( function () { // Note: "MATERIAL" tag (e.g. GLITTER, SPECKLE) is not implemented const FINISH_TYPE_DEFAULT = 0; const FINISH_TYPE_CHROME = 1; const FINISH_TYPE_PEARLESCENT = 2; const FINISH_TYPE_RUBBER = 3; const FINISH_TYPE_MATTE_METALLIC = 4; const FINISH_TYPE_METAL = 5; // State machine to search a subobject path. // The LDraw standard establishes these various possible subfolders. const FILE_LOCATION_TRY_PARTS = 0; const FILE_LOCATION_TRY_P = 1; const FILE_LOCATION_TRY_MODELS = 2; const FILE_LOCATION_AS_IS = 3; const FILE_LOCATION_TRY_RELATIVE = 4; const FILE_LOCATION_TRY_ABSOLUTE = 5; const FILE_LOCATION_NOT_FOUND = 6; const MAIN_COLOUR_CODE = '16'; const MAIN_EDGE_COLOUR_CODE = '24'; const _tempVec0 = new THREE.Vector3(); const _tempVec1 = new THREE.Vector3(); class LDrawConditionalLineMaterial extends THREE.ShaderMaterial { constructor( parameters ) { super( { uniforms: THREE.UniformsUtils.merge( [ THREE.UniformsLib.fog, { diffuse: { value: new THREE.Color() }, opacity: { value: 1.0 } } ] ), vertexShader: /* glsl */ ` attribute vec3 control0; attribute vec3 control1; attribute vec3 direction; varying float discardFlag; #include <common> #include <color_pars_vertex> #include <fog_pars_vertex> #include <logdepthbuf_pars_vertex> #include <clipping_planes_pars_vertex> void main() { #include <color_vertex> vec4 mvPosition = modelViewMatrix * vec4( position, 1.0 ); gl_Position = projectionMatrix * mvPosition; // Transform the line segment ends and control points into camera clip space vec4 c0 = projectionMatrix * modelViewMatrix * vec4( control0, 1.0 ); vec4 c1 = projectionMatrix * modelViewMatrix * vec4( control1, 1.0 ); vec4 p0 = projectionMatrix * modelViewMatrix * vec4( position, 1.0 ); vec4 p1 = projectionMatrix * modelViewMatrix * vec4( position + direction, 1.0 ); c0.xy /= c0.w; c1.xy /= c1.w; p0.xy /= p0.w; p1.xy /= p1.w; // Get the direction of the segment and an orthogonal vector vec2 dir = p1.xy - p0.xy; vec2 norm = vec2( -dir.y, dir.x ); // Get control point directions from the line vec2 c0dir = c0.xy - p1.xy; vec2 c1dir = c1.xy - p1.xy; // If the vectors to the controls points are pointed in different directions away // from the line segment then the line should not be drawn. float d0 = dot( normalize( norm ), normalize( c0dir ) ); float d1 = dot( normalize( norm ), normalize( c1dir ) ); discardFlag = float( sign( d0 ) != sign( d1 ) ); #include <logdepthbuf_vertex> #include <clipping_planes_vertex> #include <fog_vertex> } `, fragmentShader: /* glsl */ ` uniform vec3 diffuse; uniform float opacity; varying float discardFlag; #include <common> #include <color_pars_fragment> #include <fog_pars_fragment> #include <logdepthbuf_pars_fragment> #include <clipping_planes_pars_fragment> void main() { if ( discardFlag > 0.5 ) discard; #include <clipping_planes_fragment> vec3 outgoingLight = vec3( 0.0 ); vec4 diffuseColor = vec4( diffuse, opacity ); #include <logdepthbuf_fragment> #include <color_fragment> outgoingLight = diffuseColor.rgb; // simple shader gl_FragColor = vec4( outgoingLight, diffuseColor.a ); #include <tonemapping_fragment> #include <encodings_fragment> #include <fog_fragment> #include <premultiplied_alpha_fragment> } ` } ); Object.defineProperties( this, { opacity: { get: function () { return this.uniforms.opacity.value; }, set: function ( value ) { this.uniforms.opacity.value = value; } }, color: { get: function () { return this.uniforms.diffuse.value; } } } ); this.setValues( parameters ); this.isLDrawConditionalLineMaterial = true; } } class ConditionalLineSegments extends THREE.LineSegments { constructor( geometry, material ) { super( geometry, material ); this.isConditionalLine = true; } } function generateFaceNormals( faces ) { for ( let i = 0, l = faces.length; i < l; i ++ ) { const face = faces[ i ]; const vertices = face.vertices; const v0 = vertices[ 0 ]; const v1 = vertices[ 1 ]; const v2 = vertices[ 2 ]; _tempVec0.subVectors( v1, v0 ); _tempVec1.subVectors( v2, v1 ); face.faceNormal = new THREE.Vector3().crossVectors( _tempVec0, _tempVec1 ).normalize(); } } const _ray = new THREE.Ray(); function smoothNormals( faces, lineSegments, checkSubSegments = false ) { // NOTE: 1e2 is pretty coarse but was chosen to quantize the resulting value because // it allows edges to be smoothed as expected (see minifig arms). // -- // And the vector values are initialize multiplied by 1 + 1e-10 to account for floating // point errors on vertices along quantization boundaries. Ie after matrix multiplication // vertices that should be merged might be set to "1.7" and "1.6999..." meaning they won't // get merged. This added epsilon attempts to push these error values to the same quantized // value for the sake of hashing. See "AT-ST mini" dishes. See mrdoob/three#23169. const hashMultiplier = ( 1 + 1e-10 ) * 1e2; function hashVertex( v ) { const x = ~ ~ ( v.x * hashMultiplier ); const y = ~ ~ ( v.y * hashMultiplier ); const z = ~ ~ ( v.z * hashMultiplier ); return `${x},${y},${z}`; } function hashEdge( v0, v1 ) { return `${hashVertex( v0 )}_${hashVertex( v1 )}`; } // converts the two vertices to a ray with a normalized direction and origin of 0, 0, 0 projected // onto the original line. function toNormalizedRay( v0, v1, targetRay ) { targetRay.direction.subVectors( v1, v0 ).normalize(); const scalar = v0.dot( targetRay.direction ); targetRay.origin.copy( v0 ).addScaledVector( targetRay.direction, - scalar ); return targetRay; } function hashRay( ray ) { return hashEdge( ray.origin, ray.direction ); } const hardEdges = new Set(); const hardEdgeRays = new Map(); const halfEdgeList = {}; const normals = []; // Save the list of hard edges by hash for ( let i = 0, l = lineSegments.length; i < l; i ++ ) { const ls = lineSegments[ i ]; const vertices = ls.vertices; const v0 = vertices[ 0 ]; const v1 = vertices[ 1 ]; hardEdges.add( hashEdge( v0, v1 ) ); hardEdges.add( hashEdge( v1, v0 ) ); // only generate the hard edge ray map if we're checking subsegments because it's more expensive to check // and requires more memory. if ( checkSubSegments ) { // add both ray directions to the map const ray = toNormalizedRay( v0, v1, new THREE.Ray() ); const rh1 = hashRay( ray ); if ( ! hardEdgeRays.has( rh1 ) ) { toNormalizedRay( v1, v0, ray ); const rh2 = hashRay( ray ); const info = { ray, distances: [] }; hardEdgeRays.set( rh1, info ); hardEdgeRays.set( rh2, info ); } // store both segments ends in min, max order in the distances array to check if a face edge is a // subsegment later. const info = hardEdgeRays.get( rh1 ); let d0 = info.ray.direction.dot( v0 ); let d1 = info.ray.direction.dot( v1 ); if ( d0 > d1 ) { [ d0, d1 ] = [ d1, d0 ]; } info.distances.push( d0, d1 ); } } // track the half edges associated with each triangle for ( let i = 0, l = faces.length; i < l; i ++ ) { const tri = faces[ i ]; const vertices = tri.vertices; const vertCount = vertices.length; for ( let i2 = 0; i2 < vertCount; i2 ++ ) { const index = i2; const next = ( i2 + 1 ) % vertCount; const v0 = vertices[ index ]; const v1 = vertices[ next ]; const hash = hashEdge( v0, v1 ); // don't add the triangle if the edge is supposed to be hard if ( hardEdges.has( hash ) ) { continue; } // if checking subsegments then check to see if this edge lies on a hard edge ray and whether its within any ray bounds if ( checkSubSegments ) { toNormalizedRay( v0, v1, _ray ); const rayHash = hashRay( _ray ); if ( hardEdgeRays.has( rayHash ) ) { const info = hardEdgeRays.get( rayHash ); const { ray, distances } = info; let d0 = ray.direction.dot( v0 ); let d1 = ray.direction.dot( v1 ); if ( d0 > d1 ) { [ d0, d1 ] = [ d1, d0 ]; } // return early if the face edge is found to be a subsegment of a line edge meaning the edge will have "hard" normals let found = false; for ( let i = 0, l = distances.length; i < l; i += 2 ) { if ( d0 >= distances[ i ] && d1 <= distances[ i + 1 ] ) { found = true; break; } } if ( found ) { continue; } } } const info = { index: index, tri: tri }; halfEdgeList[ hash ] = info; } } // Iterate until we've tried to connect all faces to share normals while ( true ) { // Stop if there are no more faces left let halfEdge = null; for ( const key in halfEdgeList ) { halfEdge = halfEdgeList[ key ]; break; } if ( halfEdge === null ) { break; } // Exhaustively find all connected faces const queue = [ halfEdge ]; while ( queue.length > 0 ) { // initialize all vertex normals in this triangle const tri = queue.pop().tri; const vertices = tri.vertices; const vertNormals = tri.normals; const faceNormal = tri.faceNormal; // Check if any edge is connected to another triangle edge const vertCount = vertices.length; for ( let i2 = 0; i2 < vertCount; i2 ++ ) { const index = i2; const next = ( i2 + 1 ) % vertCount; const v0 = vertices[ index ]; const v1 = vertices[ next ]; // delete this triangle from the list so it won't be found again const hash = hashEdge( v0, v1 ); delete halfEdgeList[ hash ]; const reverseHash = hashEdge( v1, v0 ); const otherInfo = halfEdgeList[ reverseHash ]; if ( otherInfo ) { const otherTri = otherInfo.tri; const otherIndex = otherInfo.index; const otherNormals = otherTri.normals; const otherVertCount = otherNormals.length; const otherFaceNormal = otherTri.faceNormal; // NOTE: If the angle between faces is > 67.5 degrees then assume it's // hard edge. There are some cases where the line segments do not line up exactly // with or span multiple triangle edges (see Lunar Vehicle wheels). if ( Math.abs( otherTri.faceNormal.dot( tri.faceNormal ) ) < 0.25 ) { continue; } // if this triangle has already been traversed then it won't be in // the halfEdgeList. If it has not then add it to the queue and delete // it so it won't be found again. if ( reverseHash in halfEdgeList ) { queue.push( otherInfo ); delete halfEdgeList[ reverseHash ]; } // share the first normal const otherNext = ( otherIndex + 1 ) % otherVertCount; if ( vertNormals[ index ] && otherNormals[ otherNext ] && vertNormals[ index ] !== otherNormals[ otherNext ] ) { otherNormals[ otherNext ].norm.add( vertNormals[ index ].norm ); vertNormals[ index ].norm = otherNormals[ otherNext ].norm; } let sharedNormal1 = vertNormals[ index ] || otherNormals[ otherNext ]; if ( sharedNormal1 === null ) { // it's possible to encounter an edge of a triangle that has already been traversed meaning // both edges already have different normals defined and shared. To work around this we create // a wrapper object so when those edges are merged the normals can be updated everywhere. sharedNormal1 = { norm: new THREE.Vector3() }; normals.push( sharedNormal1.norm ); } if ( vertNormals[ index ] === null ) { vertNormals[ index ] = sharedNormal1; sharedNormal1.norm.add( faceNormal ); } if ( otherNormals[ otherNext ] === null ) { otherNormals[ otherNext ] = sharedNormal1; sharedNormal1.norm.add( otherFaceNormal ); } // share the second normal if ( vertNormals[ next ] && otherNormals[ otherIndex ] && vertNormals[ next ] !== otherNormals[ otherIndex ] ) { otherNormals[ otherIndex ].norm.add( vertNormals[ next ].norm ); vertNormals[ next ].norm = otherNormals[ otherIndex ].norm; } let sharedNormal2 = vertNormals[ next ] || otherNormals[ otherIndex ]; if ( sharedNormal2 === null ) { sharedNormal2 = { norm: new THREE.Vector3() }; normals.push( sharedNormal2.norm ); } if ( vertNormals[ next ] === null ) { vertNormals[ next ] = sharedNormal2; sharedNormal2.norm.add( faceNormal ); } if ( otherNormals[ otherIndex ] === null ) { otherNormals[ otherIndex ] = sharedNormal2; sharedNormal2.norm.add( otherFaceNormal ); } } } } } // The normals of each face have been added up so now we average them by normalizing the vector. for ( let i = 0, l = normals.length; i < l; i ++ ) { normals[ i ].normalize(); } } function isPartType( type ) { return type === 'Part' || type === 'Unofficial_Part'; } function isPrimitiveType( type ) { return /primitive/i.test( type ) || type === 'Subpart'; } class LineParser { constructor( line, lineNumber ) { this.line = line; this.lineLength = line.length; this.currentCharIndex = 0; this.currentChar = ' '; this.lineNumber = lineNumber; } seekNonSpace() { while ( this.currentCharIndex < this.lineLength ) { this.currentChar = this.line.charAt( this.currentCharIndex ); if ( this.currentChar !== ' ' && this.currentChar !