/** * @version 1.1.1 * * @author Lewy Blue https://github.com/looeee * @author Guilherme Avila https://github/sciecode * * @desc Load files in LWO3 and LWO2 format on Three.js * * LWO3 format specification: * http://static.lightwave3d.com/sdk/2018/html/filefmts/lwo3.html * * LWO2 format specification: * http://static.lightwave3d.com/sdk/2018/html/filefmts/lwo2.html * * Development and test repository: * https://github.com/threejs/lwoloader * **/ import { AddOperation, BackSide, BufferAttribute, BufferGeometry, ClampToEdgeWrapping, Color, DoubleSide, EquirectangularReflectionMapping, EquirectangularRefractionMapping, FileLoader, Float32BufferAttribute, FrontSide, LineBasicMaterial, LineSegments, Loader, LoaderUtils, Mesh, MeshPhongMaterial, MeshPhysicalMaterial, MeshStandardMaterial, MirroredRepeatWrapping, Points, PointsMaterial, RepeatWrapping, TextureLoader, Vector2 } from "../../../build/three.module.js"; function LWO2Parser( IFFParser ) { this.IFF = IFFParser; } LWO2Parser.prototype = { constructor: LWO2Parser, parseBlock: function () { this.IFF.debugger.offset = this.IFF.reader.offset; this.IFF.debugger.closeForms(); var blockID = this.IFF.reader.getIDTag(); var length = this.IFF.reader.getUint32(); // size of data in bytes if ( length > this.IFF.reader.dv.byteLength - this.IFF.reader.offset ) { this.IFF.reader.offset -= 4; length = this.IFF.reader.getUint16(); } this.IFF.debugger.dataOffset = this.IFF.reader.offset; this.IFF.debugger.length = length; // Data types may be found in either LWO2 OR LWO3 spec switch ( blockID ) { case 'FORM': // form blocks may consist of sub -chunks or sub-forms this.IFF.parseForm( length ); break; // SKIPPED CHUNKS // if break; is called directly, the position in the lwoTree is not created // any sub chunks and forms are added to the parent form instead // MISC skipped case 'ICON': // Thumbnail Icon Image case 'VMPA': // Vertex Map Parameter case 'BBOX': // bounding box // case 'VMMD': // case 'VTYP': // normal maps can be specified, normally on models imported from other applications. Currently ignored case 'NORM': // ENVL FORM skipped case 'PRE ': case 'POST': case 'KEY ': case 'SPAN': // CLIP FORM skipped case 'TIME': case 'CLRS': case 'CLRA': case 'FILT': case 'DITH': case 'CONT': case 'BRIT': case 'SATR': case 'HUE ': case 'GAMM': case 'NEGA': case 'IFLT': case 'PFLT': // Image Map Layer skipped case 'PROJ': case 'AXIS': case 'AAST': case 'PIXB': case 'AUVO': case 'STCK': // Procedural Textures skipped case 'PROC': case 'VALU': case 'FUNC': // Gradient Textures skipped case 'PNAM': case 'INAM': case 'GRST': case 'GREN': case 'GRPT': case 'FKEY': case 'IKEY': // Texture Mapping Form skipped case 'CSYS': // Surface CHUNKs skipped case 'OPAQ': // top level 'opacity' checkbox case 'CMAP': // clip map // Surface node CHUNKS skipped // These mainly specify the node editor setup in LW case 'NLOC': case 'NZOM': case 'NVER': case 'NSRV': case 'NVSK': // unknown case 'NCRD': case 'WRPW': // image wrap w ( for cylindrical and spherical projections) case 'WRPH': // image wrap h case 'NMOD': case 'NPRW': case 'NPLA': case 'NODS': case 'VERS': case 'ENUM': case 'TAG ': case 'OPAC': // Car Material CHUNKS case 'CGMD': case 'CGTY': case 'CGST': case 'CGEN': case 'CGTS': case 'CGTE': case 'OSMP': case 