accumulate, istep, acc_xp, acc_xpPos, acc_iData, acc_iDataPos); accumulate = 0; } if (accumulate01 != 0) { /* last data part */ quantize_lines_xrpow_01(accumulate01, istep, acc_xp, acc_xpPos, acc_iData, acc_iDataPos); accumulate01 = 0; } } /** * ix_max */ function ix_max(ix, ixPos, endPos) { var max1 = 0, max2 = 0; do { var x1 = ix[ixPos++]; var x2 = ix[ixPos++]; if (max1 < x1) max1 = x1; if (max2 < x2) max2 = x2; } while (ixPos < endPos); if (max1 < max2) max1 = max2; return max1; } function count_bit_ESC(ix, ixPos, end, t1, t2, s) { /* ESC-table is used */ var linbits = Tables.ht[t1].xlen * 65536 + Tables.ht[t2].xlen; var sum = 0, sum2; do { var x = ix[ixPos++]; var y = ix[ixPos++]; if (x != 0) { if (x > 14) { x = 15; sum += linbits; } x *= 16; } if (y != 0) { if (y > 14) { y = 15; sum += linbits; } x += y; } sum += Tables.largetbl[x]; } while (ixPos < end); sum2 = sum & 0xffff; sum >>= 16; if (sum > sum2) { sum = sum2; t1 = t2; } s.bits += sum; return t1; } function count_bit_noESC(ix, ixPos, end, s) { /* No ESC-words */ var sum1 = 0; var hlen1 = Tables.ht[1].hlen; do { var x = ix[ixPos + 0] * 2 + ix[ixPos + 1]; ixPos += 2; sum1 += hlen1[x]; } while (ixPos < end); s.bits += sum1; return 1; } function count_bit_noESC_from2(ix, ixPos, end, t1, s) { /* No ESC-words */ var sum = 0, sum2; var xlen = Tables.ht[t1].xlen; var hlen; if (t1 == 2) hlen = Tables.table23; else hlen = Tables.table56; do { var x = ix[ixPos + 0] * xlen + ix[ixPos + 1]; ixPos += 2; sum += hlen[x]; } while (ixPos < end); sum2 = sum & 0xffff; sum >>= 16; if (sum > sum2) { sum = sum2; t1++; } s.bits += sum; return t1; } function count_bit_noESC_from3(ix, ixPos, end, t1, s) { /* No ESC-words */ var sum1 = 0; var sum2 = 0; var sum3 = 0; var xlen = Tables.ht[t1].xlen; var hlen1 = Tables.ht[t1].hlen; var hlen2 = Tables.ht[t1 + 1].hlen; var hlen3 = Tables.ht[t1 + 2].hlen; do { var x = ix[ixPos + 0] * xlen + ix[ixPos + 1]; ixPos += 2; sum1 += hlen1[x]; sum2 += hlen2[x]; sum3 += hlen3[x]; } while (ixPos < end); var t = t1; if (sum1 > sum2) { sum1 = sum2; t++; } if (sum1 > sum3) { sum1 = sum3; t = t1 + 2; } s.bits += sum1; return t; } /*************************************************************************/ /* choose table */ /*************************************************************************/ var huf_tbl_noESC = [1, 2, 5, 7, 7, 10, 10, 13, 13, 13, 13, 13, 13, 13, 13]; /** * Choose the Huffman table that will encode ix[begin..end] with the fewest * bits. * * Note: This code contains knowledge about the sizes and characteristics of * the Huffman tables as defined in the IS (Table B.7), and will not work * with any arbitrary tables. */ function choose_table(ix, ixPos, endPos, s) { var max = ix_max(ix, ixPos, endPos); switch (max) { case 0: return max; case 1: return count_bit_noESC(ix, ixPos, endPos, s); case 2: case 3: return count_bit_noESC_from2(ix, ixPos, endPos, huf_tbl_noESC[max - 1], s); case 4: case 5: case 6: case 7: case 8: case 9: case 10: case 11: case 12: case 13: case 14: case 15: return count_bit_noESC_from3(ix, ixPos, endPos, huf_tbl_noESC[max - 1], s); default: /* try tables with linbits */ if (max > QuantizePVT.IXMAX_VAL) { s.bits = QuantizePVT.LARGE_BITS; return -1; } max -= 15; var choice2; for (choice2 = 24; choice2 < 32; choice2++) { if (Tables.ht[choice2].linmax >= max) { break; } } var choice; for (choice = choice2 - 8; choice < 24; choice++) { if (Tables.ht[choice].linmax >= max) { break; } } return count_bit_ESC(ix, ixPos, endPos, choice, choice2, s); } } /** * count_bit */ this.noquant_count_bits = function (gfc, gi, prev_noise) { var ix = gi.l3_enc; var i = Math.min(576, ((gi.max_nonzero_coeff + 2) >> 1) << 1); if (prev_noise != null) prev_noise.sfb_count1 = 0; /* Determine count1 region */ for (; i > 1; i -= 2) if ((ix[i - 1] | ix[i - 2]) != 0) break; gi.count1 = i; /* Determines the number of bits to encode the quadruples. */ var a1 = 0; var a2 = 0; for (; i > 3; i -= 4) { var p; /* hack to check if all values <= 1 */ //throw "TODO: HACK if ((((long) ix[i - 1] | (long) ix[i - 2] | (long) ix[i - 3] | (long) ix[i - 4]) & 0xffffffffL) > 1L " //if (true) { if (((ix[i - 1] | ix[i - 2] | ix[i - 3] | ix[i - 4]) & 0x7fffffff) > 1) { break; } p = ((ix[i - 4] * 2 + ix[i - 3]) * 2 + ix[i - 2]) * 2 + ix[i - 1]; a1 += Tables.t32l[p]; a2 += Tables.t33l[p]; } var bits = a1; gi.count1table_select = 0; if (a1 > a2) { bits = a2; gi.count1table_select = 1; } gi.count1bits = bits; gi.big_values = i; if (i == 0) return bits; if (gi.block_type == Encoder.SHORT_TYPE) { a1 = 3 * gfc.scalefac_band.s[3]; if (a1 > gi.big_values) a1 = gi.big_values; a2 = gi.big_values; } else if (gi.block_type == Encoder.NORM_TYPE) { assert(i <= 576); /* bv_scf has 576 entries (0..575) */ a1 = gi.region0_count = gfc.bv_scf[i - 2]; a2 = gi.region1_count = gfc.bv_scf[i - 1]; assert(a1 + a2 + 2 < Encoder.SBPSY_l); a2 = gfc.scalefac_band.l[a1 + a2 + 2]; a1 = gfc.scalefac_band.l[a1 + 1]; if (a2 < i) { var bi = new Bits(bits); gi.table_select[2] = choose_table(ix, a2, i, bi); bits = bi.bits; } } else { gi.region0_count = 7; /* gi.region1_count = SBPSY_l - 7 - 1; */ gi.region1_count = Encoder.SBMAX_l - 1 - 7 - 1; a1 = gfc.scalefac_band.l[7 + 1]; a2 = i; if (a1 > a2) { a1 = a2; } } /* have to allow for the case when bigvalues < region0 < region1 */ /* (and region0, region1 are ignored) */ a1 = Math.min(a1, i); a2 = Math.min(a2, i); assert(a1 >= 0); assert(a2 >= 0); /* Count the number of bits necessary to code the bigvalues region. */ if (0 < a1) { var bi = new Bits(bits); gi.table_select[0] = choose_table(ix, 0, a1, bi); bits = bi.bits; } if (a1 < a2) { var bi = new Bits(bits); gi.table_select[1] = choose_table(ix, a1, a2, bi); bits = bi.bits; } if (gfc.use_best_huffman == 2) { gi.part2_3_length = bits; best_huffman_divide(gfc, gi); bits = gi.part2_3_length; } if (prev_noise != null) { if (gi.block_type == Encoder.NORM_TYPE) { var sfb = 0; while (gfc.scalefac_band.l[sfb] < gi.big_values) { sfb++; } prev_noise.sfb_count1 = sfb; } } return bits; } this.count_bits = function (gfc, xr, gi, prev_noise) { var ix = gi.l3_enc; /* since quantize_xrpow uses table lookup, we need to check this first: */ var w = (QuantizePVT.IXMAX_VAL) / qupvt.IPOW20(gi.global_gain); if (gi.xrpow_max > w) return QuantizePVT.LARGE_BITS; quantize_xrpow(xr, ix, qupvt.IPOW20(gi.global_gain), gi, prev_noise); if ((gfc.substep_shaping & 2) != 0) { var j = 0; /* 0.634521682242439 = 0.5946*2**(.5*0.1875) */ var gain = gi.global_gain + gi.scalefac_scale; var roundfac = 0.634521682242439 / qupvt.IPOW20(gain); for (var sfb = 0; sfb < gi.sfbmax; sfb++) { var width = gi.width[sfb]; assert(width >= 0); if (0 == gfc.pseudohalf[sfb]) { j += width; } else { var k; for (k = j, j += width; k < j; ++k) { ix[k] = (xr[k] >= roundfac) ? ix[k] : 0; } } } } return this.noquant_count_bits(gfc, gi, prev_noise); } /** * re-calculate the best scalefac_compress using scfsi the saved bits are * kept in the bit reservoir. */ function recalc_divide_init(gfc, cod_info, ix, r01_bits, r01_div, r0_tbl, r1_tbl) { var bigv = cod_info.big_values; for (var r0 = 0; r0 <= 7 + 15; r0++) { r01_bits[r0] = QuantizePVT.LARGE_BITS; } for (var r0 = 0; r0 < 16; r0++) { var a1 = gfc.scalefac_band.l[r0 + 1]; if (a1 >= bigv) break; var r0bits = 0; var bi = new Bits(r0bits); var r0t = choose_table(ix, 0, a1, bi); r0bits = bi.bits; for (var r1 = 0; r1 < 8; r1++) { var a2 = gfc.scalefac_band.l[r0 + r1 + 2]; if (a2 >= bigv) break; var bits = r0bits; bi = new Bits(bits); var r1t = choose_table(ix, a1, a2, bi); bits = bi.bits; if (r01_bits[r0 + r1] > bits) { r01_bits[r0 + r1] = bits; r01_div[r0 + r1] = r0; r0_tbl[r0 + r1] = r0t; r1_tbl[r0 + r1] = r1t; } } } } function recalc_divide_sub(gfc, cod_info2, gi, ix, r01_bits, r01_div, r0_tbl, r1_tbl) { var bigv = cod_info2.big_values; for (var r2 = 2; r2 < Encoder.SBMAX_l + 1; r2++) { var a2 = gfc.scalefac_band.l[r2]; if (a2 >= bigv) break; var bits = r01_bits[r2 - 2] + cod_info2.count1bits; if (gi.part2_3_length <= bits) break; var bi = new Bits(bits); var r2t = choose_table(ix, a2, bigv, bi); bits = bi.bits; if (gi.part2_3_length <= bits) continue; gi.assign(cod_info2); gi.part2_3_length = bits; gi.region0_count = r01_div[r2 - 2]; gi.region1_count = r2 - 2 - r01_div[r2 - 2]; gi.table_select[0] = r0_tbl[r2 - 2]; gi.table_select[1] = r1_tbl[r2 - 2]; gi.table_select[2] = r2t; } } this.best_huffman_divide = function (gfc, gi) { var cod_info2 = new GrInfo(); var ix = gi.l3_enc; var r01_bits = new_int(7 + 15 + 1); var r01_div = new_int(7 + 15 + 1); var r0_tbl = new_int(7 + 15 + 1); var r1_tbl = new_int(7 + 15 + 1); /* SHORT BLOCK stuff fails for MPEG2 */ if (gi.block_type == Encoder.SHORT_TYPE && gfc.mode_gr == 1) return; cod_info2.assign(gi); if (gi.block_type == Encoder.NORM_TYPE) { recalc_divide_init(gfc, gi, ix, r01_bits, r01_div, r0_tbl, r1_tbl); recalc_divide_sub(gfc, cod_info2, gi, ix, r01_bits, r01_div, r0_tbl, r1_tbl); } var i = cod_info2.big_values; if (i == 0 || (ix[i - 2] | ix[i - 1]) > 1) return; i = gi.count1 + 2; if (i > 576) return; /* Determines the number of bits to encode the quadruples. */ cod_info2.assign(gi); cod_info2.count1 = i; var a1 = 0; var a2 = 0; assert(i <= 576); for (; i > cod_info2.big_values; i -= 4) { var p = ((ix[i - 4] * 2 + ix[i - 3]) * 2 + ix[i - 2]) * 2 + ix[i - 1]; a1 += Tables.t32l[p]; a2 += Tables.t33l[p]; } cod_info2.big_values = i; cod_info2.count1table_select = 0; if (a1 > a2) { a1 = a2; cod_info2.count1table_select = 1; } cod_info2.count1bits = a1; if (cod_info2.block_type == Encoder.NORM_TYPE) recalc_divide_sub(gfc, cod_info2, gi, ix, r01_bits, r01_div, r0_tbl, r1_tbl); else { /* Count