== '\t' ) { return; } this.currentCharIndex ++; } } getToken() { const pos0 = this.currentCharIndex ++; // Seek space while ( this.currentCharIndex < this.lineLength ) { this.currentChar = this.line.charAt( this.currentCharIndex ); if ( this.currentChar === ' ' || this.currentChar === '\t' ) { break; } this.currentCharIndex ++; } const pos1 = this.currentCharIndex; this.seekNonSpace(); return this.line.substring( pos0, pos1 ); } getVector() { return new THREE.Vector3( parseFloat( this.getToken() ), parseFloat( this.getToken() ), parseFloat( this.getToken() ) ); } getRemainingString() { return this.line.substring( this.currentCharIndex, this.lineLength ); } isAtTheEnd() { return this.currentCharIndex >= this.lineLength; } setToEnd() { this.currentCharIndex = this.lineLength; } getLineNumberString() { return this.lineNumber >= 0 ? ' at line ' + this.lineNumber : ''; } } // Fetches and parses an intermediate representation of LDraw parts files. class LDrawParsedCache { constructor( loader ) { this.loader = loader; this._cache = {}; } cloneResult( original ) { const result = {}; // vertices are transformed and normals computed before being converted to geometry // so these pieces must be cloned. result.faces = original.faces.map( face => { return { colorCode: face.colorCode, material: face.material, vertices: face.vertices.map( v => v.clone() ), normals: face.normals.map( () => null ), faceNormal: null }; } ); result.conditionalSegments = original.conditionalSegments.map( face => { return { colorCode: face.colorCode, material: face.material, vertices: face.vertices.map( v => v.clone() ), controlPoints: face.controlPoints.map( v => v.clone() ) }; } ); result.lineSegments = original.lineSegments.map( face => { return { colorCode: face.colorCode, material: face.material, vertices: face.vertices.map( v => v.clone() ) }; } ); // none if this is subsequently modified result.type = original.type; result.category = original.category; result.keywords = original.keywords; result.author = original.author; result.subobjects = original.subobjects; result.fileName = original.fileName; result.totalFaces = original.totalFaces; result.startingConstructionStep = original.startingConstructionStep; result.materials = original.materials; result.group = null; return result; } async fetchData( fileName ) { let triedLowerCase = false; let locationState = FILE_LOCATION_TRY_PARTS; while ( locationState !== FILE_LOCATION_NOT_FOUND ) { let subobjectURL = fileName; switch ( locationState ) { case FILE_LOCATION_AS_IS: locationState = locationState + 1; break; case FILE_LOCATION_TRY_PARTS: subobjectURL = 'parts/' + subobjectURL; locationState = locationState + 1; break; case FILE_LOCATION_TRY_P: subobjectURL = 'p/' + subobjectURL; locationState = locationState + 1; break; case FILE_LOCATION_TRY_MODELS: subobjectURL = 'models/' + subobjectURL; locationState = locationState + 1; break; case FILE_LOCATION_TRY_RELATIVE: subobjectURL = fileName.substring( 0, fileName.lastIndexOf( '/' ) + 1 ) + subobjectURL; locationState = locationState + 1; break; case FILE_LOCATION_TRY_ABSOLUTE: if ( triedLowerCase ) { // Try absolute path locationState = FILE_LOCATION_NOT_FOUND; } else { // Next attempt is lower case fileName = fileName.toLowerCase(); subobjectURL = fileName; triedLowerCase = true; locationState = FILE_LOCATION_TRY_PARTS; } break; } const loader = this.loader; const fileLoader = new THREE.FileLoader( loader.manager ); fileLoader.setPath( loader.partsLibraryPath ); fileLoader.setRequestHeader( loader.requestHeader ); fileLoader.setWithCredentials( loader.withCredentials ); try { const text = await fileLoader.loadAsync( subobjectURL ); return text; } catch { continue; } } throw new Error( 'LDrawLoader: Subobject "' + fileName + '" could not be loaded.' ); } parse( text, fileName = null ) { const loader = this.loader; // final results const faces = []; const lineSegments = []; const conditionalSegments = []; const subobjects = []; const materials = {}; const getLocalMaterial = colorCode => { return materials[ colorCode ] || null; }; let type = 'Model'; let category = null; let keywords = null; let author = null; let totalFaces = 0; // split into lines if ( text.indexOf( '\r\n' ) !== - 1 ) { // This is faster than String.split with regex that splits on both text = text.replace( /\r\n/g, '\n' ); } const lines = text.split( '\n' ); const numLines = lines.length; let parsingEmbeddedFiles = false; let currentEmbeddedFileName = null; let currentEmbeddedText = null; let bfcCertified = false; let bfcCCW = true; let bfcInverted = false; let bfcCull = true; let startingConstructionStep = false; // Parse all line commands for ( let lineIndex = 0; lineIndex < numLines; lineIndex ++ ) { const line = lines[ lineIndex ]; if ( line.length === 0 ) continue; if ( parsingEmbeddedFiles ) { if ( line.startsWith( '0 FILE ' ) ) { // Save previous embedded file in the cache this.setData( currentEmbeddedFileName, currentEmbeddedText ); // New embedded text file currentEmbeddedFileName = line.substring( 7 ); currentEmbeddedText = ''; } else { currentEmbeddedText += line + '\n'; } continue; } const lp = new LineParser( line, lineIndex + 1 ); lp.seekNonSpace(); if ( lp.isAtTheEnd() ) { // Empty line continue; } // Parse the line type const lineType = lp.getToken(); let material; let colorCode; let segment; let ccw; let doubleSided; let v0, v1, v2, v3, c0, c1; switch ( lineType ) { // Line type 0: Comment or META case '0': // Parse meta directive const meta = lp.getToken(); if ( meta ) { switch ( meta ) { case '!LDRAW_ORG': type = lp.getToken(); break; case '!COLOUR': material = loader.parseColorMetaDirective( lp ); if ( material ) { materials[ material.userData.code ] = material; } else { console.warn( 'LDrawLoader: Error parsing material' + lp.getLineNumberString() ); } break; case '!CATEGORY': category = lp.getToken(); break; case '!KEYWORDS': const newKeywords = lp.getRemainingString().split( ',' ); if ( newKeywords.length > 0 ) { if ( ! keywords ) { keywords = []; } newKeywords.forEach( function ( keyword ) { keywords.push( keyword.trim() ); } ); } break; case 'FILE': if ( lineIndex > 0 ) { // Start embedded text files parsing parsingEmbeddedFiles = true; currentEmbeddedFileName = lp.getRemainingString(); currentEmbeddedText = ''; bfcCertified = false; bfcCCW = true; } break; case 'BFC': // Changes to the backface culling state while ( ! lp.isAtTheEnd() ) { const token = lp.getToken(); switch ( token ) { case 'CERTIFY': case 'NOCERTIFY': bfcCertified = token === 'CERTIFY'; bfcCCW = true; break; case 'CW': case 'CCW': bfcCCW = token === 'CCW'; break; case 'INVERTNEXT': bfcInverted = true; break; case 