( function () { // Ported from Stefan Gustavson's java implementation // http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf // Read Stefan's excellent paper for details on how this code works. // // Sean McCullough banksean@gmail.com // // Added 4D noise /** * You can pass in a random number generator object if you like. * It is assumed to have a random() method. */ class SimplexNoise { constructor( r = Math ) { this.grad3 = [[ 1, 1, 0 ], [ - 1, 1, 0 ], [ 1, - 1, 0 ], [ - 1, - 1, 0 ], [ 1, 0, 1 ], [ - 1, 0, 1 ], [ 1, 0, - 1 ], [ - 1, 0, - 1 ], [ 0, 1, 1 ], [ 0, - 1, 1 ], [ 0, 1, - 1 ], [ 0, - 1, - 1 ]]; this.grad4 = [[ 0, 1, 1, 1 ], [ 0, 1, 1, - 1 ], [ 0, 1, - 1, 1 ], [ 0, 1, - 1, - 1 ], [ 0, - 1, 1, 1 ], [ 0, - 1, 1, - 1 ], [ 0, - 1, - 1, 1 ], [ 0, - 1, - 1, - 1 ], [ 1, 0, 1, 1 ], [ 1, 0, 1, - 1 ], [ 1, 0, - 1, 1 ], [ 1, 0, - 1, - 1 ], [ - 1, 0, 1, 1 ], [ - 1, 0, 1, - 1 ], [ - 1, 0, - 1, 1 ], [ - 1, 0, - 1, - 1 ], [ 1, 1, 0, 1 ], [ 1, 1, 0, - 1 ], [ 1, - 1, 0, 1 ], [ 1, - 1, 0, - 1 ], [ - 1, 1, 0, 1 ], [ - 1, 1, 0, - 1 ], [ - 1, - 1, 0, 1 ], [ - 1, - 1, 0, - 1 ], [ 1, 1, 1, 0 ], [ 1, 1, - 1, 0 ], [ 1, - 1, 1, 0 ], [ 1, - 1, - 1, 0 ], [ - 1, 1, 1, 0 ], [ - 1, 1, - 1, 0 ], [ - 1, - 1, 1, 0 ], [ - 1, - 1, - 1, 0 ]]; this.p = []; for ( let i = 0; i < 256; i ++ ) { this.p[ i ] = Math.floor( r.random() * 256 ); } // To remove the need for index wrapping, double the permutation table length this.perm = []; for ( let i = 0; i < 512; i ++ ) { this.perm[ i ] = this.p[ i & 255 ]; } // A lookup table to traverse the simplex around a given point in 4D. // Details can be found where this table is used, in the 4D noise method. this.simplex = [[ 0, 1, 2, 3 ], [ 0, 1, 3, 2 ], [ 0, 0, 0, 0 ], [ 0, 2, 3, 1 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 1, 2, 3, 0 ], [ 0, 2, 1, 3 ], [ 0, 0, 0, 0 ], [ 0, 3, 1, 2 ], [ 0, 3, 2, 1 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 1, 3, 2, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 1, 2, 0, 3 ], [ 0, 0, 0, 0 ], [ 1, 3, 0, 2 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 2, 3, 0, 1 ], [ 2, 3, 1, 0 ], [ 1, 0, 2, 3 ], [ 1, 0, 3, 2 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 2, 0, 3, 1 ], [ 0, 0, 0, 0 ], [ 2, 1, 3, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 2, 0, 1, 3 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 3, 0, 1, 2 ], [ 3, 0, 2, 1 ], [ 0, 0, 0, 0 ], [ 3, 1, 2, 0 ], [ 2, 1, 0, 3 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 0, 0, 0, 0 ], [ 3, 1, 0, 2 ], [ 0, 0, 0, 0 ], [ 3, 2, 0, 1 ], [ 3, 2, 1, 0 ]]; } dot( g, x, y ) { return g[ 0 ] * x + g[ 1 ] * y; } dot3( g, x, y, z ) { return g[ 0 ] * x + g[ 1 ] * y + g[ 2 ] * z; } dot4( g, x, y, z, w ) { return g[ 0 ] * x + g[ 1 ] * y + g[ 2 ] * z + g[ 3 ] * w; } noise( xin, yin ) { let n0; // Noise contributions from the three corners let n1; let n2; // Skew the input space to determine which simplex cell we're in const F2 = 0.5 * ( Math.sqrt( 3.0 ) - 1.0 ); const s = ( xin + yin ) * F2; // Hairy factor for 2D const i = Math.floor( xin + s ); const j = Math.floor( yin + s ); const G2 = ( 3.0 - Math.sqrt( 3.0 ) ) / 6.0; const t = ( i + j ) * G2; const X0 = i - t; // Unskew the cell origin back to (x,y) space const Y0 = j - t; const x0 = xin - X0; // The x,y distances from the cell origin const y0 = yin - Y0; // For the 