/** * @author takahiro / https://github.com/takahirox * * CCD Algorithm * - https://sites.google.com/site/auraliusproject/ccd-algorithm * * // ik parameter example * // * // target, effector, index in links are bone index in skeleton.bones. * // the bones relation should be * // <-- parent child --> * // links[ n ], links[ n - 1 ], ..., links[ 0 ], effector * iks = [ { * target: 1, * effector: 2, * links: [ { index: 5, limitation: new Vector3( 1, 0, 0 ) }, { index: 4, enabled: false }, { index : 3 } ], * iteration: 10, * minAngle: 0.0, * maxAngle: 1.0, * } ]; */ import { BufferAttribute, BufferGeometry, Color, Line, LineBasicMaterial, Matrix4, Mesh, MeshBasicMaterial, Object3D, Quaternion, SphereBufferGeometry, Vector3 } from "../../../build/three.module.js"; var CCDIKSolver = ( function () { /** * @param {THREE.SkinnedMesh} mesh * @param {Array<Object>} iks */ function CCDIKSolver( mesh, iks ) { this.mesh = mesh; this.iks = iks || []; this._valid(); } CCDIKSolver.prototype = { constructor: CCDIKSolver, /** * Update IK bones. * * @return {CCDIKSolver} */ update: function () { var q = new Quaternion(); var targetPos = new Vector3(); var targetVec = new Vector3(); var effectorPos = new Vector3(); var effectorVec = new Vector3(); var linkPos = new Vector3(); var invLinkQ = new Quaternion(); var linkScale = new Vector3(); var axis = new Vector3(); var vector = new Vector3(); return function update() { var bones = this.mesh.skeleton.bones; var iks = this.iks; // for reference overhead reduction in loop var math = Math; for ( var i = 0, il = iks.length; i < il; i ++ ) { var ik = iks[ i ]; var effector = bones[ ik.effector ]; var target = bones[ ik.target ]; // don't use getWorldPosition() here for the performance // because it calls updateMatrixWorld( true ) inside. targetPos.setFromMatrixPosition( target.matrixWorld ); var links = ik.links; var iteration = ik.iteration !== undefined ? ik.iteration : 1; for ( var j = 0; j < iteration; j ++ ) { var rotated = false; for ( var k = 0, kl = links.length; k < kl; k ++ ) { var link = bones[ links[ k ].index ]; // skip this link and following links. // this skip is used for MMD performance optimization. if ( links[ k ].enabled === false ) break; var limitation = links[ k ].limitation; var rotationMin = links[ k ].rotationMin; var rotationMax = links[ k ].rotationMax; // don't use getWorldPosition/Quaternion() here for the performance // because they call updateMatrixWorld( true ) inside. link.matrixWorld.decompose( linkPos, invLinkQ, linkScale ); invLinkQ.inverse(); effectorPos.setFromMatrixPosition( effector.matrixWorld ); // work in link world effectorVec.subVectors( effectorPos, linkPos ); effectorVec.applyQuaternion( invLinkQ ); effectorVec.normalize(); targetVec.subVectors( targetPos, linkPos ); targetVec.applyQuaternion( invLinkQ ); targetVec.normalize(); var angle = targetVec.dot( effectorVec ); if ( angle > 1.0 ) { angle = 1.0; } else if ( angle < - 1.0 ) { angle = - 1.0; } angle = math.acos( angle ); // skip if changing angle is too small to prevent vibration of bone // Refer to http://www20.atpages.jp/katwat/three.js_r58/examples/mytest37/mmd.three.js if ( angle < 1e-5 ) continue; if ( ik.minAngle !== undefined && angle < ik.minAngle ) { angle = ik.minAngle; } if ( ik.maxAngle !== undefined && angle > ik.maxAngle ) { angle = ik.maxAngle; } axis.crossVectors( effectorVec, targetVec ); axis.normalize(); q.setFromAxisAngle( axis, angle ); link.quaternion.multiply( q ); // TODO: re-consider the limitation specification if ( limitation !== undefined ) { var c = link.quaternion.w; if ( c > 1.0 ) c = 1.0; var c2 = math.sqrt( 1 - c * c ); link.quaternion.set( limitation.x * c2, limitation.y * c2, limitation.z * c2, c ); } if ( rotationMin !== undefined ) { link.rotation.setFromVector3( link.rotation .toVector3( vector ) .max( rotationMin ) ); } if ( rotationMax !== undefined ) { link.rotation.setFromVector3( link.rotation .toVector3( vector ) .min( rotationMax ) ); } link.updateMatrixWorld( true ); rotated = true; } if ( ! rotated ) break; } } return this; }; }(), /** * Creates Helper * * @return {CCDIKHelper} */ createHelper: function () { return new CCDIKHelper( this.mesh, this.mesh.geometry.userData.MMD.iks ); }, // private methods _valid: function () { var iks = this.iks; var bones = this.mesh.skeleton.bones; for ( var i = 0, il = iks.length; i < il; i ++ ) { var ik = iks[ i ]; var effector = bones[ ik.effector ]; var links = ik.links; var link0, link1; link0 = effector; for ( var j = 0, jl = links.length; j < jl; j ++ ) { link1 = bones[ links[ j ].index ]; if ( link0.parent !