( function () { /** * Dependencies * - Ammo.js https://github.com/kripken/ammo.js * * MMDPhysics calculates physics with Ammo(Bullet based JavaScript Physics engine) * for MMD model loaded by MMDLoader. * * TODO * - Physics in Worker */ /* global Ammo */ class MMDPhysics { /** * @param {THREE.SkinnedMesh} mesh * @param {Array<Object>} rigidBodyParams * @param {Array<Object>} (optional) constraintParams * @param {Object} params - (optional) * @param {Number} params.unitStep - Default is 1 / 65. * @param {Integer} params.maxStepNum - Default is 3. * @param {Vector3} params.gravity - Default is ( 0, - 9.8 * 10, 0 ) */ constructor( mesh, rigidBodyParams, constraintParams = [], params = {} ) { if ( typeof Ammo === 'undefined' ) { throw new Error( 'THREE.MMDPhysics: Import ammo.js https://github.com/kripken/ammo.js' ); } this.manager = new ResourceManager(); this.mesh = mesh; /* * I don't know why but 1/60 unitStep easily breaks models * so I set it 1/65 so far. * Don't set too small unitStep because * the smaller unitStep can make the performance worse. */ this.unitStep = params.unitStep !== undefined ? params.unitStep : 1 / 65; this.maxStepNum = params.maxStepNum !== undefined ? params.maxStepNum : 3; this.gravity = new THREE.Vector3( 0, - 9.8 * 10, 0 ); if ( params.gravity !== undefined ) this.gravity.copy( params.gravity ); this.world = params.world !== undefined ? params.world : null; // experimental this.bodies = []; this.constraints = []; this._init( mesh, rigidBodyParams, constraintParams ); } /** * Advances Physics calculation and updates bones. * * @param {Number} delta - time in second * @return {MMDPhysics} */ update( delta ) { const manager = this.manager; const mesh = this.mesh; // rigid bodies and constrains are for // mesh's world scale (1, 1, 1). // Convert to (1, 1, 1) if it isn't. let isNonDefaultScale = false; const position = manager.allocThreeVector3(); const quaternion = manager.allocThreeQuaternion(); const scale = manager.allocThreeVector3(); mesh.matrixWorld.decompose( position, quaternion, scale ); if ( scale.x !== 1 || scale.y !== 1 || scale.z !== 1 ) { isNonDefaultScale = true; } let parent; if ( isNonDefaultScale ) { parent = mesh.parent; if ( parent !== null ) mesh.parent = null; scale.copy( this.mesh.scale ); mesh.scale.set( 1, 1, 1 ); mesh.updateMatrixWorld( true ); } // calculate physics and update bones this._updateRigidBodies(); this._stepSimulation( delta ); this._updateBones(); // restore mesh if converted above if ( isNonDefaultScale ) { if ( parent !== null ) mesh.parent = parent; mesh.scale.copy( scale ); } manager.freeThreeVector3( scale ); manager.freeThreeQuaternion( quaternion ); manager.freeThreeVector3( position ); return this; } /** * Resets rigid bodies transorm to current bone's. * * @return {MMDPhysics} */ reset() { for ( let i = 0, il = this.bodies.length; i < il; i ++ ) { this.bodies[ i ].reset(); } return this; } /** * Warm ups Rigid bodies. Calculates cycles steps. * * @param {Integer} cycles * @return {MMDPhysics} */ warmup( cycles ) { for ( let i = 0; i < cycles; i ++ ) { this.update( 1 / 60 ); } return this; } /** * Sets gravity. * * @param {Vector3} gravity * @return {MMDPhysicsHelper} */ setGravity( gravity ) { this.world.setGravity( new Ammo.btVector3( gravity.x, gravity.y, gravity.z ) ); this.gravity.copy( gravity ); return this; } /** * Creates MMDPhysicsHelper * * @return {MMDPhysicsHelper} */ createHelper() { return new MMDPhysicsHelper( this.mesh, this ); } // private methods _init( mesh, rigidBodyParams, constraintParams ) { const manager = this.manager; // rigid body/constraint parameters are for // mesh's default world transform as position(0, 0, 0), // quaternion(0, 0, 0, 1) and scale(0, 0, 0) const parent = mesh.parent; if ( parent !