/** * @author alteredq / http://alteredqualia.com/ * */ /* ------------------------------------------------------------------------------------------ // Basic skin shader // - per-pixel Blinn-Phong diffuse term mixed with half-Lambert wrap-around term (per color component) // - physically based specular term (Kelemen/Szirmay-Kalos specular reflectance) // // - diffuse map // - bump map // - specular map // - point, directional and hemisphere lights (use with "lights: true" material option) // - fog (use with "fog: true" material option) // // ------------------------------------------------------------------------------------------ */ THREE.SkinShaderBasic = { uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ "fog" ], THREE.UniformsLib[ "lights" ], { "enableBump": { value: 0 }, "enableSpecular": { value: 0 }, "tDiffuse": { value: null }, "tBeckmann": { value: null }, "diffuse": { value: new THREE.Color( 0xeeeeee ) }, "specular": { value: new THREE.Color( 0x111111 ) }, "opacity": { value: 1 }, "uRoughness": { value: 0.15 }, "uSpecularBrightness": { value: 0.75 }, "bumpMap": { value: null }, "bumpScale": { value: 1 }, "specularMap": { value: null }, "offsetRepeat": { value: new THREE.Vector4( 0, 0, 1, 1 ) }, "uWrapRGB": { value: new THREE.Vector3( 0.75, 0.375, 0.1875 ) } } ] ), vertexShader: [ "uniform vec4 offsetRepeat;", "varying vec3 vNormal;", "varying vec2 vUv;", "varying vec3 vViewPosition;", THREE.ShaderChunk[ "common" ], THREE.ShaderChunk[ "lights_pars_begin" ], THREE.ShaderChunk[ "fog_pars_vertex" ], "void main() {", " vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );", " vec4 worldPosition = modelMatrix * vec4( position, 1.0 );", " vViewPosition = -mvPosition.xyz;", " vNormal = normalize( normalMatrix * normal );", " vUv = uv * offsetRepeat.zw + offsetRepeat.xy;", " gl_Position = projectionMatrix * mvPosition;", THREE.ShaderChunk[ "fog_vertex" ], "}" ].join( "\n" ), fragmentShader: [ "#define USE_BUMPMAP", "uniform bool enableBump;", "uniform bool enableSpecular;", "uniform vec3 diffuse;", "uniform vec3 specular;", "uniform float opacity;", "uniform float uRoughness;", "uniform float uSpecularBrightness;", "uniform vec3 uWrapRGB;", "uniform sampler2D tDiffuse;", "uniform sampler2D tBeckmann;", "uniform sampler2D specularMap;", "varying vec3 vNormal;", "varying vec2 vUv;", "varying vec3 vViewPosition;", THREE.ShaderChunk[ "common" ], THREE.ShaderChunk[ "bsdfs" ], THREE.ShaderChunk[ "packing" ], THREE.ShaderChunk[ "lights_pars_begin" ], THREE.ShaderChunk[ "fog_pars_fragment" ], THREE.ShaderChunk[ "bumpmap_pars_fragment" ], // Fresnel term "float fresnelReflectance( vec3 H, vec3 V, float F0 ) {", " float base = 1.0 - dot( V, H );", " float exponential = pow( base, 5.0 );", " return exponential + F0 * ( 1.0 - exponential );", "}", // Kelemen/Szirmay-Kalos specular BRDF "float KS_Skin_Specular( vec3 N,", // Bumped surface normal " vec3 L,", // Points to light " vec3 V,", // Points to eye " float m,", // Roughness " float rho_s", // Specular brightness " ) {", " float result = 0.0;", " float ndotl = dot( N, L );", " if( ndotl > 0.0 ) {", " vec3 h = L + V;", // Unnormalized half-way vector " vec3 H = normalize( h );", " float ndoth = dot( N, H );", " float PH = pow( 2.0 * texture2D( tBeckmann, vec2( ndoth, m ) ).x, 10.0 );", " float F = fresnelReflectance( H, V, 0.028 );", " float frSpec = max( PH * F / dot( h, h ), 0.0 );", " result = ndotl * rho_s * frSpec;", // BRDF * dot(N,L) * rho_s " }", " return result;", "}", "void main() {", " vec3 outgoingLight = vec3( 0.0 );", // outgoing light does not have an alpha, the surface does " vec4 diffuseColor = vec4( diffuse, opacity );", " vec4 colDiffuse = texture2D( tDiffuse, vUv );", " colDiffuse.rgb *= colDiffuse.rgb;", " diffuseColor = diffuseColor * colDiffuse;", " vec3 normal = normalize( vNormal );", " vec3 viewerDirection = normalize( vViewPosition );", " float specularStrength;", " if ( enableSpecular ) {", " vec4 texelSpecular = texture2D( specularMap, vUv );", " specularStrength = texelSpecular.r;", " } else {", " specularStrength = 1.0;", " }", " #ifdef USE_BUMPMAP", " if ( enableBump ) normal = perturbNormalArb( -vViewPosition, normal, dHdxy_fwd() );", " #endif", // point lights " vec3 totalSpecularLight = vec3( 0.0 );", " vec3 totalDiffuseLight = vec3( 0.0 );", " #if NUM_POINT_LIGHTS > 0", " for ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {", " vec3 lVector = pointLights[ i ].position + vViewPosition.xyz;", " float attenuation = calcLightAttenuation( length( lVector ), pointLights[ i ].distance, pointLights[ i ].decay );", " lVector = normalize( lVector );", " float pointDiffuseWeightFull = max( dot( normal, lVector ), 0.0 );", " float pointDiffuseWeightHalf = max( 0.5 * dot( normal, lVector ) + 0.5, 0.0 );", " vec3 pointDiffuseWeight = mix( vec3 ( pointDiffuseWeightFull ), vec3( pointDiffuseWeightHalf ), uWrapRGB );", " float pointSpecularWeight = KS_Skin_Specular( normal, lVector, viewerDirection, uRoughness, uSpecularBrightness );", " totalDiffuseLight += pointLight[ i ].color * ( pointDiffuseWeight * attenuation );", " totalSpecularLight += pointLight[ i ].color * specular * ( pointSpecularWeight * specularStrength * attenuation );", " }", " #endif", // directional lights " #if NUM_DIR_LIGHTS > 0", " for( int i = 0; i < NUM_DIR_LIGHTS; i++ ) {", " vec3 dirVector = directionalLights[ i ].direction;", " float dirDiffuseWeightFull = max( dot( normal, dirVector ), 0.0 );", " float dirDiffuseWeightHalf = max( 0.5 * dot( normal, dirVector ) + 0.5, 0.0 );", " vec3 dirDiffuseWeight = mix( vec3 ( dirDiffuseWeightFull ), vec3( dirDiffuseWeightHalf ), uWrapRGB );", " float dirSpecularWeight = KS_Skin_Specular( normal, dirVector, viewerDirection, uRoughness, uSpecularBrightness );", " totalDiffuseLight += directionalLights[ i ].color * dirDiffuseWeight;", " totalSpecularLight += directionalLights[ i ].color * ( dirSpecularWeight * specularStrength );", " }", " #endif", // hemisphere lights " #if NUM_HEMI_LIGHTS > 0", " for ( int i = 0; i < NUM_HEMI_LIGHTS; i ++ ) {", " vec3 lVector = hemisphereLightDirection[ i ];", " float dotProduct = dot( normal, lVector );", " float hemiDiffuseWeight = 0.5 * dotProduct + 0.5;", " totalDiffuseLight += mix( hemisphereLightGroundColor[ i ], hemisphereLightSkyColor[ i ], hemiDiffuseWeight );", // specular (sky light) " float hemiSpecularWeight = 0.0;", " hemiSpecularWeight += KS_Skin_Specular( normal, lVector, viewerDirection, uRoughness, uSpecularBrightness );", // specular (ground light) " vec3 lVectorGround = -lVector;", " hemiSpecularWeight += KS_Skin_Specular( normal, lVectorGround, viewerDirection, uRoughness, uSpecularBrightness );", " vec3 hemiSpecularColor = mix( hemisphereLightGroundColor[ i ], hemisphereLightSkyColor[ i ], hemiDiffuseWeight );", " totalSpecularLight += hemiSpecularColor * specular * ( hemiSpecularWeight * specularStrength );", " }", " #endif", " outgoingLight += diffuseColor.xyz * ( totalDiffuseLight + ambientLightColor * diffuse ) + totalSpecularLight;", " gl_FragColor = linearToOutputTexel( vec4( outgoingLight, diffuseColor.a ) );", // TODO, this should be pre-multiplied to allow for bright highlights on very transparent objects THREE.ShaderChunk[ "fog_fragment" ], "}" ].join( "\n" ) }; /* ------------------------------------------------------------------------------------------ // Skin shader // - Blinn-Phong diffuse term (using normal + diffuse maps) // - subsurface scattering approximation by four blur layers // - physically based specular term (Kelemen/Szirmay-Kalos specular reflectance) // // - point and directional lights (use with "lights: true" material option) // // - based on Nvidia Advanced Skin Rendering GDC 2007 presentation // and GPU Gems 3 Chapter 14. Advanced Techniques for Realistic Real-Time Skin Rendering // // http://developer.download.nvidia.com/presentations/2007/gdc/Advanced_Skin.pdf // http://http.developer.nvidia.com/GPUGems3/gpugems3_ch14.html // ------------------------------------------------------------------------------------------ */ THREE.SkinShaderAdvanced = { uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib[ "fog" ], THREE.UniformsLib[ "lights" ], { "passID": { value: 0 }, "tDiffuse": { value: null }, "tNormal": { value: null }, "tBlur1": { value: null }, "tBlur2": { value: null }, "tBlur3": { value: null }, "tBlur4": { value: null }, "tBeckmann": { value: null }, "uNormalScale": { value: 1.0 }, "diffuse": { value: new THREE.Color( 0xeeeeee ) }, "specular": { value: new THREE.Color( 0x111111 ) }, "opacity": { value: 1 }, "uRoughness": { value: 0.15 }, "uSpecularBrightness": { value: 0.75 } } ] ), vertexShader: [ "#ifdef VERTEX_TEXTURES", " uniform sampler2D tDisplacement;", " uniform float uDisplacementScale;", " uniform float uDisplacementBias;", "#endif", "varying vec3 vNormal;", "varying vec2 vUv;", "varying vec3 vViewPosition;", THREE.ShaderChunk[ "common" ], THREE.ShaderChunk[ "fog_pars_vertex" ], "void main() {", " vec4 worldPosition = modelMatrix * vec4( position, 1.0 );", " vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );", " vViewPosition = -mvPosition.xyz;", " vNormal = normalize( normalMatrix * normal );", " vUv = uv;", // displacement mapping " #ifdef VERTEX_TEXTURES", " vec3 dv = texture2D( tDisplacement, uv ).xyz;", " float df = uDisplacementScale * dv.x + uDisplacementBias;", " vec4 displacedPosition = vec4( vNormal.xyz * df, 0.0 ) + mvPosition;", " gl_Position = projectionMatrix * displacedPosition;", " #else", " gl_Position = projectionMatrix * mvPosition;", " #endif", THREE.ShaderChunk[ "fog_vertex" ], "}", ].join( "\n" ), vertexShaderUV: [ "varying vec3 vNormal;", "varying vec2 vUv;", "varying vec3 vViewPosition;", THREE.ShaderChunk[ "common" ], "void main() {", " vec4 worldPosition = modelMatrix * vec4( position, 1.0 );", " vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 );", " vViewPosition = -mvPosition.xyz;", " vNormal = normalize( normalMatrix * normal );", " vUv = uv;", " gl_Position = vec4( uv.x * 2.0 - 1.0, uv.y * 2.0 - 1.0, 