the number of bits necessary to code the bigvalues region. */ cod_info2.part2_3_length = a1; a1 = gfc.scalefac_band.l[7 + 1]; if (a1 > i) { a1 = i; } if (a1 > 0) { var bi = new Bits(cod_info2.part2_3_length); cod_info2.table_select[0] = choose_table(ix, 0, a1, bi); cod_info2.part2_3_length = bi.bits; } if (i > a1) { var bi = new Bits(cod_info2.part2_3_length); cod_info2.table_select[1] = choose_table(ix, a1, i, bi); cod_info2.part2_3_length = bi.bits; } if (gi.part2_3_length > cod_info2.part2_3_length) gi.assign(cod_info2); } } var slen1_n = [1, 1, 1, 1, 8, 2, 2, 2, 4, 4, 4, 8, 8, 8, 16, 16]; var slen2_n = [1, 2, 4, 8, 1, 2, 4, 8, 2, 4, 8, 2, 4, 8, 4, 8]; var slen1_tab = [0, 0, 0, 0, 3, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4]; var slen2_tab = [0, 1, 2, 3, 0, 1, 2, 3, 1, 2, 3, 1, 2, 3, 2, 3]; Takehiro.slen1_tab = slen1_tab; Takehiro.slen2_tab = slen2_tab; function scfsi_calc(ch, l3_side) { var sfb; var gi = l3_side.tt[1][ch]; var g0 = l3_side.tt[0][ch]; for (var i = 0; i < Tables.scfsi_band.length - 1; i++) { for (sfb = Tables.scfsi_band[i]; sfb < Tables.scfsi_band[i + 1]; sfb++) { if (g0.scalefac[sfb] != gi.scalefac[sfb] && gi.scalefac[sfb] >= 0) break; } if (sfb == Tables.scfsi_band[i + 1]) { for (sfb = Tables.scfsi_band[i]; sfb < Tables.scfsi_band[i + 1]; sfb++) { gi.scalefac[sfb] = -1; } l3_side.scfsi[ch][i] = 1; } } var s1 = 0; var c1 = 0; for (sfb = 0; sfb < 11; sfb++) { if (gi.scalefac[sfb] == -1) continue; c1++; if (s1 < gi.scalefac[sfb]) s1 = gi.scalefac[sfb]; } var s2 = 0; var c2 = 0; for (; sfb < Encoder.SBPSY_l; sfb++) { if (gi.scalefac[sfb] == -1) continue; c2++; if (s2 < gi.scalefac[sfb]) s2 = gi.scalefac[sfb]; } for (var i = 0; i < 16; i++) { if (s1 < slen1_n[i] && s2 < slen2_n[i]) { var c = slen1_tab[i] * c1 + slen2_tab[i] * c2; if (gi.part2_length > c) { gi.part2_length = c; gi.scalefac_compress = i; } } } } /** * Find the optimal way to store the scalefactors. Only call this routine * after final scalefactors have been chosen and the channel/granule will * not be re-encoded. */ this.best_scalefac_store = function (gfc, gr, ch, l3_side) { /* use scalefac_scale if we can */ var gi = l3_side.tt[gr][ch]; var sfb, i, j, l; var recalc = 0; /* * remove scalefacs from bands with ix=0. This idea comes from the AAC * ISO docs. added mt 3/00 */ /* check if l3_enc=0 */ j = 0; for (sfb = 0; sfb < gi.sfbmax; sfb++) { var width = gi.width[sfb]; assert(width >= 0); j += width; for (l = -width; l < 0; l++) { if (gi.l3_enc[l + j] != 0) break; } if (l == 0) gi.scalefac[sfb] = recalc = -2; /* anything goes. */ /* * only best_scalefac_store and calc_scfsi know--and only they * should know--about the magic number -2. */ } if (0 == gi.scalefac_scale && 0 == gi.preflag) { var s = 0; for (sfb = 0; sfb < gi.sfbmax; sfb++) if (gi.scalefac[sfb] > 0) s |= gi.scalefac[sfb]; if (0 == (s & 1) && s != 0) { for (sfb = 0; sfb < gi.sfbmax; sfb++) if (gi.scalefac[sfb] > 0) gi.scalefac[sfb] >>= 1; gi.scalefac_scale = recalc = 1; } } if (0 == gi.preflag && gi.block_type != Encoder.SHORT_TYPE && gfc.mode_gr == 2) { for (sfb = 11; sfb < Encoder.SBPSY_l; sfb++) if (gi.scalefac[sfb] < qupvt.pretab[sfb] && gi.scalefac[sfb] != -2) break; if (sfb == Encoder.SBPSY_l) { for (sfb = 11; sfb < Encoder.SBPSY_l; sfb++) if (gi.scalefac[sfb] > 0) gi.scalefac[sfb] -= qupvt.pretab[sfb]; gi.preflag = recalc = 1; } } for (i = 0; i < 4; i++) l3_side.scfsi[ch][i] = 0; if (gfc.mode_gr == 2 && gr == 1 && l3_side.tt[0][ch].block_type != Encoder.SHORT_TYPE && l3_side.tt[1][ch].block_type != Encoder.SHORT_TYPE) { scfsi_calc(ch, l3_side); recalc = 0; } for (sfb = 0; sfb < gi.sfbmax; sfb++) { if (gi.scalefac[sfb] == -2) { gi.scalefac[sfb] = 0; /* if anything goes, then 0 is a good choice */ } } if (recalc != 0) { if (gfc.mode_gr == 2) { this.scale_bitcount(gi); } else { this.scale_bitcount_lsf(gfc, gi); } } } function all_scalefactors_not_negative(scalefac, n) { for (var i = 0; i < n; ++i) { if (scalefac[i] < 0) return false; } return true; } /** * number of bits used to encode scalefacs. * * 18*slen1_tab[i] + 18*slen2_tab[i] */ var scale_short = [0, 18, 36, 54, 54, 36, 54, 72, 54, 72, 90, 72, 90, 108, 108, 126]; /** * number of bits used to encode scalefacs. * * 17*slen1_tab[i] + 18*slen2_tab[i] */ var scale_mixed = [0, 18, 36, 54, 51, 35, 53, 71, 52, 70, 88, 69, 87, 105, 104, 122]; /** * number of bits used to encode scalefacs. * * 11*slen1_tab[i] + 10*slen2_tab[i] */ var scale_long = [0, 10, 20, 30, 33, 21, 31, 41, 32, 42, 52, 43, 53, 63, 64, 74]; /** * Also calculates the number of bits necessary to code the scalefactors. */ this.scale_bitcount = function (cod_info) { var k, sfb, max_slen1 = 0, max_slen2 = 0; /* maximum values */ var tab; var scalefac = cod_info.scalefac; assert(all_scalefactors_not_negative(scalefac, cod_info.sfbmax)); if (cod_info.block_type == Encoder.SHORT_TYPE) { tab = scale_short; if (cod_info.mixed_block_flag != 0) tab = scale_mixed; } else { /* block_type == 1,2,or 3 */ tab = scale_long; if (0 == cod_info.preflag) { for (sfb = 11; sfb < Encoder.SBPSY_l; sfb++) if (scalefac[sfb] < qupvt.pretab[sfb]) break; if (sfb == Encoder.SBPSY_l) { cod_info.preflag = 1; for (sfb = 11; sfb < Encoder.SBPSY_l; sfb++) scalefac[sfb] -= qupvt.pretab[sfb]; } } } for (sfb = 0; sfb < cod_info.sfbdivide; sfb++) if (max_slen1 < scalefac[sfb]) max_slen1 = scalefac[sfb]; for (; sfb < cod_info.sfbmax; sfb++) if (max_slen2 < scalefac[sfb]) max_slen2 = scalefac[sfb]; /* * from Takehiro TOMINAGA <tominaga@isoternet.org> 10/99 loop over *all* * posible values of scalefac_compress to find the one which uses the * smallest number of bits. ISO would stop at first valid index */ cod_info.part2_length = QuantizePVT.LARGE_BITS; for (k = 0; k < 16; k++) { if (max_slen1 < slen1_n[k] && max_slen2 < slen2_n[k] && cod_info.part2_length > tab[k]) { cod_info.part2_length = tab[k]; cod_info.scalefac_compress = k; } } return cod_info.part2_length == QuantizePVT.LARGE_BITS; } /** * table of largest scalefactor values for MPEG2 */ var max_range_sfac_tab = [[15, 15, 7, 7], [15, 15, 7, 0], [7, 3, 0, 0], [15, 31, 31, 0], [7, 7, 7, 0], [3, 3, 0, 0]]; /** * Also counts the number of bits to encode the scalefacs but for MPEG 2 * Lower sampling frequencies (24, 22.05 and 16 kHz.) * * This is reverse-engineered from section 2.4.3.2 of the MPEG2 IS, * "Audio Decoding Layer III" */ this.scale_bitcount_lsf = function (gfc, cod_info) { var