== null ) mesh.parent = null; const currentPosition = manager.allocThreeVector3(); const currentQuaternion = manager.allocThreeQuaternion(); const currentScale = manager.allocThreeVector3(); currentPosition.copy( mesh.position ); currentQuaternion.copy( mesh.quaternion ); currentScale.copy( mesh.scale ); mesh.position.set( 0, 0, 0 ); mesh.quaternion.set( 0, 0, 0, 1 ); mesh.scale.set( 1, 1, 1 ); mesh.updateMatrixWorld( true ); if ( this.world === null ) { this.world = this._createWorld(); this.setGravity( this.gravity ); } this._initRigidBodies( rigidBodyParams ); this._initConstraints( constraintParams ); if ( parent !== null ) mesh.parent = parent; mesh.position.copy( currentPosition ); mesh.quaternion.copy( currentQuaternion ); mesh.scale.copy( currentScale ); mesh.updateMatrixWorld( true ); this.reset(); manager.freeThreeVector3( currentPosition ); manager.freeThreeQuaternion( currentQuaternion ); manager.freeThreeVector3( currentScale ); } _createWorld() { const config = new Ammo.btDefaultCollisionConfiguration(); const dispatcher = new Ammo.btCollisionDispatcher( config ); const cache = new Ammo.btDbvtBroadphase(); const solver = new Ammo.btSequentialImpulseConstraintSolver(); const world = new Ammo.btDiscreteDynamicsWorld( dispatcher, cache, solver, config ); return world; } _initRigidBodies( rigidBodies ) { for ( let i = 0, il = rigidBodies.length; i < il; i ++ ) { this.bodies.push( new RigidBody( this.mesh, this.world, rigidBodies[ i ], this.manager ) ); } } _initConstraints( constraints ) { for ( let i = 0, il = constraints.length; i < il; i ++ ) { const params = constraints[ i ]; const bodyA = this.bodies[ params.rigidBodyIndex1 ]; const bodyB = this.bodies[ params.rigidBodyIndex2 ]; this.constraints.push( new Constraint( this.mesh, this.world, bodyA, bodyB, params, this.manager ) ); } } _stepSimulation( delta ) { const unitStep = this.unitStep; let stepTime = delta; let maxStepNum = ( delta / unitStep | 0 ) + 1; if ( stepTime < unitStep ) { stepTime = unitStep; maxStepNum = 1; } if ( maxStepNum > this.maxStepNum ) { maxStepNum = this.maxStepNum; } this.world.stepSimulation( stepTime, maxStepNum, unitStep ); } _updateRigidBodies() { for ( let i = 0, il = this.bodies.length; i < il; i ++ ) { this.bodies[ i ].updateFromBone(); } } _updateBones() { for ( let i = 0, il = this.bodies.length; i < il; i ++ ) { this.bodies[ i ].updateBone(); } } } /** * This manager's responsibilies are * * 1. manage Ammo.js and Three.js object resources and * improve the performance and the memory consumption by * reusing objects. * * 2. provide simple Ammo object operations. */ class ResourceManager { constructor() { // for Three.js this.threeVector3s = []; this.threeMatrix4s = []; this.threeQuaternions = []; this.threeEulers = []; // for Ammo.js this.transforms = []; this.quaternions = []; this.vector3s = []; } allocThreeVector3() { return this.threeVector3s.length > 0 ? this.threeVector3s.pop() : new THREE.Vector3(); } freeThreeVector3( v ) { this.threeVector3s.push( v ); } allocThreeMatrix4() { return this.threeMatrix4s.length > 0 ? this.threeMatrix4s.pop() : new THREE.Matrix4(); } freeThreeMatrix4( m ) { this.threeMatrix4s.push( m ); } allocThreeQuaternion() { return this.threeQuaternions.length > 0 ? this.threeQuaternions.pop() : new THREE.Quaternion(); } freeThreeQuaternion( q ) { this.threeQuaternions.push( q ); } allocThreeEuler() { return this.threeEulers.length > 0 ? this.threeEulers.pop() : new THREE.Euler(); } freeThreeEuler( e ) { this.threeEulers.push( e ); } allocTransform() { return this.transforms.length > 0 ? this.transforms.pop() : new Ammo.btTransform(); } freeTransform( t ) { this.transforms.push( t ); } allocQuaternion() { return this.quaternions.length > 0 ? this.quaternions.pop() : new Ammo.btQuaternion(); } freeQuaternion( q ) { this.quaternions.push( q ); } allocVector3() { return this.vector3s.length > 0 ? this.vector3s.pop() : new Ammo.btVector3(); } freeVector3( v ) { this.vector3s.push( v ); } setIdentity( t ) { t.setIdentity(); } getBasis( t ) { var q = this.allocQuaternion(); t.getBasis().getRotation( q ); return q; } getBasisAsMatrix3( t ) { var q = this.getBasis( t ); var m = this.quaternionToMatrix3( q ); this.freeQuaternion( q ); return m; } getOrigin( t ) { return t.getOrigin(); } setOrigin( t, v ) { t.getOrigin().setValue( v.x(), v.y(), v.z() ); } copyOrigin( t1, t2 ) { var o = t2.getOrigin(); this.setOrigin( t1, o ); } setBasis( t, q ) { t.setRotation( q ); } setBasisFromMatrix3( t, m ) { var q = this.matrix3ToQuaternion( m ); this.setBasis( t, q ); this.freeQuaternion( q ); } setOriginFromArray3( t, a ) { t.getOrigin().setValue( a[ 0 ], a[ 1 ], a[ 2 ] ); } setOriginFromThreeVector3( t, v ) { t.getOrigin().setValue( v.x, v.y, v.z ); } setBasisFromArray3( t, a ) { var thQ = this.allocThreeQuaternion(); var thE = this.allocThreeEuler(); thE.set( a[ 0 ], a[ 1 ], a[ 2 ] ); this.setBasisFromThreeQuaternion( t, thQ.setFromEuler( thE ) ); this.freeThreeEuler( thE ); this.freeThreeQuaternion( thQ ); } setBasisFromThreeQuaternion( t, a ) { var q = this.allocQuaternion(); q.setX( a.x ); q.setY( a.y ); q.setZ( a.z ); q.setW( a.w ); this.setBasis( t, q ); this.freeQuaternion( q ); } multiplyTransforms( t1, t2 ) { var t = this.allocTransform(); this.setIdentity( t ); var m1 = this.getBasisAsMatrix3( t1 ); var m2 = this.getBasisAsMatrix3( t2 ); var o1 = this.getOrigin( t1 ); var o2 = this.getOrigin( t2 ); var v1 = this.multiplyMatrix3ByVector3( m1, o2 ); var v2 = this.addVector3( v1, o1 ); this.setOrigin( t, v2 ); var m3 = this.multiplyMatrices3( m1, m2 ); this.setBasisFromMatrix3( t, m3 ); this.freeVector3( v1 ); this.freeVector3( v2 ); return t; } inverseTransform( t ) { var t2 = this.allocTransform(); var m1 = this.getBasisAsMatrix3( t ); var o = this.getOrigin( t ); var m2 = this.transposeMatrix3( m1 ); var v1 = this.negativeVector3( o ); var v2 = this.multiplyMatrix3ByVector3( m2, v1 ); this.setOrigin( t2, v2 ); this.setBasisFromMatrix3( t2, m2 ); this.freeVector3( v1 ); this.freeVector3( v2 ); return t2; } multiplyMatrices3( m1, m2 ) { var m3 = []; var v10 = this.rowOfMatrix3( m1, 0 ); var v11 = this.rowOfMatrix3( m1, 1 ); var v12 = this.rowOfMatrix3( m1, 2 ); var v20 = this.columnOfMatrix3( m2, 0 ); var v21 = this.columnOfMatrix3( m2, 1 ); var v22 = this.columnOfMatrix3( m2, 2 ); m3[ 0 ] = this.dotVectors3( v10, v20 ); m3[ 1 ] = this.dotVectors3( v10, v21 ); m3[ 2 ] = this.dotVectors3( v10, v22 ); m3[ 3 ] = this.dotVectors3( v11, v20 ); m3[ 4 ] = this.dotVectors3( v11, v21 ); m3[ 5 ] = this.dotVectors3( v11, v22 ); m3[ 6 ] = this.dotVectors3( v12, v20 ); m3[ 7 ] = this.dotVectors3( v12, v21 ); m3[ 8 ] = this.dotVectors3( v12, v22 ); this.freeVector3( v10 ); this.freeVector3( v11 ); this.freeVector3( v12 ); this.freeVector3( v20 ); this.freeVector3( v21 ); this.freeVector3( v22 ); return m3; } addVector3( v1, v2 ) { var v = this.allocVector3(); v.setValue( v1.x() + v2.x(), v1.y() + v2.y(), v1.z() + v2.z() ); return v; } dotVectors3( v1, v2 ) { return