'OMDE': case 'OUTR': case 'FLAG': case 'TRNL': case 'GLOW': case 'GVAL': // glow intensity case 'SHRP': case 'RFOP': case 'RSAN': case 'TROP': case 'RBLR': case 'TBLR': case 'CLRH': case 'CLRF': case 'ADTR': case 'LINE': case 'ALPH': case 'VCOL': case 'ENAB': this.IFF.debugger.skipped = true; this.IFF.reader.skip( length ); break; case 'SURF': this.IFF.parseSurfaceLwo2( length ); break; case 'CLIP': this.IFF.parseClipLwo2( length ); break; // Texture node chunks (not in spec) case 'IPIX': // usePixelBlending case 'IMIP': // useMipMaps case 'IMOD': // imageBlendingMode case 'AMOD': // unknown case 'IINV': // imageInvertAlpha case 'INCR': // imageInvertColor case 'IAXS': // imageAxis ( for non-UV maps) case 'IFOT': // imageFallofType case 'ITIM': // timing for animated textures case 'IWRL': case 'IUTI': case 'IINX': case 'IINY': case 'IINZ': case 'IREF': // possibly a VX for reused texture nodes if ( length === 4 ) this.IFF.currentNode[ blockID ] = this.IFF.reader.getInt32(); else this.IFF.reader.skip( length ); break; case 'OTAG': this.IFF.parseObjectTag(); break; case 'LAYR': this.IFF.parseLayer( length ); break; case 'PNTS': this.IFF.parsePoints( length ); break; case 'VMAP': this.IFF.parseVertexMapping( length ); break; case 'AUVU': case 'AUVN': this.IFF.reader.skip( length - 1 ); this.IFF.reader.getVariableLengthIndex(); // VX break; case 'POLS': this.IFF.parsePolygonList( length ); break; case 'TAGS': this.IFF.parseTagStrings( length ); break; case 'PTAG': this.IFF.parsePolygonTagMapping( length ); break; case 'VMAD': this.IFF.parseVertexMapping( length, true ); break; // Misc CHUNKS case 'DESC': // Description Line this.IFF.currentForm.description = this.IFF.reader.getString(); break; case 'TEXT': case 'CMNT': case 'NCOM': this.IFF.currentForm.comment = this.IFF.reader.getString(); break; // Envelope Form case 'NAME': this.IFF.currentForm.channelName = this.IFF.reader.getString(); break; // Image Map Layer case 'WRAP': this.IFF.currentForm.wrap = { w: this.IFF.reader.getUint16(), h: this.IFF.reader.getUint16() }; break; case 'IMAG': var index = this.IFF.reader.getVariableLengthIndex(); this.IFF.currentForm.imageIndex = index; break; // Texture Mapping Form case 'OREF': this.IFF.currentForm.referenceObject = this.IFF.reader.getString(); break; case 'ROID': this.IFF.currentForm.referenceObjectID = this.IFF.reader.getUint32(); break; // Surface Blocks case 'SSHN': this.IFF.currentSurface.surfaceShaderName = this.IFF.reader.getString(); break; case 'AOVN': this.IFF.currentSurface.surfaceCustomAOVName = this.IFF.reader.getString(); break; // Nodal Blocks case 'NSTA': this.IFF.currentForm.disabled = this.IFF.reader.getUint16(); break; case 'NRNM': this.IFF.currentForm.realName = this.IFF.reader.getString(); break; case 'NNME': this.IFF.currentForm.refName = this.IFF.reader.getString(); this.IFF.currentSurface.nodes[ this.IFF.currentForm.refName ] = this.IFF.currentForm; break; // Nodal Blocks : connections case 'INME': if ( ! this.IFF.currentForm.nodeName ) this.IFF.currentForm.nodeName = []; this.IFF.currentForm.nodeName.push( this.IFF.reader.getString() ); break; case 'IINN': if ( ! this.IFF.currentForm.inputNodeName ) this.IFF.currentForm.inputNodeName = []; this.IFF.currentForm.inputNodeName.push( this.IFF.reader.getString() ); break; case 