'CLIP': case 'NOCLIP': bfcCull = token === 'CLIP'; break; default: console.warn( 'THREE.LDrawLoader: BFC directive "' + token + '" is unknown.' ); break; } } break; case 'STEP': startingConstructionStep = true; break; case 'Author:': author = lp.getToken(); break; default: // Other meta directives are not implemented break; } } break; // Line type 1: Sub-object file case '1': colorCode = lp.getToken(); material = getLocalMaterial( colorCode ); const posX = parseFloat( lp.getToken() ); const posY = parseFloat( lp.getToken() ); const posZ = parseFloat( lp.getToken() ); const m0 = parseFloat( lp.getToken() ); const m1 = parseFloat( lp.getToken() ); const m2 = parseFloat( lp.getToken() ); const m3 = parseFloat( lp.getToken() ); const m4 = parseFloat( lp.getToken() ); const m5 = parseFloat( lp.getToken() ); const m6 = parseFloat( lp.getToken() ); const m7 = parseFloat( lp.getToken() ); const m8 = parseFloat( lp.getToken() ); const matrix = new THREE.Matrix4().set( m0, m1, m2, posX, m3, m4, m5, posY, m6, m7, m8, posZ, 0, 0, 0, 1 ); let fileName = lp.getRemainingString().trim().replace( /\\/g, '/' ); if ( loader.fileMap[ fileName ] ) { // Found the subobject path in the preloaded file path map fileName = loader.fileMap[ fileName ]; } else { // Standardized subfolders if ( fileName.startsWith( 's/' ) ) { fileName = 'parts/' + fileName; } else if ( fileName.startsWith( '48/' ) ) { fileName = 'p/' + fileName; } } subobjects.push( { material: material, colorCode: colorCode, matrix: matrix, fileName: fileName, inverted: bfcInverted, startingConstructionStep: startingConstructionStep } ); bfcInverted = false; break; // Line type 2: Line segment case '2': colorCode = lp.getToken(); material = getLocalMaterial( colorCode ); v0 = lp.getVector(); v1 = lp.getVector(); segment = { material: material, colorCode: colorCode, vertices: [ v0, v1 ] }; lineSegments.push( segment ); break; // Line type 5: Conditional Line segment case '5': colorCode = lp.getToken(); material = getLocalMaterial( colorCode ); v0 = lp.getVector(); v1 = lp.getVector(); c0 = lp.getVector(); c1 = lp.getVector(); segment = { material: material, colorCode: colorCode, vertices: [ v0, v1 ], controlPoints: [ c0, c1 ] }; conditionalSegments.push( segment ); break; // Line type 3: Triangle case '3': colorCode = lp.getToken(); material = getLocalMaterial( colorCode ); ccw = bfcCCW; doubleSided = ! bfcCertified || ! bfcCull; if ( ccw === true ) { v0 = lp.getVector(); v1 = lp.getVector(); v2 = lp.getVector(); } else { v2 = lp.getVector(); v1 = lp.getVector(); v0 = lp.getVector(); } faces.push( { material: material, colorCode: colorCode, faceNormal: null, vertices: [ v0, v1, v2 ], normals: [ null, null, null ] } ); totalFaces ++; if ( doubleSided === true ) { faces.push( { material: material, colorCode: colorCode, faceNormal: null, vertices: [ v2, v1, v0 ], normals: [ null, null, null ] } ); totalFaces ++; } break; // Line type 4: Quadrilateral case '4': colorCode = lp.getToken(); material = getLocalMaterial( colorCode ); ccw = bfcCCW; doubleSided = ! bfcCertified || ! bfcCull; if ( ccw === true ) { v0 = lp.getVector(); v1 = lp.getVector(); v2 = lp.getVector(); v3 = lp.getVector(); } else { v3 = lp.getVector(); v2 = lp.getVector(); v1 = lp.getVector(); v0 = lp.getVector(); } // specifically place the triangle diagonal in the v0 and v1 slots so we can // account for the doubling of vertices later when smoothing normals. faces.push( { material: material, colorCode: colorCode, faceNormal: null, vertices: [ v0, v1, v2, v3 ], normals: [ null, null, null, null ] } ); totalFaces += 2; if ( doubleSided === true ) { faces.push( { material: material, colorCode: colorCode, faceNormal: null, vertices: [ v3, v2, v1, v0 ], normals: [ null, null, null, null ] } ); totalFaces += 2; } break; default: throw new Error( 'LDrawLoader: Unknown line type "' + lineType + '"' + lp.getLineNumberString() + '.' ); } } if ( parsingEmbeddedFiles ) { this.setData( currentEmbeddedFileName, currentEmbeddedText ); } return { faces, conditionalSegments, lineSegments, type, category, keywords, author, subobjects, totalFaces, startingConstructionStep, materials, fileName, group: null }; } // returns an (optionally cloned) instance of the data getData( fileName, clone = true ) { const key = fileName.toLowerCase(); const result = this._cache[ key ]; if ( result === null || result instanceof Promise ) { return null; } if ( clone ) { return this.cloneResult( result ); } else { return result; } } // kicks off a fetch and parse of the requested data if it hasn't already been loaded. Returns when // the data is ready to use and can be retrieved synchronously with "getData". async ensureDataLoaded( fileName ) { const key = fileName.toLowerCase(); if ( ! ( key in this._cache ) ) { // replace the promise with a copy of the parsed data for immediate processing this._cache[ key ] = this.fetchData( fileName ).then( text => { const info = this.parse( text, fileName ); this._cache[ key ] = info; return info; } ); } await this._cache[ key ]; } // sets the data in the cache from parsed data setData( fileName, text ) { const key = fileName.toLowerCase(); this._cache[ key ] = this.parse( text, fileName ); } } // returns the material for an associated color code. If the color code is 16 for a face or 24 for // an edge then the passthroughColorCode is used. function getMaterialFromCode( colorCode, parentColorCode, materialHierarchy, forEdge ) { const isPassthrough = ! forEdge && colorCode === MAIN_COLOUR_CODE || forEdge && colorCode === MAIN_EDGE_COLOUR_CODE; if ( isPassthrough ) { colorCode = parentColorCode; } return materialHierarchy[ colorCode ] || null; } // Class used to parse and build LDraw parts as three.js objects and cache them if they're a "Part" type. class LDrawPartsGeometryCache { constructor( loader ) { this.loader = loader; this.parseCache = new LDrawParsedCache( loader ); this._cache = {}; } // Convert the given file information into a mesh by processing subobjects. async processIntoMesh( info ) { const loader = this.loader; const parseCache = this.parseCache; const faceMaterials = new Set(); // Processes the part subobject information to load child parts and merge geometry onto part // piece object. const processInfoSubobjects = async ( info, subobject = null ) => { const subobjects = info.subobjects; const promises = []; // Trigger load of all subobjects. If a subobject isn't a primitive then load it as a separate // group which lets instruction steps apply correctly. for ( let i = 0, l = subobjects.length; i < l; i ++ ) { const subobject = subobjects[ i ]; const promise = parseCache.ensureDataLoaded( subobject.fileName ).then( () => { const subobjectInfo = parseCache.getData( subobject.fileName, false ); if ( ! isPrimitiveType( subobjectInfo.type ) ) { return this.loadModel( subobject.fileName ).catch( error => { console.warn( error ); return null; } ); } return processInfoSubobjects( parseCache.getData( subobject.fileName ), subobject ); } ); promises.push( promise ); } const group = new THREE.Group(); group.userData.category = info.category; group.userData.keywords = info.keywords; group.userData.author = info.author; group.userData.type = info.type; group.userData.fileName = info.fileName; info.group = group; const subobjectInfos = await Promise.all( promises ); for ( let i = 0, l = subobjectInfos.length; i < l; i ++ ) { const subobject = info.subobjects[ i ]; const subobjectInfo = subobjectInfos[ i ]; if ( subobjectInfo === null ) { // the subobject failed to load continue; } // if the subobject was loaded as a separate group then apply the parent scopes materials if ( subobjectInfo.isGroup ) { const subobjectGroup = subobjectInfo; subobject.matrix.decompose( subobjectGroup.position, subobjectGroup.quaternion, subobjectGroup.scale ); subobjectGroup.userData.startingConstructionStep = subobject.startingConstructionStep; subobjectGroup.name = subobject.fileName; loader.applyMaterialsToMesh( subobjectGroup, subobject.colorCode, info.materials ); subobjectGroup.userData.colorCode = subobject.colorCode; group.add( subobjectGroup ); continue; } // add the subobject group if it has children in case it has both children and primitives if ( subobjectInfo.group.children.length ) { group.add( subobjectInfo.group ); } // transform the primitives into the local space of the parent piece and append them to // to the parent primitives list. const parentLineSegments = info.lineSegments; const parentConditionalSegments = info.conditionalSegments; const parentFaces = info.faces; const lineSegments = subobjectInfo.lineSegments; const conditionalSegments = subobjectInfo.conditionalSegments; const faces = subobjectInfo.faces; const matrix = subobject.matrix; const inverted = subobject.inverted; const matrixScaleInverted = matrix.determinant() < 0; const colorCode = subobject.colorCode; const lineColorCode = colorCode === MAIN_COLOUR_CODE ? MAIN_EDGE_COLOUR_CODE : colorCode; for ( let i = 0, l = lineSegments.length; i < l; i ++ ) { const ls = lineSegments[ i ]; const vertices = ls.vertices; vertices[ 0 ].applyMatrix4( matrix ); vertices[ 1 ].applyMatrix4( matrix ); ls.colorCode = ls.colorCode === MAIN_EDGE_COLOUR_CODE ? lineColorCode : ls.colorCode; ls.material = ls.material || getMaterialFromCode( ls.colorCode, ls.colorCode, info.materials, true ); parentLineSegments.push( ls ); } for ( let i = 0, l = conditionalSegments.length; i < l; i ++ ) { const os = conditionalSegments[ i ]; const vertices = os.vertices; const controlPoints = os.controlPoints; vertices[ 0 ].applyMatrix4( matrix ); vertices[ 1 ].applyMatrix4( matrix ); controlPoints[ 0 ].applyMatrix4( matrix ); controlPoints[ 1 ].applyMatrix4( matrix ); os.colorCode = os.colorCode === MAIN_EDGE_COLOUR_CODE ? lineColorCode : os.colorCode; os.material = os.material || getMaterialFromCode( os.colorCode, os.colorCode, info.materials, true ); parentConditionalSegments.push( os ); } for ( let i = 0, l = faces.length; i < l; i ++ ) { const tri = faces[ i ]; const vertices = tri.vertices; for ( let i = 0, l = vertices.length; i < l; i ++ ) { vertices[ i ].applyMatrix4( matrix ); } tri.colorCode = tri.colorCode === MAIN_COLOUR_CODE ? colorCode : tri.colorCode; tri.material = tri.material || getMaterialFromCode( tri.colorCode, colorCode, info.materials, false ); faceMaterials.add( tri.colorCode ); // If the scale of the object is negated then the triangle winding order // needs to be flipped. if ( matrixScaleInverted !== inverted ) { vertices.reverse(); } parentFaces.push( tri ); } info.totalFaces += subobjectInfo.totalFaces; } // Apply the parent subobjects pass through material code to this object. This is done several times due // to material scoping. if ( subobject ) { loader.applyMaterialsToMesh( group, subobject.colorCode, info.materials ); group.userData.colorCode = subobject.colorCode; } return info; }; // Track material use to see if we need to use the normal smooth slow path for hard edges. for ( let i = 0, l = info.faces; i < l; i ++ ) { faceMaterials.add( info.faces[ i ].colorCode ); } await processInfoSubobjects( info ); if ( loader.smoothNormals ) { const checkSubSegments = faceMaterials.size > 1; generateFaceNormals( info.faces ); smoothNormals( info.faces, info.lineSegments, checkSubSegments ); } // Add the primitive objects and metadata. const group = info.group; if ( info.faces.length > 0 ) { group.add( createObject( info.faces, 3, false, info.totalFaces ) ); } if ( info.lineSegments.length > 0 ) { group.add( createObject( info.lineSegments, 2 ) ); } if ( info.conditionalSegments.length > 0 ) { group.add( createObject( info.conditionalSegments, 2, true ) ); } return group; } hasCachedModel( fileName ) { return fileName !== null && fileName.toLowerCase() in this._cache; } async getCachedModel( fileName ) { if ( fileName !