v1.x() * v2.x() + v1.y() * v2.y() + v1.z() * v2.z(); } rowOfMatrix3( m, i ) { var v = this.allocVector3(); v.setValue( m[ i * 3 + 0 ], m[ i * 3 + 1 ], m[ i * 3 + 2 ] ); return v; } columnOfMatrix3( m, i ) { var v = this.allocVector3(); v.setValue( m[ i + 0 ], m[ i + 3 ], m[ i + 6 ] ); return v; } negativeVector3( v ) { var v2 = this.allocVector3(); v2.setValue( - v.x(), - v.y(), - v.z() ); return v2; } multiplyMatrix3ByVector3( m, v ) { var v4 = this.allocVector3(); var v0 = this.rowOfMatrix3( m, 0 ); var v1 = this.rowOfMatrix3( m, 1 ); var v2 = this.rowOfMatrix3( m, 2 ); var x = this.dotVectors3( v0, v ); var y = this.dotVectors3( v1, v ); var z = this.dotVectors3( v2, v ); v4.setValue( x, y, z ); this.freeVector3( v0 ); this.freeVector3( v1 ); this.freeVector3( v2 ); return v4; } transposeMatrix3( m ) { var m2 = []; m2[ 0 ] = m[ 0 ]; m2[ 1 ] = m[ 3 ]; m2[ 2 ] = m[ 6 ]; m2[ 3 ] = m[ 1 ]; m2[ 4 ] = m[ 4 ]; m2[ 5 ] = m[ 7 ]; m2[ 6 ] = m[ 2 ]; m2[ 7 ] = m[ 5 ]; m2[ 8 ] = m[ 8 ]; return m2; } quaternionToMatrix3( q ) { var m = []; var x = q.x(); var y = q.y(); var z = q.z(); var w = q.w(); var xx = x * x; var yy = y * y; var zz = z * z; var xy = x * y; var yz = y * z; var zx = z * x; var xw = x * w; var yw = y * w; var zw = z * w; m[ 0 ] = 1 - 2 * ( yy + zz ); m[ 1 ] = 2 * ( xy - zw ); m[ 2 ] = 2 * ( zx + yw ); m[ 3 ] = 2 * ( xy + zw ); m[ 4 ] = 1 - 2 * ( zz + xx ); m[ 5 ] = 2 * ( yz - xw ); m[ 6 ] = 2 * ( zx - yw ); m[ 7 ] = 2 * ( yz + xw ); m[ 8 ] = 1 - 2 * ( xx + yy ); return m; } matrix3ToQuaternion( m ) { var t = m[ 0 ] + m[ 4 ] + m[ 8 ]; var s, x, y, z, w; if ( t > 0 ) { s = Math.sqrt( t + 1.0 ) * 2; w = 0.25 * s; x = ( m[ 7 ] - m[ 5 ] ) / s; y = ( m[ 2 ] - m[ 6 ] ) / s; z = ( m[ 3 ] - m[ 1 ] ) / s; } else if ( m[ 0 ] > m[ 4 ] && m[ 0 ] > m[ 8 ] ) { s = Math.sqrt( 1.0 + m[ 0 ] - m[ 4 ] - m[ 8 ] ) * 2; w = ( m[ 7 ] - m[ 5 ] ) / s; x = 0.25 * s; y = ( m[ 1 ] + m[ 3 ] ) / s; z = ( m[ 2 ] + m[ 6 ] ) / s; } else if ( m[ 4 ] > m[ 8 ] ) { s = Math.sqrt( 1.0 + m[ 4 ] - m[ 0 ] - m[ 8 ] ) * 2; w = ( m[ 2 ] - m[ 6 ] ) / s; x = ( m[ 1 ] + m[ 3 ] ) / s; y = 0.25 * s; z = ( m[ 5 ] + m[ 7 ] ) / s; } else { s = Math.sqrt( 1.0 + m[ 8 ] - m[ 0 ] - m[ 4 ] ) * 2; w = ( m[ 3 ] - m[ 1 ] ) / s; x = ( m[ 2 ] + m[ 6 ] ) / s; y = ( m[ 5 ] + m[ 7 ] ) / s; z = 0.25 * s; } var q = this.allocQuaternion(); q.setX( x ); q.setY( y ); q.setZ( z ); q.setW( w ); return q; } } /** * @param {THREE.SkinnedMesh} mesh * @param {Ammo.btDiscreteDynamicsWorld} world * @param {Object} params * @param {ResourceManager} manager */ class RigidBody { constructor( mesh, world, params, manager ) { this.mesh = mesh; this.world = world; this.params = params; this.manager = manager; this.body = null; this.bone = null; this.boneOffsetForm = null; this.boneOffsetFormInverse = null; this._init(); } /** * Resets rigid body transform to the current bone's. * * @return {RigidBody} */ reset() { this._setTransformFromBone(); return this; } /** * Updates rigid body's transform from the current bone. * * @return {RidigBody} */ updateFromBone() { if ( this.params.boneIndex !== - 1 && this.params.type === 0 ) { this._setTransformFromBone(); } return this; } /** * Updates bone from the current ridid body's transform. * * @return {RidigBody} */ updateBone() { if ( this.params.type === 0 || this.params.boneIndex === - 1 ) { return this; } this._updateBoneRotation(); if ( this.params.type === 1 ) { this._updateBonePosition(); } this.bone.updateMatrixWorld( true ); if ( this.params.type === 2 ) { this._setPositionFromBone(); } return this; } // private methods _init() { function generateShape( p ) { switch ( p.shapeType ) { case 0: return new Ammo.btSphereShape( p.width ); case 1: return new Ammo.btBoxShape( new Ammo.btVector3( p.width, p.height, p.depth ) ); case 2: return new Ammo.btCapsuleShape( p.width, p.height ); default: throw new Error( 'unknown shape type ' + p.shapeType ); } } const manager = this.manager; const params = this.params; const bones = this.mesh.skeleton.bones; const bone = params.boneIndex === - 1 ? new THREE.Bone() : bones[ params.boneIndex ]; const shape = generateShape( params ); const weight = params.type === 0 ? 