var BLOCK = 128; var startX, startY; var scene, camera, renderer, loader, sceneId; importScripts( '../../../build/three.js' ); self.onmessage = function ( e ) { var data = e.data; if ( ! data ) return; if ( data.init ) { var width = data.init[ 0 ], height = data.init[ 1 ]; BLOCK = data.blockSize; if ( ! renderer ) renderer = new THREE.RaytracingRendererWorker(); if ( ! loader ) loader = new THREE.ObjectLoader(); renderer.setSize( width, height ); // TODO fix passing maxRecursionDepth as parameter. // if (data.maxRecursionDepth) maxRecursionDepth = data.maxRecursionDepth; } if ( data.scene ) { scene = loader.parse( data.scene ); camera = loader.parse( data.camera ); var meta = data.annex; scene.traverse( function ( o ) { if ( o.isPointLight ) { o.physicalAttenuation = true; } var mat = o.material; if ( ! mat ) return; var material = meta[ mat.uuid ]; for ( var m in material ) { mat[ m ] = material[ m ]; } } ); sceneId = data.sceneId; } if ( data.render && scene && camera ) { startX = data.x; startY = data.y; renderer.render( scene, camera ); } }; /** * DOM-less version of Raytracing Renderer * @author mrdoob / http://mrdoob.com/ * @author alteredq / http://alteredqualia.com/ * @author zz95 / http://github.com/zz85 */ THREE.RaytracingRendererWorker = function () { var maxRecursionDepth = 3; var canvasWidth, canvasHeight; var canvasWidthHalf, canvasHeightHalf; var origin = new THREE.Vector3(); var direction = new THREE.Vector3(); var cameraPosition = new THREE.Vector3(); var raycaster = new THREE.Raycaster( origin, direction ); var ray = raycaster.ray; var raycasterLight = new THREE.Raycaster(); var rayLight = raycasterLight.ray; var perspective; var cameraNormalMatrix = new THREE.Matrix3(); var objects; var lights = []; var cache = {}; this.setSize = function ( width, height ) { canvasWidth = width; canvasHeight = height; canvasWidthHalf = Math.floor( canvasWidth / 2 ); canvasHeightHalf = Math.floor( canvasHeight / 2 ); }; // var spawnRay = ( function () { var diffuseColor = new THREE.Color(); var specularColor = new THREE.Color(); var lightColor = new THREE.Color(); var schlick = new THREE.Color(); var lightContribution = new THREE.Color(); var eyeVector = new THREE.Vector3(); var lightVector = new THREE.Vector3(); var normalVector = new THREE.Vector3(); var halfVector = new THREE.Vector3(); var localPoint = new THREE.Vector3(); var reflectionVector = new THREE.Vector3(); var tmpVec = new THREE.Vector3(); var tmpColor = []; for ( var i = 0; i < maxRecursionDepth; i ++ ) { tmpColor[ i ] = new THREE.Color(); } return function spawnRay( rayOrigin, rayDirection, outputColor, recursionDepth ) { outputColor.setRGB( 0, 0, 0 ); // ray.origin = rayOrigin; ray.direction = rayDirection; var intersections = raycaster.intersectObjects( objects, true ); // ray didn't find anything // (here should come setting of background color?) if ( intersections.length === 0 ) return; // ray hit var intersection = intersections[ 0 ]; var point = intersection.point; var object = intersection.object; var material = object.material; var face = intersection.face; var geometry = object.geometry; // var _object = cache[ object.id ]; eyeVector.subVectors( ray.origin, point ).normalize(); // resolve pixel diffuse color if ( material.isMeshLambertMaterial || material.isMeshPhongMaterial || material.isMeshBasicMaterial ) { diffuseColor.copyGammaToLinear( material.color ); } else { diffuseColor.setRGB( 1, 1, 1 ); } if ( material.vertexColors === THREE.FaceColors ) { diffuseColor.multiply( face.color ); } // compute light shading rayLight.origin.copy( point ); if ( material.isMeshBasicMaterial ) { for ( var i = 0, l = lights.length; i < l; i ++ ) { var light = lights[ i ]; lightVector.setFromMatrixPosition( light.matrixWorld ); lightVector.sub( point ); rayLight.direction.copy( lightVector ).normalize(); var intersections = raycasterLight.intersectObjects( objects, true ); // point in shadow if ( intersections.length > 0 ) continue; // point visible outputColor.add( diffuseColor ); } } else if ( material.isMeshLambertMaterial || material.isMeshPhongMaterial ) { var normalComputed = false; for ( var i = 0, l = lights.length; i < l; i ++ ) { var light = lights[ i ]; lightVector.setFromMatrixPosition( light.matrixWorld ); lightVector.sub( point ); rayLight.direction.copy( lightVector ).normalize(); var intersections = raycasterLight.intersectObjects( objects, true ); // point in shadow if ( intersections.length > 0 ) continue; // point lit if ( normalComputed === false ) { // the same normal can be reused for all lights // (should be possible to cache even more) localPoint.copy( point ).applyMatrix4( _object.inverseMatrix ); computePixelNormal( normalVector, localPoint, material.flatShading, face, geometry ); normalVector.applyMatrix3( _object.normalMatrix ).normalize(); normalComputed = true; } lightColor.copyGammaToLinear( light.color ); // compute attenuation var attenuation = 1.0; if ( light.physicalAttenuation === true ) { attenuation = lightVector.length(); attenuation = 1.0 / ( attenuation * attenuation ); } lightVector.normalize(); // compute diffuse var dot = Math.max( normalVector.dot( lightVector ), 0 ); var diffuseIntensity = dot * light.intensity; lightContribution.copy( diffuseColor ); lightContribution.multiply( lightColor ); lightContribution.multiplyScalar( diffuseIntensity * attenuation ); outputColor.add( lightContribution ); // compute specular if ( material.isMeshPhongMaterial ) { halfVector.addVectors( lightVector, eyeVector ).normalize(); var dotNormalHalf = Math.max( normalVector.dot( halfVector ), 0.0 ); var specularIntensity = Math.max( Math.pow( dotNormalHalf, material.shininess ), 0.0 ) * diffuseIntensity; var specularNormalization = ( material.shininess + 2.0 ) / 8.0; specularColor.copyGammaToLinear( material.specular ); var alpha = Math.pow( Math.max( 1.0 - lightVector.dot( halfVector ), 0.0 ), 5.0 ); schlick.r = specularColor.r + ( 1.0 - specularColor.r ) * alpha; schlick.g = specularColor.g + ( 1.0 - specularColor.g ) * alpha; schlick.b = specularColor.b + ( 1.0 - specularColor.b ) * alpha; lightContribution.copy( schlick ); lightContribution.multiply( lightColor ); lightContribution.multiplyScalar( specularNormalization * specularIntensity * attenuation ); outputColor.add( lightContribution ); } } } // reflection / refraction var reflectivity = material.reflectivity; if ( ( material.mirror || material.glass ) && reflectivity > 0 && recursionDepth < maxRecursionDepth ) { if ( material.mirror ) { reflectionVector.copy( rayDirection ); reflectionVector.reflect( normalVector ); } else if ( material.glass ) { var eta = material.refractionRatio; var dotNI = rayDirection.dot( normalVector ); var k = 1.0 - eta * eta * ( 1.0 - dotNI * dotNI ); if ( k < 0.0 ) { reflectionVector.set( 0, 0, 0 ); } else { reflectionVector.copy( rayDirection ); reflectionVector.multiplyScalar( eta ); var alpha = eta * dotNI + Math.sqrt( k ); tmpVec.copy( normalVector ); tmpVec.multiplyScalar( alpha ); reflectionVector.sub( tmpVec ); } } var theta = Math.max( eyeVector.dot( normalVector ), 0.0 ); var rf0 = reflectivity; var fresnel = rf0 + ( 1.0 - rf0 ) * Math.pow( ( 1.0 - theta ), 5.0 ); var weight = fresnel; var zColor = tmpColor[ recursionDepth ]; spawnRay( point, reflectionVector, zColor, recursionDepth + 1 ); if ( material.specular !