== null && this.hasCachedModel( fileName ) ) { const key = fileName.toLowerCase(); const group = await this._cache[ key ]; return group.clone(); } else { return null; } } // Loads and parses the model with the given file name. Returns a cached copy if available. async loadModel( fileName ) { const parseCache = this.parseCache; const key = fileName.toLowerCase(); if ( this.hasCachedModel( fileName ) ) { // Return cached model if available. return this.getCachedModel( fileName ); } else { // Otherwise parse a new model. // Ensure the file data is loaded and pre parsed. await parseCache.ensureDataLoaded( fileName ); const info = parseCache.getData( fileName ); const promise = this.processIntoMesh( info ); // Now that the file has loaded it's possible that another part parse has been waiting in parallel // so check the cache again to see if it's been added since the last async operation so we don't // do unnecessary work. if ( this.hasCachedModel( fileName ) ) { return this.getCachedModel( fileName ); } // Cache object if it's a part so it can be reused later. if ( isPartType( info.type ) ) { this._cache[ key ] = promise; } // return a copy const group = await promise; return group.clone(); } } // parses the given model text into a renderable object. Returns cached copy if available. async parseModel( text ) { const parseCache = this.parseCache; const info = parseCache.parse( text ); if ( isPartType( info.type ) && this.hasCachedModel( info.fileName ) ) { return this.getCachedModel( info.fileName ); } return this.processIntoMesh( info ); } } function sortByMaterial( a, b ) { if ( a.colorCode === b.colorCode ) { return 0; } if ( a.colorCode < b.colorCode ) { return - 1; } return 1; } function createObject( elements, elementSize, isConditionalSegments = false, totalElements = null ) { // Creates a THREE.LineSegments (elementSize = 2) or a THREE.Mesh (elementSize = 3 ) // With per face / segment material, implemented with mesh groups and materials array // Sort the faces or line segments by color code to make later the mesh groups elements.sort( sortByMaterial ); if ( totalElements === null ) { totalElements = elements.length; } const positions = new Float32Array( elementSize * totalElements * 3 ); const normals = elementSize === 3 ? new Float32Array( elementSize * totalElements * 3 ) : null; const materials = []; const quadArray = new Array( 6 ); const bufferGeometry = new THREE.BufferGeometry(); let prevMaterial = null; let index0 = 0; let numGroupVerts = 0; let offset = 0; for ( let iElem = 0, nElem = elements.length; iElem < nElem; iElem ++ ) { const elem = elements[ iElem ]; let vertices = elem.vertices; if ( vertices.length === 4 ) { quadArray[ 0 ] = vertices[ 0 ]; quadArray[ 1 ] = vertices[ 1 ]; quadArray[ 2 ] = vertices[ 2 ]; quadArray[ 3 ] = vertices[ 0 ]; quadArray[ 4 ] = vertices[ 2 ]; quadArray[ 5 ] = vertices[ 3 ]; vertices = quadArray; } for ( let j = 0, l = vertices.length; j < l; j ++ ) { const v = vertices[ j ]; const index = offset + j * 3; positions[ index + 0 ] = v.x; positions[ index + 1 ] = v.y; positions[ index + 2 ] = v.z; } // create the normals array if this is a set of faces if ( elementSize === 3 ) { if ( ! elem.faceNormal ) { const v0 = vertices[ 0 ]; const v1 = vertices[ 1 ]; const v2 = vertices[ 2 ]; _tempVec0.subVectors( v1, v0 ); _tempVec1.subVectors( v2, v1 ); elem.faceNormal = new THREE.Vector3().crossVectors( _tempVec0, _tempVec1 ).normalize(); } let elemNormals = elem.normals; if ( elemNormals.length === 4 ) { quadArray[ 0 ] = elemNormals[ 0 ]; quadArray[ 1 ] = elemNormals[ 1 ]; quadArray[ 2 ] = elemNormals[ 2 ]; quadArray[ 3 ] = elemNormals[ 0 ]; quadArray[ 4 ] = elemNormals[ 2 ]; quadArray[ 5 ] = elemNormals[ 3 ]; elemNormals = quadArray; } for ( let j = 0, l = elemNormals.length; j < l; j ++ ) { // use face normal if a vertex normal is not provided let n = elem.faceNormal; if ( elemNormals[ j ] ) { n = elemNormals[ j ].norm; } const index = offset + j * 3; normals[ index + 0 ] = n.x; normals[ index + 1 ] = n.y; normals[ index + 2 ] = n.z; } } if ( prevMaterial !== elem.colorCode ) { if ( prevMaterial !== null ) { bufferGeometry.addGroup( index0, numGroupVerts, materials.length - 1 ); } const material = elem.material; if ( material !== null ) { if ( elementSize === 3 ) { materials.push( material ); } else if ( elementSize === 2 ) { if ( isConditionalSegments ) { materials.push( material.userData.edgeMaterial.userData.conditionalEdgeMaterial ); } else { materials.push( material.userData.edgeMaterial ); } } } else { // If a material has not been made available yet then keep the color code string in the material array // to save the spot for the material once a parent scopes materials are being applied to the object. materials.push( elem.colorCode ); } prevMaterial = elem.colorCode; index0 = offset / 3; numGroupVerts = vertices.length; } else { numGroupVerts += vertices.length; } offset += 3 * vertices.length; } if ( numGroupVerts > 0 ) { bufferGeometry.addGroup( index0, Infinity, materials.length - 1 ); } bufferGeometry.setAttribute( 'position', new THREE.BufferAttribute( positions, 3 ) ); if ( normals !== null ) { bufferGeometry.setAttribute( 'normal', new THREE.BufferAttribute( normals, 3 ) ); } let object3d = null; if ( elementSize === 2 ) { if ( isConditionalSegments ) { object3d = new ConditionalLineSegments( bufferGeometry, materials.length === 1 ? materials[ 0 ] : materials ); } else { object3d = new THREE.LineSegments( bufferGeometry, materials.length === 1 ? materials[ 0 ] : materials ); } } else if ( elementSize === 3 ) { object3d = new THREE.Mesh( bufferGeometry, materials.length === 1 ? materials[ 0 ] : materials ); } if ( isConditionalSegments ) { object3d.isConditionalLine = true; const controlArray0 = new Float32Array( elements.length * 3 * 2 ); const controlArray1 = new Float32Array( elements.length * 3 * 2 ); const directionArray = new Float32Array( elements.length * 3 * 2 ); for ( let i = 0, l = elements.length; i < l; i ++ ) { const os = elements[ i ]; const vertices = os.vertices; const controlPoints = os.controlPoints; const c0 = controlPoints[ 0 ]; const c1 = controlPoints[ 1 ]; const v0 = vertices[ 0 ]; const v1 = vertices[ 1 ]; const index = i * 3 * 2; controlArray0[ index + 0 ] = c0.x; controlArray0[ index + 1 ] = c0.y; controlArray0[ index + 2 ] = c0.z; controlArray0[ index + 3 ] = c0.x; controlArray0[ index + 4 ] = c0.y; controlArray0[ index + 5 ] = c0.z; controlArray1[ index + 0 ] = c1.x; controlArray1[ index + 1 ] = c1.y; controlArray1[ index + 2 ] = c1.z; controlArray1[ index + 3 ] = c1.x; controlArray1[ index + 4 ] = c1.y; controlArray1[ index + 5 ] = c1.z; directionArray[ index + 0 ] = v1.x - v0.x; directionArray[ index + 1 ] = v1.y - v0.y; directionArray[ index + 2 ] = v1.z - v0.z; directionArray[ index + 3 ] = v1.x - v0.x; directionArray[ index + 4 ] = v1.y - v0.y; directionArray[ index + 5 ] = v1.z - v0.z; } bufferGeometry.setAttribute( 'control0', new THREE.BufferAttribute( controlArray0, 3, false ) ); bufferGeometry.setAttribute( 'control1', new THREE.BufferAttribute( controlArray1, 3, false ) ); bufferGeometry.setAttribute( 'direction', new