0 : params.weight; const localInertia = manager.allocVector3(); localInertia.setValue( 0, 0, 0 ); if ( weight !== 0 ) { shape.calculateLocalInertia( weight, localInertia ); } const boneOffsetForm = manager.allocTransform(); manager.setIdentity( boneOffsetForm ); manager.setOriginFromArray3( boneOffsetForm, params.position ); manager.setBasisFromArray3( boneOffsetForm, params.rotation ); const vector = manager.allocThreeVector3(); const boneForm = manager.allocTransform(); manager.setIdentity( boneForm ); manager.setOriginFromThreeVector3( boneForm, bone.getWorldPosition( vector ) ); const form = manager.multiplyTransforms( boneForm, boneOffsetForm ); const state = new Ammo.btDefaultMotionState( form ); const info = new Ammo.btRigidBodyConstructionInfo( weight, state, shape, localInertia ); info.set_m_friction( params.friction ); info.set_m_restitution( params.restitution ); const body = new Ammo.btRigidBody( info ); if ( params.type === 0 ) { body.setCollisionFlags( body.getCollisionFlags() | 2 ); /* * It'd be better to comment out this line though in general I should call this method * because I'm not sure why but physics will be more like MMD's * if I comment out. */ body.setActivationState( 4 ); } body.setDamping( params.positionDamping, params.rotationDamping ); body.setSleepingThresholds( 0, 0 ); this.world.addRigidBody( body, 1 << params.groupIndex, params.groupTarget ); this.body = body; this.bone = bone; this.boneOffsetForm = boneOffsetForm; this.boneOffsetFormInverse = manager.inverseTransform( boneOffsetForm ); manager.freeVector3( localInertia ); manager.freeTransform( form ); manager.freeTransform( boneForm ); manager.freeThreeVector3( vector ); } _getBoneTransform() { const manager = this.manager; const p = manager.allocThreeVector3(); const q = manager.allocThreeQuaternion(); const s = manager.allocThreeVector3(); this.bone.matrixWorld.decompose( p, q, s ); const tr = manager.allocTransform(); manager.setOriginFromThreeVector3( tr, p ); manager.setBasisFromThreeQuaternion( tr, q ); const form = manager.multiplyTransforms( tr, this.boneOffsetForm ); manager.freeTransform( tr ); manager.freeThreeVector3( s ); manager.freeThreeQuaternion( q ); manager.freeThreeVector3( p ); return form; } _getWorldTransformForBone() { const manager = this.manager; const tr = this.body.getCenterOfMassTransform(); return manager.multiplyTransforms( tr, this.boneOffsetFormInverse ); } _setTransformFromBone() { const manager = this.manager; const form = this._getBoneTransform(); // TODO: check the most appropriate way to set //this.body.setWorldTransform( form ); this.body.setCenterOfMassTransform( form ); this.body.getMotionState().setWorldTransform( form ); manager.freeTransform( form ); } _setPositionFromBone() { const manager = this.manager; const form = this._getBoneTransform(); const tr = manager.allocTransform(); this.body.getMotionState().getWorldTransform( tr ); manager.copyOrigin( tr, form ); // TODO: check the most appropriate way to set //this.body.setWorldTransform( tr ); this.body.setCenterOfMassTransform( tr ); this.body.getMotionState().setWorldTransform( tr ); manager.freeTransform( tr ); manager.freeTransform( form ); } _updateBoneRotation() { const manager = this.manager; const tr = this._getWorldTransformForBone(); const q = manager.getBasis( tr ); const thQ = manager.allocThreeQuaternion(); const thQ2 = manager.allocThreeQuaternion(); const thQ3 = manager.allocThreeQuaternion(); thQ.set( q.x(), q.y(), q.z(), q.w() ); thQ2.setFromRotationMatrix( this.bone.matrixWorld ); thQ2.conjugate(); thQ2.multiply( thQ ); //this.bone.quaternion.multiply( thQ2 ); thQ3.setFromRotationMatrix( this.bone.matrix ); // Renormalizing quaternion here because repeatedly transforming // quaternion continuously accumulates floating point error and // can end up being overflow. See #15335 this.bone.quaternion.copy( thQ2.multiply( thQ3 ).normalize() ); manager.freeThreeQuaternion( thQ ); manager.freeThreeQuaternion( thQ2 ); manager.freeThreeQuaternion( thQ3 ); manager.freeQuaternion( q ); manager.freeTransform( tr ); } _updateBonePosition() { const manager = this.manager; const tr = this._getWorldTransformForBone(); const thV = manager.allocThreeVector3(); const o = manager.getOrigin( tr ); thV.set( o.x(), o.y(), o.z() ); if ( this.bone.parent ) { this.bone.parent.worldToLocal( thV ); } this.bone.position.copy( thV ); manager.freeThreeVector3( thV ); manager.freeTransform( tr ); } } // class Constraint { /** * @param {THREE.SkinnedMesh} mesh * @param {Ammo.btDiscreteDynamicsWorld} world * @param {RigidBody} bodyA * @param {RigidBody} bodyB * @param {Object} params * @param {ResourceManager} manager */ constructor( mesh, world, bodyA, bodyB, params, manager ) { this.mesh = mesh; this.world = world; this.bodyA = bodyA; this.bodyB = bodyB; this.params = params; this.manager = manager; this.constraint = null; this._init(); } // private method _init() { const manager = this.manager; const params = this.params; const bodyA = this.bodyA; const bodyB = this.bodyB; const form = manager.allocTransform(); manager.setIdentity( form ); manager.setOriginFromArray3( form, params.position ); manager.setBasisFromArray3( form, params.rotation ); const formA = manager.allocTransform(); const formB = manager.allocTransform(); bodyA.body.getMotionState().getWorldTransform( formA ); bodyB.body.getMotionState().getWorldTransform( formB ); const formInverseA = manager.inverseTransform( formA ); const formInverseB = manager.inverseTransform( formB ); const formA2 = manager.multiplyTransforms( formInverseA, form ); const formB2 = manager.multiplyTransforms( formInverseB, form ); const constraint = new Ammo.btGeneric6DofSpringConstraint( bodyA.body, bodyB.body, formA2, formB2, true ); const lll = manager.allocVector3(); const lul = manager.allocVector3(); const all = manager.allocVector3(); const aul = manager.allocVector3(); lll.setValue( params.translationLimitation1[ 0 ], params.translationLimitation1[ 1 ], params.translationLimitation1[ 2 ] ); lul.setValue( params.translationLimitation2[ 0 ], params.translationLimitation2[ 1 ], params.translationLimitation2[ 2 ] ); all.setValue( params.rotationLimitation1[ 0 ], params.rotationLimitation1[ 1 ], params.rotationLimitation1[ 2 ] ); aul.setValue( params.rotationLimitation2[ 0 ], params.rotationLimitation2[ 1 ], params.rotationLimitation2[ 2 ] ); constraint.setLinearLowerLimit( lll ); constraint.setLinearUpperLimit( lul ); constraint.setAngularLowerLimit( all ); constraint.setAngularUpperLimit( aul ); for ( let i = 0; i < 3; i ++ ) { if ( params.springPosition[ i ] !