import { Vector3 } from './Vector3.js'; const _v0 = /*@__PURE__*/ new Vector3(); const _v1 = /*@__PURE__*/ new Vector3(); const _v2 = /*@__PURE__*/ new Vector3(); const _v3 = /*@__PURE__*/ new Vector3(); const _vab = /*@__PURE__*/ new Vector3(); const _vac = /*@__PURE__*/ new Vector3(); const _vbc = /*@__PURE__*/ new Vector3(); const _vap = /*@__PURE__*/ new Vector3(); const _vbp = /*@__PURE__*/ new Vector3(); const _vcp = /*@__PURE__*/ new Vector3(); class Triangle { constructor( a = new Vector3(), b = new Vector3(), c = new Vector3() ) { this.a = a; this.b = b; this.c = c; } static getNormal( a, b, c, target ) { target.subVectors( c, b ); _v0.subVectors( a, b ); target.cross( _v0 ); const targetLengthSq = target.lengthSq(); if ( targetLengthSq > 0 ) { return target.multiplyScalar( 1 / Math.sqrt( targetLengthSq ) ); } return target.set( 0, 0, 0 ); } // static/instance method to calculate barycentric coordinates // based on: http://www.blackpawn.com/texts/pointinpoly/default.html static getBarycoord( point, a, b, c, target ) { _v0.subVectors( c, a ); _v1.subVectors( b, a ); _v2.subVectors( point, a ); const dot00 = _v0.dot( _v0 ); const dot01 = _v0.dot( _v1 ); const dot02 = _v0.dot( _v2 ); const dot11 = _v1.dot( _v1 ); const dot12 = _v1.dot( _v2 ); const denom = ( dot00 * dot11 - dot01 * dot01 ); // collinear or singular triangle if ( denom === 0 ) { // arbitrary location outside of triangle? // not sure if this is the best idea, maybe should be returning undefined return target.set( - 2, - 1, - 1 ); } const invDenom = 1 / denom; const u = ( dot11 * dot02 - dot01 * dot12 ) * invDenom; const v = ( dot00 * dot12 - dot01 * dot02 ) * invDenom; // barycentric coordinates must always sum to 1 return target.set( 1 - u - v, v, u ); } static containsPoint( point, a, b, c ) { this.getBarycoord( point, a, b, c, _v3 ); return ( _v3.x >= 0 ) && ( _v3.y >= 0 ) && ( ( _v3.x + _v3.y ) <= 1 ); } static getUV( point, p1, p2, p3, uv1, uv2, uv3, target ) { this.getBarycoord( point, p1, p2, p3, _v3 ); target.set( 0, 0 ); target.addScaledVector( uv1, _v3.x ); target.addScaledVector( uv2, _v3.y ); target.addScaledVector( uv3, _v3.z ); return target; } static isFrontFacing( a, b, c, direction ) { _v0.subVectors( c, b ); _v1.subVectors( a, b ); // strictly front facing return ( _v0.cross( _v1 ).dot( direction ) < 0 ) ? true : false; } set( a, b, c ) { this.a.copy( a ); this.b.copy( b ); this.c.copy( c ); return this; } setFromPointsAndIndices( points, i0, i1, i2 ) { this.a.copy( points[ i0 ] ); this.b.copy( points[ i1 ] ); this.c.copy( points[ i2 ] ); return this; } setFromAttributeAndIndices( attribute, i0, i1, i2 ) { this.a.fromBufferAttribute( attribute, i0 ); this.b.fromBufferAttribute( attribute, i1 ); this.c.fromBufferAttribute( attribute, i2 ); return this; } clone() { return new this.constructor().copy( this ); } copy( triangle ) { this.a.copy( triangle.a ); this.b.copy( triangle.b ); this.c.copy( triangle.c ); return this; } getArea() { _v0.subVectors( this.c, this.b ); _v1.subVectors( this.a, this.b ); return _v0.cross( _v1 ).length() * 0.5; } getMidpoint( target ) { return target.addVectors( this.a, this.b ).add( this.c ).multiplyScalar( 1 / 3 ); } getNormal( target ) { return Triangle.getNormal( this.a, this.b, this.c, target ); } getPlane( target ) { return target.setFromCoplanarPoints( this.a, this.b, this.c ); } getBarycoord( point, target ) { return Triangle.getBarycoord( point, this.a, this.b, this.c, target ); } getUV( point, uv1, uv2, uv3, target ) { return Triangle.getUV( point, this.a, this.b, this.c, uv1, uv2, uv3, target ); } containsPoint( point ) { return Triangle.containsPoint( point, this.a, this.b, this.c ); } isFrontFacing( direction ) { return Triangle.isFrontFacing( this.a, this.b, this.c, direction ); } intersectsBox( box ) { return box.intersectsTriangle( this ); } closestPointToPoint( p, target ) { const a = this.a, b = this.b, c = this.c; let v, w; // algorithm thanks to Real-Time Collision Detection by Christer Ericson, // published by Morgan Kaufmann Publishers, (c) 2005 Elsevier Inc., // under the accompanying license; see chapter 5.1.5 for detailed explanation. // basically, we're distinguishing which of the voronoi regions of the triangle // the point lies in with the minimum amount of redundant computation. _vab.subVectors( b, a ); _vac.subVectors( c, a ); _vap.subVectors( p, a ); const d1 = _vab.dot( _vap ); const d2 = _vac.dot( _vap ); if ( d1 <= 0 && d2 <= 0 ) { // vertex region of A; barycentric coords (1, 0, 0) return target.copy( a ); } _vbp.subVectors( p, b ); const d3 = _vab.dot( _vbp ); const d4 = _vac.dot( _vbp ); if ( d3 >= 0 && d4 <= d3 ) { // vertex region of B; barycentric coords (0, 1, 0) return target.copy( b ); } const vc = d1 * d4 - d3 * d2; if ( vc <= 0 && d1 >= 0 && d3 <= 0 ) { v = d1 / ( d1 - d3 ); // edge region of AB; barycentric coords (1-v, v, 0) return target.copy( a ).addScaledVector( _vab, v ); } _vcp.subVectors( p, c ); const d5 = _vab.dot( _vcp ); const d6 = _vac.dot( _vcp ); if ( d6 >= 0 && d5 <= d6 ) { // vertex region of C; barycentric coords (0, 0, 1) return target.copy( c ); } const vb = d5 * d2 - d1 * d6; if ( vb <= 0 && d2 >= 0 && d6 <= 0 ) { w = d2 / ( d2 - d6 ); // edge region of AC; barycentric coords (1-w, 0, w) return target.copy( a ).addScaledVector( _vac, w ); } const va = d3 * d6 - d5 * d4; if ( va <= 0 && ( d4 - d3 ) >= 0 && ( d5 - d6 ) >= 0 ) { _vbc.subVectors( c, b ); w = ( d4 - d3 ) / ( ( d4 - d3 ) + ( d5 - d6 ) ); // edge region of BC; barycentric coords (0, 1-w, w) return target.copy( b ).addScaledVector( _vbc, w ); // edge region of BC } // face region const denom = 1 / ( va + vb + vc ); // u = va * denom v = vb * denom; w = vc * denom; return target.copy( a ).addScaledVector( _vab, v ).addScaledVector( _vac, w ); } equals( triangle ) { return triangle.a.equals( this.a ) && triangle.b.equals( this.b ) && triangle.c.equals( this.c ); } } export { Triangle };