THREE.BufferAttribute( directionArray, 3, false ) ); } return object3d; } // class LDrawLoader extends THREE.Loader { constructor( manager ) { super( manager ); // Array of THREE.Material this.materials = []; this.materialLibrary = {}; // This also allows to handle the embedded text files ("0 FILE" lines) this.partsCache = new LDrawPartsGeometryCache( this ); // This object is a map from file names to paths. It agilizes the paths search. If it is not set then files will be searched by trial and error. this.fileMap = {}; // Initializes the materials library with default materials this.setMaterials( [] ); // If this flag is set to true the vertex normals will be smoothed. this.smoothNormals = true; // The path to load parts from the LDraw parts library from. this.partsLibraryPath = ''; // Material assigned to not available colors for meshes and edges this.missingColorMaterial = new THREE.MeshStandardMaterial( { color: 0xFF00FF, roughness: 0.3, metalness: 0 } ); this.missingColorMaterial.name = 'Missing material'; this.missingEdgeColorMaterial = new THREE.LineBasicMaterial( { color: 0xFF00FF } ); this.missingEdgeColorMaterial.name = 'Missing material - Edge'; this.missingConditionalEdgeColorMaterial = new LDrawConditionalLineMaterial( { fog: true, color: 0xFF00FF } ); this.missingConditionalEdgeColorMaterial.name = 'Missing material - Conditional Edge'; this.missingColorMaterial.userData.edgeMaterial = this.missingEdgeColorMaterial; this.missingEdgeColorMaterial.userData.conditionalEdgeMaterial = this.missingConditionalEdgeColorMaterial; } setPartsLibraryPath( path ) { this.partsLibraryPath = path; return this; } async preloadMaterials( url ) { const fileLoader = new THREE.FileLoader( this.manager ); fileLoader.setPath( this.path ); fileLoader.setRequestHeader( this.requestHeader ); fileLoader.setWithCredentials( this.withCredentials ); const text = await fileLoader.loadAsync( url ); const colorLineRegex = /^0 !COLOUR/; const lines = text.split( /[\n\r]/g ); const materials = []; for ( let i = 0, l = lines.length; i < l; i ++ ) { const line = lines[ i ]; if ( colorLineRegex.test( line ) ) { const directive = line.replace( colorLineRegex, '' ); const material = this.parseColorMetaDirective( new LineParser( directive ) ); materials.push( material ); } } this.setMaterials( materials ); } load( url, onLoad, onProgress, onError ) { const fileLoader = new THREE.FileLoader( this.manager ); fileLoader.setPath( this.path ); fileLoader.setRequestHeader( this.requestHeader ); fileLoader.setWithCredentials( this.withCredentials ); fileLoader.load( url, text => { this.partsCache.parseModel( text, this.materialLibrary ).then( group => { this.applyMaterialsToMesh( group, MAIN_COLOUR_CODE, this.materialLibrary, true ); this.computeConstructionSteps( group ); group.userData.fileName = url; onLoad( group ); } ).catch( onError ); }, onProgress, onError ); } parse( text, onLoad ) { this.partsCache.parseModel( text, this.materialLibrary ).then( group => { this.applyMaterialsToMesh( group, MAIN_COLOUR_CODE, this.materialLibrary, true ); this.computeConstructionSteps( group ); group.userData.fileName = ''; onLoad( group ); } ); } setMaterials( materials ) { this.materialLibrary = {}; this.materials = []; for ( let i = 0, l = materials.length; i < l; i ++ ) { this.addMaterial( materials[ i ] ); } // Add default main triangle and line edge materials (used in pieces that can be colored with a main color) this.addMaterial( this.parseColorMetaDirective( new LineParser( 'Main_Colour CODE 16 VALUE #FF8080 EDGE #333333' ) ) ); this.addMaterial( this.parseColorMetaDirective( new LineParser( 'Edge_Colour CODE 24 VALUE #A0A0A0 EDGE #333333' ) ) ); return this; } setFileMap( fileMap ) { this.fileMap = fileMap; return this; } addMaterial( material ) { // Adds a material to the material library which is on top of the parse scopes stack. And also to the materials array const matLib = this.materialLibrary; if ( ! matLib[ material.userData.code ] ) { this.materials.push( material ); matLib[ material.userData.code ] = material; } return this; } getMaterial( colorCode ) { if ( colorCode.startsWith( '0x2' ) ) { // Special 'direct' material value (RGB color) const color = colorCode.substring( 3 ); return this.parseColorMetaDirective( new LineParser( 'Direct_Color_' + color + ' CODE -1 VALUE #' + color + ' EDGE #' + color + '' ) ); } return this.materialLibrary[ colorCode ] || null; } // Applies the appropriate materials to a prebuilt hierarchy of geometry. Assumes that color codes are present // in the material array if they need to be filled in. applyMaterialsToMesh( group, parentColorCode, materialHierarchy, finalMaterialPass = false ) { // find any missing materials as indicated by a color code string and replace it with a material from the current material lib const loader = this; const parentIsPassthrough = parentColorCode === MAIN_COLOUR_CODE; group.traverse( c => { if ( c.isMesh || c.isLineSegments ) { if ( Array.isArray( c.material ) ) { for ( let i = 0, l = c.material.length; i < l; i ++ ) { if ( ! c.material[ i ].isMaterial ) { c.material[ i ] = getMaterial( c, c.material[ i ] ); } } } else if ( ! c.material.isMaterial ) { c.material = getMaterial( c, c.material ); } } } ); // Returns the appropriate material for the object (line or face) given color code. If the code is "pass through" // (24 for lines, 16 for edges) then the pass through color code is used. If that is also pass through then it's // simply returned for the subsequent material application. function getMaterial( c, colorCode ) { // if our parent is a passthrough color code and we don't have the current material color available then // return early. if ( parentIsPassthrough && ! ( colorCode in materialHierarchy ) && ! finalMaterialPass ) { return colorCode; } const forEdge = c.isLineSegments || c.isConditionalLine; const isPassthrough = ! forEdge && colorCode === MAIN_COLOUR_CODE || forEdge && colorCode === MAIN_EDGE_COLOUR_CODE; if ( isPassthrough ) { colorCode = parentColorCode; } let material = null; if ( colorCode in materialHierarchy ) { material = materialHierarchy[ colorCode ]; } else if ( finalMaterialPass ) { // see if we can get the final material from from the "getMaterial" function which will attempt to // parse the "direct" colors material = loader.getMaterial( colorCode ); if ( material === null ) { // otherwise throw a warning if this is final opportunity to set the material console.warn( `LDrawLoader: Material properties for code ${colorCode} not available.