== 0 ) { constraint.enableSpring( i, true ); constraint.setStiffness( i, params.springPosition[ i ] ); } } for ( let i = 0; i < 3; i ++ ) { if ( params.springRotation[ i ] !== 0 ) { constraint.enableSpring( i + 3, true ); constraint.setStiffness( i + 3, params.springRotation[ i ] ); } } /* * Currently(10/31/2016) official ammo.js doesn't support * btGeneric6DofSpringConstraint.setParam method. * You need custom ammo.js (add the method into idl) if you wanna use. * By setting this parameter, physics will be more like MMD's */ if ( constraint.setParam !== undefined ) { for ( let i = 0; i < 6; i ++ ) { constraint.setParam( 2, 0.475, i ); } } this.world.addConstraint( constraint, true ); this.constraint = constraint; manager.freeTransform( form ); manager.freeTransform( formA ); manager.freeTransform( formB ); manager.freeTransform( formInverseA ); manager.freeTransform( formInverseB ); manager.freeTransform( formA2 ); manager.freeTransform( formB2 ); manager.freeVector3( lll ); manager.freeVector3( lul ); manager.freeVector3( all ); manager.freeVector3( aul ); } } // const _position = new THREE.Vector3(); const _quaternion = new THREE.Quaternion(); const _scale = new THREE.Vector3(); const _matrixWorldInv = new THREE.Matrix4(); class MMDPhysicsHelper extends THREE.Object3D { /** * Visualize Rigid bodies * * @param {THREE.SkinnedMesh} mesh * @param {Physics} physics */ constructor( mesh, physics ) { super(); this.root = mesh; this.physics = physics; this.matrix.copy( mesh.matrixWorld ); this.matrixAutoUpdate = false; this.materials = []; this.materials.push( new THREE.MeshBasicMaterial( { color: new THREE.Color( 0xff8888 ), wireframe: true, depthTest: false, depthWrite: false, opacity: 0.25, transparent: true } ) ); this.materials.push( new THREE.MeshBasicMaterial( { color: new THREE.Color( 0x88ff88 ), wireframe: true, depthTest: false, depthWrite: false, opacity: 0.25, transparent: true } ) ); this.materials.push( new THREE.MeshBasicMaterial( { color: new THREE.Color( 0x8888ff ), wireframe: true, depthTest: false, depthWrite: false, opacity: 0.25, transparent: true } ) ); this._init(); } /** * Updates Rigid Bodies visualization. */ updateMatrixWorld( force ) { var mesh = this.root; if ( this.visible ) { var bodies = this.physics.bodies; _matrixWorldInv.copy( mesh.matrixWorld ).decompose( _position, _quaternion, _scale ).compose( _position, _quaternion, _scale.set( 1, 1, 1 ) ).invert(); for ( var i = 0, il = bodies.length; i < il; i ++ ) { var body = bodies[ i ].body; var child = this.children[ i ]; var tr = body.getCenterOfMassTransform(); var origin = tr.getOrigin(); var rotation = tr.getRotation(); child.position.set( origin.x(), origin.y(), origin.z() ).applyMatrix4( _matrixWorldInv ); child.quaternion.setFromRotationMatrix( _matrixWorldInv ).multiply( _quaternion.set( rotation.x(), rotation.y(), rotation.z(), rotation.w() ) ); } } this.matrix.copy( mesh.matrixWorld ).decompose( _position, _quaternion, _scale ).compose( _position, _quaternion, _scale.set( 1, 1, 1 ) ); super.updateMatrixWorld( force ); } // private method _init() { var bodies = this.physics.bodies; function createGeometry( param ) { switch ( param.shapeType ) { case 0: return new THREE.SphereGeometry( param.width, 16, 8 ); case 1: return new THREE.BoxGeometry( param.width * 2, param.height * 2, param.depth * 2, 8, 8, 8 ); case 2: return new THREE.CapsuleGeometry( param.width, param.height, 8, 16 ); default: return null; } } for ( var i = 0, il = bodies.length; i < il; i ++ ) { var param = bodies[ i ].params; this.add( new THREE.Mesh( createGeometry( param ), this.materials[ param.type ] ) ); } } } THREE.MMDPhysics = MMDPhysics; } )();