import * as MathUtils from './MathUtils.js'; class Quaternion { constructor( x = 0, y = 0, z = 0, w = 1 ) { this.isQuaternion = true; this._x = x; this._y = y; this._z = z; this._w = w; } static slerpFlat( dst, dstOffset, src0, srcOffset0, src1, srcOffset1, t ) { // fuzz-free, array-based Quaternion SLERP operation let x0 = src0[ srcOffset0 + 0 ], y0 = src0[ srcOffset0 + 1 ], z0 = src0[ srcOffset0 + 2 ], w0 = src0[ srcOffset0 + 3 ]; const x1 = src1[ srcOffset1 + 0 ], y1 = src1[ srcOffset1 + 1 ], z1 = src1[ srcOffset1 + 2 ], w1 = src1[ srcOffset1 + 3 ]; if ( t === 0 ) { dst[ dstOffset + 0 ] = x0; dst[ dstOffset + 1 ] = y0; dst[ dstOffset + 2 ] = z0; dst[ dstOffset + 3 ] = w0; return; } if ( t === 1 ) { dst[ dstOffset + 0 ] = x1; dst[ dstOffset + 1 ] = y1; dst[ dstOffset + 2 ] = z1; dst[ dstOffset + 3 ] = w1; return; } if ( w0 !== w1 || x0 !== x1 || y0 !== y1 || z0 !== z1 ) { let s = 1 - t; const cos = x0 * x1 + y0 * y1 + z0 * z1 + w0 * w1, dir = ( cos >= 0 ? 1 : - 1 ), sqrSin = 1 - cos * cos; // Skip the Slerp for tiny steps to avoid numeric problems: if ( sqrSin > Number.EPSILON ) { const sin = Math.sqrt( sqrSin ), len = Math.atan2( sin, cos * dir ); s = Math.sin( s * len ) / sin; t = Math.sin( t * len ) / sin; } const tDir = t * dir; x0 = x0 * s + x1 * tDir; y0 = y0 * s + y1 * tDir; z0 = z0 * s + z1 * tDir; w0 = w0 * s + w1 * tDir; // Normalize in case we just did a lerp: if ( s === 1 - t ) { const f = 1 / Math.sqrt( x0 * x0 + y0 * y0 + z0 * z0 + w0 * w0 ); x0 *= f; y0 *= f; z0 *= f; w0 *= f; } } dst[ dstOffset ] = x0; dst[ dstOffset + 1 ] = y0; dst[ dstOffset + 2 ] = z0; dst[ dstOffset + 3 ] = w0; } static multiplyQuaternionsFlat( dst, dstOffset, src0, srcOffset0, src1, srcOffset1 ) { const x0 = src0[ srcOffset0 ]; const y0 = src0[ srcOffset0 + 1 ]; const z0 = src0[ srcOffset0 + 2 ]; const w0 = src0[ srcOffset0 + 3 ]; const x1 = src1[ srcOffset1 ]; const y1 = src1[ srcOffset1 + 1 ]; const z1 = src1[ srcOffset1 + 2 ]; const w1 = src1[ srcOffset1 + 3 ]; dst[ dstOffset ] = x0 * w1 + w0 * x1 + y0 * z1 - z0 * y1; dst[ dstOffset + 1 ] = y0 * w1 + w0 * y1 + z0 * x1 - x0 * z1; dst[ dstOffset + 2 ] = z0 * w1 + w0 * z1 + x0 * y1 - y0 * x1; dst[ dstOffset + 3 ] = w0 * w1 - x0 * x1 - y0 * y1 - z0 * z1; return dst; } get x() { return this._x; } set x( value ) { this._x = value; this._onChangeCallback(); } get y() { return this._y; } set y( value ) { this._y = value; this._onChangeCallback(); } get z() { return this._z; } set z( value ) { this._z = value; this._onChangeCallback(); } get w() { return this._w; } set w( value ) { this._w = value; this._onChangeCallback(); } set( x, y, z, w ) { this._x = x; this._y = y; this._z = z; this._w = w; this._onChangeCallback(); return this; } clone() { return new this.constructor( this._x, this._y, this._z, this._w ); } copy( quaternion ) { this._x = quaternion.x; this._y = quaternion.y; this._z = quaternion.z; this._w = quaternion.w; this._onChangeCallback(); return this; } setFromEuler( euler, update ) { const x = euler._x, y = euler._y, z = euler._z, order = euler._order; // http://www.mathworks.com/matlabcentral/fileexchange/ // 20696-function-to-convert-between-dcm-euler-angles-quaternions-and-euler-vectors/ // content/SpinCalc.m const cos = Math.cos; const sin = Math.sin; const c1 = cos( x / 2 ); const c2 = cos( y / 2 ); const c3 = cos( z / 2 ); const s1 = sin( x / 2 ); const s2 = sin( y / 2 ); const s3 = sin( z / 2 ); switch ( order ) { case 'XYZ': this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; break; case 'YXZ': this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; break; case 