table_number, row_in_table, partition, nr_sfb, window; var over; var i, sfb; var max_sfac = new_int(4); //var partition_table; var scalefac = cod_info.scalefac; /* * Set partition table. Note that should try to use table one, but do * not yet... */ if (cod_info.preflag != 0) table_number = 2; else table_number = 0; for (i = 0; i < 4; i++) max_sfac[i] = 0; if (cod_info.block_type == Encoder.SHORT_TYPE) { row_in_table = 1; var partition_table = qupvt.nr_of_sfb_block[table_number][row_in_table]; for (sfb = 0, partition = 0; partition < 4; partition++) { nr_sfb = partition_table[partition] / 3; for (i = 0; i < nr_sfb; i++, sfb++) for (window = 0; window < 3; window++) if (scalefac[sfb * 3 + window] > max_sfac[partition]) max_sfac[partition] = scalefac[sfb * 3 + window]; } } else { row_in_table = 0; var partition_table = qupvt.nr_of_sfb_block[table_number][row_in_table]; for (sfb = 0, partition = 0; partition < 4; partition++) { nr_sfb = partition_table[partition]; for (i = 0; i < nr_sfb; i++, sfb++) if (scalefac[sfb] > max_sfac[partition]) max_sfac[partition] = scalefac[sfb]; } } for (over = false, partition = 0; partition < 4; partition++) { if (max_sfac[partition] > max_range_sfac_tab[table_number][partition]) over = true; } if (!over) { var slen1, slen2, slen3, slen4; cod_info.sfb_partition_table = qupvt.nr_of_sfb_block[table_number][row_in_table]; for (partition = 0; partition < 4; partition++) cod_info.slen[partition] = log2tab[max_sfac[partition]]; /* set scalefac_compress */ slen1 = cod_info.slen[0]; slen2 = cod_info.slen[1]; slen3 = cod_info.slen[2]; slen4 = cod_info.slen[3]; switch (table_number) { case 0: cod_info.scalefac_compress = (((slen1 * 5) + slen2) << 4) + (slen3 << 2) + slen4; break; case 1: cod_info.scalefac_compress = 400 + (((slen1 * 5) + slen2) << 2) + slen3; break; case 2: cod_info.scalefac_compress = 500 + (slen1 * 3) + slen2; break; default: System.err.printf("intensity stereo not implemented yet\n"); break; } } if (!over) { assert(cod_info.sfb_partition_table != null); cod_info.part2_length = 0; for (partition = 0; partition < 4; partition++) cod_info.part2_length += cod_info.slen[partition] * cod_info.sfb_partition_table[partition]; } return over; } /* * Since no bands have been over-amplified, we can set scalefac_compress and * slen[] for the formatter */ var log2tab = [0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]; this.huffman_init = function (gfc) { for (var i = 2; i <= 576; i += 2) { var scfb_anz = 0, bv_index; while (gfc.scalefac_band.l[++scfb_anz] < i) ; bv_index = subdv_table[scfb_anz][0]; // .region0_count while (gfc.scalefac_band.l[bv_index + 1] > i) bv_index--; if (bv_index < 0) { /* * this is an indication that everything is going to be encoded * as region0: bigvalues < region0 < region1 so lets set * region0, region1 to some value larger than bigvalues */ bv_index = subdv_table[scfb_anz][0]; // .region0_count } gfc.bv_scf[i - 2] = bv_index; bv_index = subdv_table[scfb_anz][1]; // .region1_count while (gfc.scalefac_band.l[bv_index + gfc.bv_scf[i - 2] + 2] > i) bv_index--; if (bv_index < 0) { bv_index = subdv_table[scfb_anz][1]; // .region1_count } gfc.bv_scf[i - 1] = bv_index; } } } module.exports = Takehiro;