2D case, the simplex shape is an equilateral triangle. // Determine which simplex we are in. let i1; // Offsets for second (middle) corner of simplex in (i,j) coords let j1; if ( x0 > y0 ) { i1 = 1; j1 = 0; // lower triangle, XY order: (0,0)->(1,0)->(1,1) } else { i1 = 0; j1 = 1; } // upper triangle, YX order: (0,0)->(0,1)->(1,1) // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where // c = (3-sqrt(3))/6 const x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords const y1 = y0 - j1 + G2; const x2 = x0 - 1.0 + 2.0 * G2; // Offsets for last corner in (x,y) unskewed coords const y2 = y0 - 1.0 + 2.0 * G2; // Work out the hashed gradient indices of the three simplex corners const ii = i & 255; const jj = j & 255; const gi0 = this.perm[ ii + this.perm[ jj ] ] % 12; const gi1 = this.perm[ ii + i1 + this.perm[ jj + j1 ] ] % 12; const gi2 = this.perm[ ii + 1 + this.perm[ jj + 1 ] ] % 12; // Calculate the contribution from the three corners let t0 = 0.5 - x0 * x0 - y0 * y0; if ( t0 < 0 ) n0 = 0.0; else { t0 *= t0; n0 = t0 * t0 * this.dot( this.grad3[ gi0 ], x0, y0 ); // (x,y) of grad3 used for 2D gradient } let t1 = 0.5 - x1 * x1 - y1 * y1; if ( t1 < 0 ) n1 = 0.0; else { t1 *= t1; n1 = t1 * t1 * this.dot( this.grad3[ gi1 ], x1, y1 ); } let t2 = 0.5 - x2 * x2 - y2 * y2; if ( t2 < 0 ) n2 = 0.0; else { t2 *= t2; n2 = t2 * t2 * this.dot( this.grad3[ gi2 ], x2, y2 ); } // Add contributions from each corner to get the final noise value. // The result is scaled to return values in the interval [-1,1]. return 70.0 * ( n0 + n1 + n2 ); } // 3D simplex noise noise3d( xin, yin, zin ) { let n0; // Noise contributions from the four corners let n1; let n2; let n3; // Skew the input space to determine which simplex cell we're in const F3 = 1.0 / 3.0; const s = ( xin + yin + zin ) * F3; // Very nice and simple skew factor for 3D const i = Math.floor( xin + s ); const j = Math.floor( yin + s ); const k = Math.floor( zin + s ); const G3 = 1.0 / 6.0; // Very nice and simple unskew factor, too const t = ( i + j + k ) * G3; const X0 = i - t; // Unskew the cell origin back to (x,y,z) space const Y0 = j - t; const Z0 = k - t; const x0 = xin - X0; // The x,y,z distances from the cell origin const y0 = yin - Y0; const z0 = zin - Z0; // For the 3D case, the simplex shape is a slightly irregular tetrahedron. // Determine which simplex we are in. let i1; // Offsets for second corner of simplex in (i,j,k) coords let j1; let k1; let i2; // Offsets for third corner of simplex in (i,j,k) coords let j2; let k2; if ( x0 >= y0 ) { if ( y0 >= z0 ) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; // X Y Z order } else if ( x0 >= z0 ) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; // X Z Y order } else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } // Z X Y order } else { // x0<y0 if ( y0 < z0 ) { i1 = 0; j1 = 0; k1 = 1; i2 = 0; j2 = 1; k2 = 1; // Z Y X order } else if ( x0 < z0 ) { i1 = 0; j1 = 1; k1 = 0; i2 = 0; j2 = 1; k2 = 1; // Y Z X order } else { i1 = 0; j1 = 1; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } // Y X Z order } // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z), // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where // c = 1/6. const x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords const y1 = y0 - j1 + G3; const z1 = z0 - k1 + G3; const x2 = x0 - i2 + 2.0 * G3; // Offsets for third corner in (x,y,z) coords const y2 = y0 - j2 + 2.0 * G3; const z2 = z0 - k2 + 2.0 * G3; const x3 = x0 - 1.0 + 3.0 * G3; // Offsets for last corner in (x,y,z) coords const y3 = y0 - 1.0 + 3.0 * G3; const z3 = z0 - 1.0 + 3.0 * G3; // Work out the hashed gradient indices of the four simplex corners const ii = i & 255; const jj = j & 255; const kk = k & 255; const gi0 = this.perm[ ii + this.perm[ jj + this.perm[ kk ] ] ] % 12; const gi1 = this.perm[ ii + i1 + this.perm[ jj + j1 + this.perm[ kk + k1 ] ] ] % 12; const gi2 = this.perm[ ii + i2 + this.perm[ jj + j2 + this.perm[ kk + k2 ] ] ] % 12; const gi3 = this.perm[ ii + 1 + this.perm[ jj + 1 + this.perm[ kk + 1 ] ] ] % 12; // Calculate the contribution from the four corners let t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0; if ( t0 < 0 ) n0 = 0.0; else { t0 *= t0; n0 = t0 * t0 * this.dot3( this.grad3[ gi0 ], x0, y0, z0 ); } let t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1; if ( t1 < 0 ) n1 = 0.0; else { t1 *= t1; n1 = t1 * t1 * this.dot3( this.grad3[ gi1 ], x1, y1, z1 ); } let t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2; if ( t2 < 0 ) n2 = 0.0; else { t2 *= t2; n2 = t2 * t2 * this.dot3( this.grad3[ gi2 ], x2, y2, z2 ); } let t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3; if ( t3 < 0 ) n3 = 0.0; else { t3 *= t3; n3 = t3 * t3 * this.dot3( this.grad3[ gi3 ], x3, y3, z3 ); } // Add contributions from each corner to get the final noise value. // The result is scaled to stay just inside [-1,1] return 32.0 * ( n0 + n1 + n2 + n3 ); } // 4D simplex noise noise4d( x, y, z, w ) { // For faster and easier lookups const grad4 = this.grad4; const simplex = this.simplex; const perm = this.perm; // The skewing and unskewing factors are hairy again for the 4D case const F4 = ( Math.sqrt( 5.0 ) - 1.0 ) / 4.0; const G4 = ( 5.0 - Math.sqrt( 5.0 ) ) / 20.0; let n0; // Noise contributions from the five corners let n1; let n2; let n3; let n4; // Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in const s = ( x + y + z + w ) * F4; // Factor for 4D skewing const i = Math.floor( x + s ); const j = Math.floor( y + s ); const k = Math.floor( z + s ); const l = Math.floor( w + s ); const t = ( i + j + k + l ) * G4; // Factor for 4D unskewing const X0 = i - t; // Unskew the cell origin back to (x,y,z,w) space const Y0 = j - t; const Z0 = k - t; const W0 = l - t; const x0 = x - X0; // The x,y,z,w distances from the cell origin const y0 = y - Y0; const z0 = z - Z0; const w0 = w - W0; // For the 4D case, the simplex is a 4D shape I won't even try to describe. // To find out which of the 24 possible simplices we're in, we need to // determine the magnitude ordering of x0, y0, z0 and w0. // The method below is a good way of finding the ordering of x,y,z,w and // then find the correct traversal order for the simplex we’re in. // First, six pair-wise comparisons are performed between each possible pair // of the four coordinates, and the results are used to add up binary bits // for an integer index. const c1 = x0 > y0 ? 32 : 0; const c2 = x0 > z0 ? 16 : 0; const c3 = y0 > z0 ? 8 : 0; const c4 = x0 > w0 ? 4 : 0; const c5 = y0 > w0 ? 2 : 0; const c6 = z0 > w0 ? 