== link1 ) { console.warn( 'THREE.CCDIKSolver: bone ' + link0.name + ' is not the child of bone ' + link1.name ); } link0 = link1; } } } }; /** * Visualize IK bones * * @param {SkinnedMesh} mesh * @param {Array<Object>} iks */ function CCDIKHelper( mesh, iks ) { Object3D.call( this ); this.root = mesh; this.iks = iks || []; this.matrix.copy( mesh.matrixWorld ); this.matrixAutoUpdate = false; this.sphereGeometry = new SphereBufferGeometry( 0.25, 16, 8 ); this.targetSphereMaterial = new MeshBasicMaterial( { color: new Color( 0xff8888 ), depthTest: false, depthWrite: false, transparent: true } ); this.effectorSphereMaterial = new MeshBasicMaterial( { color: new Color( 0x88ff88 ), depthTest: false, depthWrite: false, transparent: true } ); this.linkSphereMaterial = new MeshBasicMaterial( { color: new Color( 0x8888ff ), depthTest: false, depthWrite: false, transparent: true } ); this.lineMaterial = new LineBasicMaterial( { color: new Color( 0xff0000 ), depthTest: false, depthWrite: false, transparent: true } ); this._init(); } CCDIKHelper.prototype = Object.assign( Object.create( Object3D.prototype ), { constructor: CCDIKHelper, /** * Updates IK bones visualization. */ updateMatrixWorld: function () { var matrix = new Matrix4(); var vector = new Vector3(); function getPosition( bone, matrixWorldInv ) { return vector .setFromMatrixPosition( bone.matrixWorld ) .applyMatrix4( matrixWorldInv ); } function setPositionOfBoneToAttributeArray( array, index, bone, matrixWorldInv ) { var v = getPosition( bone, matrixWorldInv ); array[ index * 3 + 0 ] = v.x; array[ index * 3 + 1 ] = v.y; array[ index * 3 + 2 ] = v.z; } return function updateMatrixWorld( force ) { var mesh = this.root; if ( this.visible ) { var offset = 0; var iks = this.iks; var bones = mesh.skeleton.bones; matrix.getInverse( mesh.matrixWorld ); for ( var i = 0, il = iks.length; i < il; i ++ ) { var ik = iks[ i ]; var targetBone = bones[ ik.target ]; var effectorBone = bones[ ik.effector ]; var targetMesh = this.children[ offset ++ ]; var effectorMesh = this.children[ offset ++ ]; targetMesh.position.copy( getPosition( targetBone, matrix ) ); effectorMesh.position.copy( getPosition( effectorBone, matrix ) ); for ( var j = 0, jl = ik.links.length; j < jl; j ++ ) { var link = ik.links[ j ]; var linkBone = bones[ link.index ]; var linkMesh = this.children[ offset ++ ]; linkMesh.position.copy( getPosition( linkBone, matrix ) ); } var line = this.children[ offset ++ ]; var array = line.geometry.attributes.position.array; setPositionOfBoneToAttributeArray( array, 0, targetBone, matrix ); setPositionOfBoneToAttributeArray( array, 1, effectorBone, matrix ); for ( var j = 0, jl = ik.links.length; j < jl; j ++ ) { var link = ik.links[ j ]; var linkBone = bones[ link.index ]; setPositionOfBoneToAttributeArray( array, j + 2, linkBone, matrix ); } line.geometry.attributes.position.needsUpdate = true; } } this.matrix.copy( mesh.matrixWorld ); Object3D.prototype.updateMatrixWorld.call( this, force ); }; }(), // private method _init: function () { var self = this; var iks = this.iks; function createLineGeometry( ik ) { var geometry = new BufferGeometry(); var vertices = new Float32Array( ( 2 + ik.links.length ) * 3 ); geometry.setAttribute( 'position', new BufferAttribute( vertices, 3 ) ); return geometry; } function createTargetMesh() { return new Mesh( self.sphereGeometry, self.targetSphereMaterial ); } function createEffectorMesh() { return new Mesh( self.sphereGeometry, self.effectorSphereMaterial ); } function createLinkMesh() { return new Mesh( self.sphereGeometry, self.linkSphereMaterial ); } function createLine( ik ) { return new Line( createLineGeometry( ik ), self.lineMaterial ); } for ( var i = 0, il = iks.length; i < il; i ++ ) { var ik = iks[ i ]; this.add( createTargetMesh() ); this.add( createEffectorMesh() ); for ( var j = 0, jl = ik.links.length; j < jl; j ++ ) { this.add( createLinkMesh() ); } this.add( createLine( ik ) ); } } } ); return CCDIKSolver; } )(); export { CCDIKSolver };