'ZXY': this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; break; case 'ZYX': this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; break; case 'YZX': this._x = s1 * c2 * c3 + c1 * s2 * s3; this._y = c1 * s2 * c3 + s1 * c2 * s3; this._z = c1 * c2 * s3 - s1 * s2 * c3; this._w = c1 * c2 * c3 - s1 * s2 * s3; break; case 'XZY': this._x = s1 * c2 * c3 - c1 * s2 * s3; this._y = c1 * s2 * c3 - s1 * c2 * s3; this._z = c1 * c2 * s3 + s1 * s2 * c3; this._w = c1 * c2 * c3 + s1 * s2 * s3; break; default: console.warn( 'THREE.Quaternion: .setFromEuler() encountered an unknown order: ' + order ); } if ( update !== false ) this._onChangeCallback(); return this; } setFromAxisAngle( axis, angle ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/angleToQuaternion/index.htm // assumes axis is normalized const halfAngle = angle / 2, s = Math.sin( halfAngle ); this._x = axis.x * s; this._y = axis.y * s; this._z = axis.z * s; this._w = Math.cos( halfAngle ); this._onChangeCallback(); return this; } setFromRotationMatrix( m ) { // http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm // assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled) const te = m.elements, m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ], m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ], m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ], trace = m11 + m22 + m33; if ( trace > 0 ) { const s = 0.5 / Math.sqrt( trace + 1.0 ); this._w = 0.25 / s; this._x = ( m32 - m23 ) * s; this._y = ( m13 - m31 ) * s; this._z = ( m21 - m12 ) * s; } else if ( m11 > m22 && m11 > m33 ) { const s = 2.0 * Math.sqrt( 1.0 + m11 - m22 - m33 ); this._w = ( m32 - m23 ) / s; this._x = 0.25 * s; this._y = ( m12 + m21 ) / s; this._z = ( m13 + m31 ) / s; } else if ( m22 > m33 ) { const s = 2.0 * Math.sqrt( 1.0 + m22 - m11 - m33 ); this._w = ( m13 - m31 ) / s; this._x = ( m12 + m21 ) / s; this._y = 0.25 * s; this._z = ( m23 + m32 ) / s; } else { const s = 2.0 * Math.sqrt( 1.0 + m33 - m11 - m22 ); this._w = ( m21 - m12 ) / s; this._x = ( m13 + m31 ) / s; this._y = ( m23 + m32 ) / s; this._z = 0.25 * s; } this._onChangeCallback(); return this; } setFromUnitVectors( vFrom, vTo ) { // assumes direction vectors vFrom and vTo are normalized let r = vFrom.dot( vTo ) + 1; if ( r < Number.EPSILON ) { // vFrom and vTo point in opposite directions r = 0; if ( Math.abs( vFrom.x ) > Math.abs( vFrom.z ) ) { this._x = - vFrom.y; this._y = vFrom.x; this._z = 0; this._w = r; } else { this._x = 0; this._y = - vFrom.z; this._z = vFrom.y; this._w = r; } } else { // crossVectors( vFrom, vTo ); // inlined to avoid cyclic dependency on Vector3 this._x = vFrom.y * vTo.z - vFrom.z * vTo.y; this._y = vFrom.z * vTo.x - vFrom.x * vTo.z; this._z = vFrom.x * vTo.y - vFrom.y * vTo.x; this._w = r; } return this.normalize(); } angleTo( q ) { return 2 * Math.acos( Math.abs( MathUtils.clamp( this.dot( q ), - 1, 1 ) ) ); } rotateTowards( q, step ) { const angle = this.angleTo( q ); if ( angle === 0 ) return this; const t = Math.min( 1, step / angle ); this.slerp( q, t ); return this; } identity() { return this.set( 0, 0, 0, 1 ); } invert() { // quaternion is assumed to have unit length return this.conjugate(); } conjugate() { this._x *= - 1; this._y *= - 1; this._z *= - 1; this._onChangeCallback(); return this; } dot( v ) { return this._x * v._x + this._y * v._y + this._z * v._z + this._w * v._w; } lengthSq() { return this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w; } length() { return Math.sqrt( this._x * this._x + this._y * this._y + this._z * this._z + this._w * this._w ); } normalize() { let l = this.length(); if ( l === 0 ) { this._x = 0; this._y = 0; this._z = 0; this._w = 1; } else { l = 1 / l; this._x = this._x * l; this._y = this._y * l; this._z = this._z * l; this._w = this._w * l; } this._onChangeCallback(); return this; } multiply( q ) { return this.multiplyQuaternions( this, q ); } premultiply( q ) { return this.multiplyQuaternions( q, this ); } multiplyQuaternions( a, b ) { // from http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/code/index.htm const qax = a._x, qay = a._y, qaz = a._z, qaw = a._w; const qbx = b._x, qby = b._y, qbz = b._z, qbw = b._w; this._x = qax * qbw + qaw * qbx + qay * qbz - qaz * qby; this._y = qay * qbw + qaw * qby + qaz * qbx - qax * qbz; this._z = qaz * qbw + qaw * qbz + qax * qby - qay * qbx; this._w = qaw * qbw - qax * qbx - qay * qby - qaz * qbz; this._onChangeCallback(); return this; } slerp( qb, t ) { if ( t === 0 ) return this; if ( t === 1 ) return this.copy( qb ); const x = this._x, y = this._y, z = this._z, w = this._w; // http://www.euclideanspace.com/maths/algebra/realNormedAlgebra/quaternions/slerp/ let cosHalfTheta = w * qb._w + x * qb._x + y * qb._y + z * qb._z; if ( cosHalfTheta < 0 ) { this._w = - qb._w; this._x = - qb._x; this._y = - qb._y; this._z = - qb._z; cosHalfTheta = - cosHalfTheta; } else { this.copy( qb ); } if ( cosHalfTheta >= 1.0 ) { this._w = w; this._x = x; this._y = y; this._z = z; return this; } const sqrSinHalfTheta = 1.0 - cosHalfTheta * cosHalfTheta; if ( sqrSinHalfTheta <= Number.EPSILON ) { const s = 1 - t; this._w = s * w + t * this._w; this._x = s * x + t * this._x; this._y = s * y + t * this._y; this._z = s * z + t * this._z; this.normalize(); this._onChangeCallback(); return this; } const sinHalfTheta = Math.sqrt( sqrSinHalfTheta ); const halfTheta = Math.atan2( sinHalfTheta, cosHalfTheta ); const ratioA = Math.sin( ( 1 - t ) * halfTheta ) / sinHalfTheta, ratioB = Math.sin( t * halfTheta ) / sinHalfTheta; this._w = ( w * ratioA + this._w * ratioB ); this._x = ( x * ratioA + this._x * ratioB ); this._y = ( y * ratioA + this._y * ratioB ); this._z = ( z * ratioA + this._z * ratioB ); this._onChangeCallback(); return this; } slerpQuaternions( qa, qb, t ) { return this.copy( qa ).slerp( qb, t ); } random() { // Derived from http://planning.cs.uiuc.edu/node198.html // Note, this source uses w, x, y, z ordering, // so we swap the order below. const u1 = Math.random(); const sqrt1u1 = Math.sqrt( 1 - u1 ); const sqrtu1 = Math.sqrt( u1 ); const u2 = 2 * Math.PI * Math.random(); const u3 = 2 * Math.PI * Math.random(); return this.set( sqrt1u1 * Math.cos( u2 ), sqrtu1 * Math.sin( u3 ), sqrtu1 * Math.cos( u3 ), sqrt1u1 * Math.sin( u2 ), ); } equals( quaternion ) { return ( quaternion._x === this._x ) && ( quaternion._y === this._y ) && ( quaternion._z === this._z ) && ( quaternion._w === this._w ); } fromArray( array, offset = 0 ) { this._x = array[ offset ]; this._y = array[ offset + 1 ]; this._z = array[ offset + 2 ]; this._w = array[ offset + 3 ]; this._onChangeCallback(); return this; } toArray( array = [], offset = 0 ) { array[ offset ] = this._x; array[ offset + 1 ] = this._y; array[ offset + 2 ] = this._z; array[ offset + 3 ] = this._w; return array; } fromBufferAttribute( attribute, index ) { this._x = attribute.getX( index ); this._y = attribute.getY( index ); this._z = attribute.getZ( index ); this._w = attribute.getW( index ); return this; } _onChange( callback ) { this._onChangeCallback = callback; return this; } _onChangeCallback() {} *[ Symbol.iterator ]() { yield this._x; yield this._y; yield this._z; yield this._w; } } export { Quaternion };