1 : 0; const c = c1 + c2 + c3 + c4 + c5 + c6; // simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order. // Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w // impossible. Only the 24 indices which have non-zero entries make any sense. // We use a thresholding to set the coordinates in turn from the largest magnitude. // The number 3 in the "simplex" array is at the position of the largest coordinate. const i1 = simplex[ c ][ 0 ] >= 3 ? 1 : 0; const j1 = simplex[ c ][ 1 ] >= 3 ? 1 : 0; const k1 = simplex[ c ][ 2 ] >= 3 ? 1 : 0; const l1 = simplex[ c ][ 3 ] >= 3 ? 1 : 0; // The number 2 in the "simplex" array is at the second largest coordinate. const i2 = simplex[ c ][ 0 ] >= 2 ? 1 : 0; const j2 = simplex[ c ][ 1 ] >= 2 ? 1 : 0; const k2 = simplex[ c ][ 2 ] >= 2 ? 1 : 0; const l2 = simplex[ c ][ 3 ] >= 2 ? 1 : 0; // The number 1 in the "simplex" array is at the second smallest coordinate. const i3 = simplex[ c ][ 0 ] >= 1 ? 1 : 0; const j3 = simplex[ c ][ 1 ] >= 1 ? 1 : 0; const k3 = simplex[ c ][ 2 ] >= 1 ? 1 : 0; const l3 = simplex[ c ][ 3 ] >= 1 ? 1 : 0; // The fifth corner has all coordinate offsets = 1, so no need to look that up. const x1 = x0 - i1 + G4; // Offsets for second corner in (x,y,z,w) coords const y1 = y0 - j1 + G4; const z1 = z0 - k1 + G4; const w1 = w0 - l1 + G4; const x2 = x0 - i2 + 2.0 * G4; // Offsets for third corner in (x,y,z,w) coords const y2 = y0 - j2 + 2.0 * G4; const z2 = z0 - k2 + 2.0 * G4; const w2 = w0 - l2 + 2.0 * G4; const x3 = x0 - i3 + 3.0 * G4; // Offsets for fourth corner in (x,y,z,w) coords const y3 = y0 - j3 + 3.0 * G4; const z3 = z0 - k3 + 3.0 * G4; const w3 = w0 - l3 + 3.0 * G4; const x4 = x0 - 1.0 + 4.0 * G4; // Offsets for last corner in (x,y,z,w) coords const y4 = y0 - 1.0 + 4.0 * G4; const z4 = z0 - 1.0 + 4.0 * G4; const w4 = w0 - 1.0 + 4.0 * G4; // Work out the hashed gradient indices of the five simplex corners const ii = i & 255; const jj = j & 255; const kk = k & 255; const ll = l & 255; const gi0 = perm[ ii + perm[ jj + perm[ kk + perm[ ll ] ] ] ] % 32; const gi1 = perm[ ii + i1 + perm[ jj + j1 + perm[ kk + k1 + perm[ ll + l1 ] ] ] ] % 32; const gi2 = perm[ ii + i2 + perm[ jj + j2 + perm[ kk + k2 + perm[ ll + l2 ] ] ] ] % 32; const gi3 = perm[ ii + i3 + perm[ jj + j3 + perm[ kk + k3 + perm[ ll + l3 ] ] ] ] % 32; const gi4 = perm[ ii + 1 + perm[ jj + 1 + perm[ kk + 1 + perm[ ll + 1 ] ] ] ] % 32; // Calculate the contribution from the five corners let t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0; if ( t0 < 0 ) n0 = 0.0; else { t0 *= t0; n0 = t0 * t0 * this.dot4( grad4[ gi0 ], x0, y0, z0, w0 ); } let t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1; if ( t1 < 0 ) n1 = 0.0; else { t1 *= t1; n1 = t1 * t1 * this.dot4( grad4[ gi1 ], x1, y1, z1, w1 ); } let t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2; if ( t2 < 0 ) n2 = 0.0; else { t2 *= t2; n2 = t2 * t2 * this.dot4( grad4[ gi2 ], x2, y2, z2, w2 ); } let t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3; if ( t3 < 0 ) n3 = 0.0; else { t3 *= t3; n3 = t3 * t3 * this.dot4( grad4[ gi3 ], x3, y3, z3, w3 ); } let t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4; if ( t4 < 0 ) n4 = 0.0; else { t4 *= t4; n4 = t4 * t4 * this.dot4( grad4[ gi4 ], x4, y4, z4, w4 ); } // Sum up and scale the result to cover the range [-1,1] return 27.0 * ( n0 + n1 + n2 + n3 + n4 ); } } THREE.SimplexNoise = SimplexNoise; } )();