` ); // And return the 'missing color' material material = loader.missingColorMaterial; } } else { return colorCode; } if ( c.isLineSegments ) { material = material.userData.edgeMaterial; if ( c.isConditionalLine ) { material = material.userData.conditionalEdgeMaterial; } } return material; } } getMainMaterial() { return this.getMaterial( MAIN_COLOUR_CODE ); } getMainEdgeMaterial() { const mat = this.getMaterial( MAIN_EDGE_COLOUR_CODE ); return mat ? mat.userData.edgeMaterial : null; } parseColorMetaDirective( lineParser ) { // Parses a color definition and returns a THREE.Material let code = null; // Triangle and line colors let color = 0xFF00FF; let edgeColor = 0xFF00FF; // Transparency let alpha = 1; let isTransparent = false; // Self-illumination: let luminance = 0; let finishType = FINISH_TYPE_DEFAULT; let edgeMaterial = null; const name = lineParser.getToken(); if ( ! name ) { throw new Error( 'LDrawLoader: Material name was expected after "!COLOUR tag' + lineParser.getLineNumberString() + '.' ); } // Parse tag tokens and their parameters let token = null; while ( true ) { token = lineParser.getToken(); if ( ! token ) { break; } if ( ! parseLuminance( token ) ) { switch ( token.toUpperCase() ) { case 'CODE': code = lineParser.getToken(); break; case 'VALUE': color = lineParser.getToken(); if ( color.startsWith( '0x' ) ) { color = '#' + color.substring( 2 ); } else if ( ! color.startsWith( '#' ) ) { throw new Error( 'LDrawLoader: Invalid color while parsing material' + lineParser.getLineNumberString() + '.' ); } break; case 'EDGE': edgeColor = lineParser.getToken(); if ( edgeColor.startsWith( '0x' ) ) { edgeColor = '#' + edgeColor.substring( 2 ); } else if ( ! edgeColor.startsWith( '#' ) ) { // Try to see if edge color is a color code edgeMaterial = this.getMaterial( edgeColor ); if ( ! edgeMaterial ) { throw new Error( 'LDrawLoader: Invalid edge color while parsing material' + lineParser.getLineNumberString() + '.' ); } // Get the edge material for this triangle material edgeMaterial = edgeMaterial.userData.edgeMaterial; } break; case 'ALPHA': alpha = parseInt( lineParser.getToken() ); if ( isNaN( alpha ) ) { throw new Error( 'LDrawLoader: Invalid alpha value in material definition' + lineParser.getLineNumberString() + '.' ); } alpha = Math.max( 0, Math.min( 1, alpha / 255 ) ); if ( alpha < 1 ) { isTransparent = true; } break; case 'LUMINANCE': if ( ! parseLuminance( lineParser.getToken() ) ) { throw new Error( 'LDrawLoader: Invalid luminance value in material definition' + LineParser.getLineNumberString() + '.' ); } break; case 'CHROME': finishType = FINISH_TYPE_CHROME; break; case 'PEARLESCENT': finishType = FINISH_TYPE_PEARLESCENT; break; case 'RUBBER': finishType = FINISH_TYPE_RUBBER; break; case 'MATTE_METALLIC': finishType = FINISH_TYPE_MATTE_METALLIC; break; case 'METAL': finishType = FINISH_TYPE_METAL; break; case 'MATERIAL': // Not implemented lineParser.setToEnd(); break; default: throw new Error( 'LDrawLoader: Unknown token "' + token + '" while parsing material' + lineParser.getLineNumberString() + '.' ); } } } let material = null; switch ( finishType ) { case FINISH_TYPE_DEFAULT: material = new THREE.MeshStandardMaterial( { color: color, roughness: 0.3, metalness: 0 } ); break; case FINISH_TYPE_PEARLESCENT: // Try to imitate pearlescency by making the surface glossy material = new THREE.MeshStandardMaterial( { color: color, roughness: 0.3, metalness: 0.25 } ); break; case FINISH_TYPE_CHROME: // Mirror finish surface material = new THREE.MeshStandardMaterial( { color: color, roughness: 0, metalness: 1 } ); break; case FINISH_TYPE_RUBBER: // Rubber finish material = new THREE.MeshStandardMaterial( { color: color, roughness: 0.9, metalness: 0 } ); break; case FINISH_TYPE_MATTE_METALLIC: // Brushed metal finish material = new THREE.MeshStandardMaterial( { color: color, roughness: 0.8, metalness: 0.4 } ); break; case FINISH_TYPE_METAL: // Average metal finish material = new THREE.MeshStandardMaterial( { color: color, roughness: 0.2, metalness: 0.85 } ); break; default: // Should not happen break; } material.transparent = isTransparent; material.premultipliedAlpha = true; material.opacity = alpha; material.depthWrite = ! isTransparent; material.color.convertSRGBToLinear(); material.polygonOffset = true; material.polygonOffsetFactor = 1; if ( luminance !== 0 ) { material.emissive.set( material.color ).multiplyScalar( luminance ); } if ( ! edgeMaterial ) { // This is the material used for edges edgeMaterial = new THREE.LineBasicMaterial( { color: edgeColor, transparent: isTransparent, opacity: alpha, depthWrite: ! isTransparent } ); edgeMaterial.userData.code = code; edgeMaterial.name = name + ' - Edge'; edgeMaterial.color.convertSRGBToLinear(); // This is the material used for conditional edges edgeMaterial.userData.conditionalEdgeMaterial = new LDrawConditionalLineMaterial( { fog: true, transparent: isTransparent, depthWrite: ! isTransparent, color: edgeColor, opacity: alpha } ); edgeMaterial.userData.conditionalEdgeMaterial.color.convertSRGBToLinear(); edgeMaterial.userData.conditionalEdgeMaterial.userData.code = code; edgeMaterial.userData.conditionalEdgeMaterial.name = name + ' - Conditional Edge'; } material.userData.code = code; material.name = name; material.userData.edgeMaterial = edgeMaterial; this.addMaterial( material ); return material; function parseLuminance( token ) { // Returns success let lum; if ( token.startsWith( 'LUMINANCE' ) ) { lum = parseInt( token.substring( 9 ) ); } else { lum = parseInt( token ); } if ( isNaN( lum ) ) { return false; } luminance = Math.max( 0, Math.min( 1, lum / 255 ) ); return true; } } computeConstructionSteps( model ) { // Sets userdata.constructionStep number in THREE.Group objects and userData.numConstructionSteps number in the root THREE.Group object. let stepNumber = 0; model.traverse( c => { if ( c.isGroup ) { if ( c.userData.startingConstructionStep ) { stepNumber ++; } c.userData.constructionStep = stepNumber; } } ); model.userData.numConstructionSteps = stepNumber + 1; } } THREE.LDrawLoader = LDrawLoader; } )();