0.0, 1.0 );", "}" ].join( "\n" ), fragmentShader: [ "uniform vec3 diffuse;", "uniform vec3 specular;", "uniform float opacity;", "uniform float uRoughness;", "uniform float uSpecularBrightness;", "uniform int passID;", "uniform sampler2D tDiffuse;", "uniform sampler2D tNormal;", "uniform sampler2D tBlur1;", "uniform sampler2D tBlur2;", "uniform sampler2D tBlur3;", "uniform sampler2D tBlur4;", "uniform sampler2D tBeckmann;", "uniform float uNormalScale;", "varying vec3 vNormal;", "varying vec2 vUv;", "varying vec3 vViewPosition;", THREE.ShaderChunk[ "common" ], THREE.ShaderChunk[ "lights_pars_begin" ], THREE.ShaderChunk[ "fog_pars_fragment" ], "float fresnelReflectance( vec3 H, vec3 V, float F0 ) {", " float base = 1.0 - dot( V, H );", " float exponential = pow( base, 5.0 );", " return exponential + F0 * ( 1.0 - exponential );", "}", // Kelemen/Szirmay-Kalos specular BRDF "float KS_Skin_Specular( vec3 N,", // Bumped surface normal " vec3 L,", // Points to light " vec3 V,", // Points to eye " float m,", // Roughness " float rho_s", // Specular brightness " ) {", " float result = 0.0;", " float ndotl = dot( N, L );", " if( ndotl > 0.0 ) {", " vec3 h = L + V;", // Unnormalized half-way vector " vec3 H = normalize( h );", " float ndoth = dot( N, H );", " float PH = pow( 2.0 * texture2D( tBeckmann, vec2( ndoth, m ) ).x, 10.0 );", " float F = fresnelReflectance( H, V, 0.028 );", " float frSpec = max( PH * F / dot( h, h ), 0.0 );", " result = ndotl * rho_s * frSpec;", // BRDF * dot(N,L) * rho_s " }", " return result;", "}", "void main() {", " vec3 outgoingLight = vec3( 0.0 );", // outgoing light does not have an alpha, the surface does " vec4 diffuseColor = vec4( diffuse, opacity );", " vec4 mSpecular = vec4( specular, opacity );", " vec4 colDiffuse = texture2D( tDiffuse, vUv );", " colDiffuse *= colDiffuse;", " diffuseColor *= colDiffuse;", // normal mapping " vec4 posAndU = vec4( -vViewPosition, vUv.x );", " vec4 posAndU_dx = dFdx( posAndU ), posAndU_dy = dFdy( posAndU );", " vec3 tangent = posAndU_dx.w * posAndU_dx.xyz + posAndU_dy.w * posAndU_dy.xyz;", " vec3 normal = normalize( vNormal );", " vec3 binormal = normalize( cross( tangent, normal ) );", " tangent = cross( normal, binormal );", // no normalization required " mat3 tsb = mat3( tangent, binormal, normal );", " vec3 normalTex = texture2D( tNormal, vUv ).xyz * 2.0 - 1.0;", " normalTex.xy *= uNormalScale;", " normalTex = normalize( normalTex );", " vec3 finalNormal = tsb * normalTex;", " normal = normalize( finalNormal );", " vec3 viewerDirection = normalize( vViewPosition );", // point lights " vec3 totalDiffuseLight = vec3( 0.0 );", " vec3 totalSpecularLight = vec3( 0.0 );", " #if NUM_POINT_LIGHTS > 0", " for ( int i = 0; i < NUM_POINT_LIGHTS; i ++ ) {", " vec3 pointVector = normalize( pointLights[ i ].direction );", " float attenuation = calcLightAttenuation( length( lVector ), pointLights[ i ].distance, pointLights[ i ].decay );", " float pointDiffuseWeight = max( dot( normal, pointVector ), 0.0 );", " totalDiffuseLight += pointLightColor[ i ] * ( pointDiffuseWeight * attenuation );", " if ( passID == 1 ) {", " float pointSpecularWeight = KS_Skin_Specular( normal, pointVector, viewerDirection, uRoughness, uSpecularBrightness );", " totalSpecularLight += pointLightColor[ i ] * mSpecular.xyz * ( pointSpecularWeight * attenuation );", " }", " }", " #endif", // directional lights " #if NUM_DIR_LIGHTS > 0", " for( int i = 0; i < NUM_DIR_LIGHTS; i++ ) {", " vec3 dirVector = directionalLights[ i ].direction;", " float dirDiffuseWeight = max( dot( normal, dirVector ), 0.0 );", " totalDiffuseLight += directionalLights[ i ].color * dirDiffuseWeight;", " if ( passID == 1 ) {", " float dirSpecularWeight = KS_Skin_Specular( normal, dirVector, viewerDirection, uRoughness, uSpecularBrightness );", " totalSpecularLight += directionalLights[ i ].color * mSpecular.xyz * dirSpecularWeight;", " }", " }", " #endif", " outgoingLight += diffuseColor.rgb * ( totalDiffuseLight + totalSpecularLight );", " if ( passID == 0 ) {", " outgoingLight = sqrt( outgoingLight );", " } else if ( passID == 1 ) {", //"#define VERSION1", " #ifdef VERSION1", " vec3 nonblurColor = sqrt(outgoingLight );", " #else", " vec3 nonblurColor = outgoingLight;", " #endif", " vec3 blur1Color = texture2D( tBlur1, vUv ).xyz;", " vec3 blur2Color = texture2D( tBlur2, vUv ).xyz;", " vec3 blur3Color = texture2D( tBlur3, vUv ).xyz;", " vec3 blur4Color = texture2D( tBlur4, vUv ).xyz;", //"gl_FragColor = vec4( blur1Color, gl_FragColor.w );", //"gl_FragColor = vec4( vec3( 0.22, 0.5, 0.7 ) * nonblurColor + vec3( 0.2, 0.5, 0.3 ) * blur1Color + vec3( 0.58, 0.0, 0.0 ) * blur2Color, gl_FragColor.w );", //"gl_FragColor = vec4( vec3( 0.25, 0.6, 0.8 ) * nonblurColor + vec3( 0.15, 0.25, 0.2 ) * blur1Color + vec3( 0.15, 0.15, 0.0 ) * blur2Color + vec3( 0.45, 0.0, 0.0 ) * blur3Color, gl_FragColor.w );", " outgoingLight = vec3( vec3( 0.22, 0.437, 0.635 ) * nonblurColor + ", " vec3( 0.101, 0.355, 0.365 ) * blur1Color + ", " vec3( 0.119, 0.208, 0.0 ) * blur2Color + ", " vec3( 0.114, 0.0, 0.0 ) * blur3Color + ", " vec3( 0.444, 0.0, 0.0 ) * blur4Color );", " outgoingLight *= sqrt( colDiffuse.xyz );", " outgoingLight += ambientLightColor * diffuse * colDiffuse.xyz + totalSpecularLight;", " #ifndef VERSION1", " outgoingLight = sqrt( outgoingLight );", " #endif", " }", " gl_FragColor = vec4( outgoingLight, diffuseColor.a );", // TODO, this should be pre-multiplied to allow for bright highlights on very transparent objects THREE.ShaderChunk[ "fog_fragment" ], "}" ].join( "\n" ) }; /* ------------------------------------------------------------------------------------------ // Beckmann distribution function // - to be used in specular term of skin shader // - render a screen-aligned quad to precompute a 512 x 512 texture // // - from http://developer.nvidia.com/node/171 ------------------------------------------------------------------------------------------ */ THREE.SkinShaderBeckmann = { uniforms: {}, vertexShader: [ "varying vec2 vUv;", "void main() {", " vUv = uv;", " gl_Position = projectionMatrix * modelViewMatrix * vec4( position, 1.0 );", "}" ].join( "\n" ), fragmentShader: [ "varying vec2 vUv;", "float PHBeckmann( float ndoth, float m ) {", " float alpha = acos( ndoth );", " float ta = tan( alpha );", " float val = 1.0 / ( m * m * pow( ndoth, 4.0 ) ) * exp( -( ta * ta ) / ( m * m ) );", " return val;", "}", "float KSTextureCompute( vec2 tex ) {", // Scale the value to fit within [0,1] invert upon lookup. " return 0.5 * pow( PHBeckmann( tex.x, tex.y ), 0.1 );", "}", "void main() {", " float x = KSTextureCompute( vUv );", " gl_FragColor = vec4( x, x, x, 1.0 );", "}" ].join( "\n" ) };