== undefined ) { zColor.multiply( material.specular ); } zColor.multiplyScalar( weight ); outputColor.multiplyScalar( 1 - weight ); outputColor.add( zColor ); } }; }() ); var computePixelNormal = ( function () { var vA = new THREE.Vector3(); var vB = new THREE.Vector3(); var vC = new THREE.Vector3(); var tmpVec1 = new THREE.Vector3(); var tmpVec2 = new THREE.Vector3(); var tmpVec3 = new THREE.Vector3(); return function computePixelNormal( outputVector, point, flatShading, face, geometry ) { var faceNormal = face.normal; if ( flatShading === true ) { outputVector.copy( faceNormal ); } else { var positions = geometry.attributes.position; var normals = geometry.attributes.normal; vA.fromBufferAttribute( positions, face.a ); vB.fromBufferAttribute( positions, face.b ); vC.fromBufferAttribute( positions, face.c ); // compute barycentric coordinates tmpVec3.crossVectors( tmpVec1.subVectors( vB, vA ), tmpVec2.subVectors( vC, vA ) ); var areaABC = faceNormal.dot( tmpVec3 ); tmpVec3.crossVectors( tmpVec1.subVectors( vB, point ), tmpVec2.subVectors( vC, point ) ); var areaPBC = faceNormal.dot( tmpVec3 ); var a = areaPBC / areaABC; tmpVec3.crossVectors( tmpVec1.subVectors( vC, point ), tmpVec2.subVectors( vA, point ) ); var areaPCA = faceNormal.dot( tmpVec3 ); var b = areaPCA / areaABC; var c = 1.0 - a - b; // compute interpolated vertex normal tmpVec1.fromBufferAttribute( normals, face.a ); tmpVec2.fromBufferAttribute( normals, face.b ); tmpVec3.fromBufferAttribute( normals, face.c ); tmpVec1.multiplyScalar( a ); tmpVec2.multiplyScalar( b ); tmpVec3.multiplyScalar( c ); outputVector.addVectors( tmpVec1, tmpVec2 ); outputVector.add( tmpVec3 ); } }; }() ); var renderBlock = ( function () { var blockSize = BLOCK; var data = new Uint8ClampedArray( blockSize * blockSize * 4 ); var pixelColor = new THREE.Color(); return function renderBlock( blockX, blockY ) { var index = 0; for ( var y = 0; y < blockSize; y ++ ) { for ( var x = 0; x < blockSize; x ++, index += 4 ) { // spawn primary ray at pixel position origin.copy( cameraPosition ); direction.set( x + blockX - canvasWidthHalf, - ( y + blockY - canvasHeightHalf ), - perspective ); direction.applyMatrix3( cameraNormalMatrix ).normalize(); spawnRay( origin, direction, pixelColor, 0 ); // convert from linear to gamma data[ index + 0 ] = Math.sqrt( pixelColor.r ) * 255; data[ index + 1 ] = Math.sqrt( pixelColor.g ) * 255; data[ index + 2 ] = Math.sqrt( pixelColor.b ) * 255; data[ index + 3 ] = 255; } } // Use transferable objects! :) self.postMessage( { data: data.buffer, blockX: blockX, blockY: blockY, blockSize: blockSize, sceneId: sceneId, time: Date.now(), // time for this renderer }, [ data.buffer ] ); data = new Uint8ClampedArray( blockSize * blockSize * 4 ); }; }() ); this.render = function ( scene, camera ) { // update scene graph if ( scene.autoUpdate === true ) scene.updateMatrixWorld(); // update camera matrices if ( camera.parent === null ) camera.updateMatrixWorld(); cameraPosition.setFromMatrixPosition( camera.matrixWorld ); // cameraNormalMatrix.getNormalMatrix( camera.matrixWorld ); perspective = 0.5 / Math.tan( THREE.Math.degToRad( camera.fov * 0.5 ) ) * canvasHeight; objects = scene.children; // collect lights and set up object matrices lights.length = 0; scene.traverse( function ( object ) { if ( object.isPointLight ) { lights.push( object ); } if ( cache[ object.id ] === undefined ) { cache[ object.id ] = { normalMatrix: new THREE.Matrix3(), inverseMatrix: new THREE.Matrix4() }; } var _object = cache[ object.id ]; _object.normalMatrix.getNormalMatrix( object.matrixWorld ); _object.inverseMatrix.getInverse( object.matrixWorld ); } ); renderBlock( startX, startY ); }; }; Object.assign( THREE.RaytracingRendererWorker.prototype, THREE.EventDispatcher.prototype );