'IINM': if ( ! this.IFF.currentForm.inputName ) this.IFF.currentForm.inputName = []; this.IFF.currentForm.inputName.push( this.IFF.reader.getString() ); break; case 'IONM': if ( ! this.IFF.currentForm.inputOutputName ) this.IFF.currentForm.inputOutputName = []; this.IFF.currentForm.inputOutputName.push( this.IFF.reader.getString() ); break; case 'FNAM': this.IFF.currentForm.fileName = this.IFF.reader.getString(); break; case 'CHAN': // NOTE: ENVL Forms may also have CHAN chunk, however ENVL is currently ignored if ( length === 4 ) this.IFF.currentForm.textureChannel = this.IFF.reader.getIDTag(); else this.IFF.reader.skip( length ); break; // LWO2 Spec chunks: these are needed since the SURF FORMs are often in LWO2 format case 'SMAN': var maxSmoothingAngle = this.IFF.reader.getFloat32(); this.IFF.currentSurface.attributes.smooth = ( maxSmoothingAngle < 0 ) ? false : true; break; // LWO2: Basic Surface Parameters case 'COLR': this.IFF.currentSurface.attributes.Color = { value: this.IFF.reader.getFloat32Array( 3 ) }; this.IFF.reader.skip( 2 ); // VX: envelope break; case 'LUMI': this.IFF.currentSurface.attributes.Luminosity = { value: this.IFF.reader.getFloat32() }; this.IFF.reader.skip( 2 ); break; case 'SPEC': this.IFF.currentSurface.attributes.Specular = { value: this.IFF.reader.getFloat32() }; this.IFF.reader.skip( 2 ); break; case 'DIFF': this.IFF.currentSurface.attributes.Diffuse = { value: this.IFF.reader.getFloat32() }; this.IFF.reader.skip( 2 ); break; case 'REFL': this.IFF.currentSurface.attributes.Reflection = { value: this.IFF.reader.getFloat32() }; this.IFF.reader.skip( 2 ); break; case 'GLOS': this.IFF.currentSurface.attributes.Glossiness = { value: this.IFF.reader.getFloat32() }; this.IFF.reader.skip( 2 ); break; case 'TRAN': this.IFF.currentSurface.attributes.opacity = this.IFF.reader.getFloat32(); this.IFF.reader.skip( 2 ); break; case 'BUMP': this.IFF.currentSurface.attributes.bumpStrength = this.IFF.reader.getFloat32(); this.IFF.reader.skip( 2 ); break; case 'SIDE': this.IFF.currentSurface.attributes.side = this.IFF.reader.getUint16(); break; case 'RIMG': this.IFF.currentSurface.attributes.reflectionMap = this.IFF.reader.getVariableLengthIndex(); break; case 'RIND': this.IFF.currentSurface.attributes.refractiveIndex = this.IFF.reader.getFloat32(); this.IFF.reader.skip( 2 ); break; case 'TIMG': this.IFF.currentSurface.attributes.refractionMap = this.IFF.reader.getVariableLengthIndex(); break; case 'IMAP': this.IFF.reader.skip( 2 ); break; case 'TMAP': this.IFF.debugger.skipped = true; this.IFF.reader.skip( length ); // needs implementing break; case 'IUVI': // uv channel name this.IFF.currentNode.UVChannel = this.IFF.reader.getString( length ); break; case 'IUTL': // widthWrappingMode: 0 = Reset, 1 = Repeat, 2 = Mirror, 3 = Edge this.IFF.currentNode.widthWrappingMode = this.IFF.reader.getUint32(); break; case 'IVTL': // heightWrappingMode this.IFF.currentNode.heightWrappingMode = this.IFF.reader.getUint32(); break; // LWO2 USE case 'BLOK': // skip break; default: this.IFF.parseUnknownCHUNK( blockID, length ); } if ( blockID != 'FORM' ) { this.IFF.debugger.node = 1; this.IFF.debugger.nodeID = blockID; this.IFF.debugger.log(); } if ( this.IFF.reader.offset >= this.IFF.currentFormEnd ) { this.IFF.currentForm = this.IFF.parentForm; } } }; function LWO3Parser( IFFParser ) { this.IFF = IFFParser; } LWO3Parser.prototype = { constructor: LWO3Parser, parseBlock: function () { this.IFF.debugger.offset = this.IFF.reader.offset; this.IFF.debugger.closeForms(); var blockID = this.IFF.reader.getIDTag(); var length = this.IFF.reader.getUint32(); // size of data in bytes this.IFF.debugger.dataOffset = this.IFF.reader.offset; this.IFF.debugger.length = length; // Data types may be found in either LWO2 OR LWO3 spec switch ( blockID ) { case 'FORM': // form blocks may consist of sub -chunks or sub-forms this.IFF.parseForm( length ); break; // SKIPPED CHUNKS // MISC skipped case 'ICON': // Thumbnail Icon Image case 'VMPA': // Vertex Map Parameter case 'BBOX': // bounding box // case 'VMMD': // case 'VTYP': // normal maps can be specified, normally on models imported from other applications. Currently ignored case 'NORM': // ENVL FORM skipped case 'PRE ': case 'POST': case 'KEY ': case 'SPAN': // CLIP FORM skipped case 'TIME': case 'CLRS': case 'CLRA': case 'FILT': case 'DITH': case 'CONT': case 'BRIT': case 'SATR': case 'HUE ': case 'GAMM': case 'NEGA': case 'IFLT': case 'PFLT': // Image Map Layer skipped case 'PROJ': case 'AXIS': case 'AAST': case 'PIXB': case 'STCK': // Procedural Textures skipped case 'VALU': // Gradient Textures skipped case 'PNAM': case 'INAM': case 'GRST': case 'GREN': case 'GRPT': case 'FKEY': case 'IKEY': // Texture Mapping Form skipped case 'CSYS': // Surface CHUNKs skipped case 'OPAQ': // top level 'opacity' checkbox case 'CMAP': // clip map // Surface node CHUNKS skipped // These mainly specify the node editor setup in LW case 'NLOC': case 'NZOM': case 'NVER': case 'NSRV': case 'NCRD': case 'NMOD': case 'NSEL': case 'NPRW': case 'NPLA': case 'VERS': case 'ENUM': case 'TAG ': // Car Material CHUNKS case 'CGMD': case 'CGTY': case 'CGST': case 'CGEN': case 'CGTS': case 'CGTE': case 'OSMP': case 'OMDE': case 'OUTR': case 'FLAG': case 'TRNL': case 'SHRP': case 'RFOP': case 'RSAN': case 'TROP': case 'RBLR': case 'TBLR': case 'CLRH': case 'CLRF': case 'ADTR': case 'GLOW': case 'LINE': case 'ALPH': case 'VCOL': case 'ENAB': this.IFF.debugger.skipped = true; this.IFF.reader.skip( length ); break; // Texture node chunks (not in spec) case 'IPIX': // usePixelBlending case 'IMIP': // useMipMaps case 'IMOD': // imageBlendingMode case 'AMOD': // unknown case 'IINV': // imageInvertAlpha case 'INCR': // imageInvertColor case 'IAXS': // imageAxis ( for non-UV maps) case 'IFOT': // imageFallofType case 'ITIM': // timing for animated textures case 'IWRL': case 'IUTI': case 'IINX': case 'IINY': case 'IINZ': case 'IREF': // possibly a VX for reused texture nodes if ( length === 4 ) this.IFF.currentNode[ blockID ] = this.IFF.reader.getInt32(); else this.IFF.reader.skip( length ); break; case 'OTAG': this.IFF.parseObjectTag(); break; case 'LAYR': this.IFF.parseLayer( length ); break; case 'PNTS': this.IFF.parsePoints( length ); break; case 'VMAP': this.IFF.parseVertexMapping( length ); break; case 'POLS': this.IFF.parsePolygonList( length ); break; case 'TAGS': this.IFF.parseTagStrings( length ); break; case 'PTAG': this.IFF.parsePolygonTagMapping( length ); break; case 'VMAD': this.IFF.parseVertexMapping( length, true ); break; // Misc CHUNKS case 'DESC': // Description Line this.IFF.currentForm.description = this.IFF.reader.getString(); break; case 'TEXT': case 'CMNT': case 'NCOM': this.IFF.currentForm.comment = this.IFF.reader.getString(); break; // Envelope Form case 'NAME': this.IFF.currentForm.channelName = this.IFF.reader.getString(); break; // Image Map Layer case 'WRAP': this.IFF.currentForm.wrap = { w: this.IFF.reader.getUint16(), h: this.IFF.reader.getUint16() }; break; case 'IMAG': var index = this.IFF.reader.getVariableLengthIndex(); this.IFF.currentForm.imageIndex = index; break; // Texture Mapping Form case 'OREF': this.IFF.currentForm.referenceObject = this.IFF.reader.getString(); break; case 'ROID': this.IFF.currentForm.referenceObjectID = this.IFF.reader.getUint32(); break; // Surface Blocks case 'SSHN': this.IFF.currentSurface.surfaceShaderName = this.IFF.reader.getString(); break; case 'AOVN': this.IFF.currentSurface.surfaceCustomAOVName = this.IFF.reader.getString(); break; // Nodal Blocks case 'NSTA': this.IFF.currentForm.disabled = this.IFF.reader.getUint16(); break; case 'NRNM': this.IFF.currentForm.realName = this.IFF.reader.getString(); break; case 'NNME': this.IFF.currentForm.refName = this.IFF.reader.getString(); this.IFF.currentSurface.nodes[ this.IFF.currentForm.refName ] = this.IFF.currentForm; break; // Nodal Blocks : connections case 'INME': if ( ! this.IFF.currentForm.nodeName ) this.IFF.currentForm.nodeName = []; this.IFF.currentForm.nodeName.push( this.IFF.reader.getString() ); break; case 'IINN': if ( ! this.IFF.currentForm.inputNodeName ) this.IFF.currentForm.inputNodeName = []; this.IFF.currentForm.inputNodeName.push( this.IFF.reader.getString() ); break; case 'IINM': if ( ! this.IFF.currentForm.inputName ) this.IFF.currentForm.inputName = []; this.IFF.currentForm.inputName.push( this.IFF.reader.getString() ); break; case 'IONM': if ( ! this.IFF.currentForm.inputOutputName ) this.IFF.currentForm.inputOutputName = []; this.IFF.currentForm.inputOutputName.push( this.IFF.reader.getString() ); break; case 'FNAM': this.IFF.currentForm.fileName = this.IFF.reader.getString(); break; case 'CHAN': // NOTE: ENVL Forms may also have CHAN chunk, however ENVL is currently ignored if ( length === 4 ) this.IFF.currentForm.textureChannel = this.IFF.reader.getIDTag(); else this.IFF.reader.skip( length ); break; // LWO2 Spec chunks: these are needed since the SURF FORMs are often in LWO2 format case 'SMAN': var maxSmoothingAngle = this.IFF.reader.getFloat32(); this.IFF.currentSurface.attributes.smooth = ( maxSmoothingAngle < 0 ) ? false : true; break; // LWO2: Basic Surface Parameters case 'COLR': this.IFF.currentSurface.attributes.Color = { value: this.IFF.reader.getFloat32Array( 3 ) }; this.IFF.reader.skip( 2 ); // VX: envelope break; case 'LUMI': this.IFF.currentSurface.attributes.Luminosity = { value: this.IFF.reader.getFloat32() }; this.IFF.reader.skip( 2 ); break; case 'SPEC': this.IFF.currentSurface.attributes.Specular = { value: this.IFF.reader.getFloat32() }; this.IFF.reader.skip( 2 ); break; case 'DIFF': this.IFF.currentSurface.attributes.Diffuse = { value: this.IFF.reader.getFloat32() }; this.IFF.reader.skip( 2 ); break; case 'REFL': this.IFF.currentSurface.attributes.Reflection = { value: this.IFF.reader.getFloat32() }; this.IFF.reader.skip( 2 ); break; case 'GLOS': this.IFF.currentSurface.attributes.Glossiness = { value: this.IFF.reader.getFloat32() }; this.IFF.reader.skip( 2 ); break; case 'TRAN': this.IFF.currentSurface.attributes.opacity = this.IFF.reader.getFloat32(); this.IFF.reader.skip( 2 ); break; case 'BUMP': this.IFF.currentSurface.attributes.bumpStrength = this.IFF.reader.getFloat32(); this.IFF.reader.skip( 2 ); break; case 'SIDE': this.IFF.currentSurface.attributes.side = this.IFF.reader.getUint16(); break; case 'RIMG': this.IFF.currentSurface.attributes.reflectionMap = this.IFF.reader.getVariableLengthIndex(); break; case 'RIND': this.IFF.currentSurface.attributes.refractiveIndex = this.IFF.reader.getFloat32(); this.IFF.reader.skip( 2 ); break; case 'TIMG': this.IFF.currentSurface.attributes.refractionMap = this.IFF.reader.getVariableLengthIndex(); break; case 'IMAP': this.IFF.currentSurface.attributes.imageMapIndex = this.IFF.reader.getUint32(); break; case 'IUVI': // uv channel name this.IFF.currentNode.UVChannel = this.IFF.reader.getString( length ); break; case 'IUTL': // widthWrappingMode: 0 = Reset, 1 = Repeat, 2 = Mirror, 3 = Edge this.IFF.currentNode.widthWrappingMode = this.IFF.reader.getUint32(); break; case 'IVTL': // heightWrappingMode this.IFF.currentNode.heightWrappingMode = this.IFF.reader.getUint32(); break; default: this.IFF.parseUnknownCHUNK( blockID, length ); } if ( blockID != 'FORM' ) { this.IFF.debugger.node = 1; this.IFF.debugger.nodeID = blockID; this.IFF.debugger.log(); } if ( this.IFF.reader.offset >= this.IFF.currentFormEnd ) { this.IFF.currentForm = this.IFF.parentForm; } } }; /** * === IFFParser === * - Parses data from the IFF buffer. * - LWO3 files are in IFF format and can contain the following data types, referred to by shorthand codes * * ATOMIC DATA TYPES * ID Tag - 4x 7 bit uppercase ASCII chars: ID4 * signed integer, 1, 2, or 4 byte length: I1, I2, I4 * unsigned integer, 1, 2, or 4 byte length: U1, U2, U4 * float, 4 byte length: F4 * string, series of ASCII chars followed by null byte (If the length of the string including the null terminating byte is odd, an extra null is added so that the data that follows will begin on an even byte boundary): S0 * * COMPOUND DATA TYPES * Variable-length Index (index into an array or collection): U2 or U4 : VX * Color (RGB): F4 + F4 + F4: COL12 * Coordinate (x, y, z): F4 + F4 + F4: VEC12 * Percentage F4 data type from 0->1 with 1 = 100%: FP4 * Angle in radian F4: ANG4 * Filename (string) S0: FNAM0 * XValue F4 + index (VX) + optional envelope( ENVL ): XVAL * XValue vector VEC12 + index (VX) + optional envelope( ENVL ): XVAL3 * * The IFF file is arranged in chunks: * CHUNK = ID4 + length (U4) + length X bytes of data + optional 0 pad byte * optional 0 pad byte is there to ensure chunk ends on even boundary, not counted in size * * COMPOUND DATA TYPES * - Chunks are combined in Forms (collections of chunks) * - FORM = string 'FORM' (ID4) + length (U4) + type (ID4) + optional ( CHUNK | FORM ) * - CHUNKS and FORMS are collectively referred to as blocks * - The entire file is contained in one top level FORM * **/ function IFFParser( ) { this.debugger = new Debugger(); // this.debugger.enable(); // un-comment to log IFF hierarchy. } IFFParser.prototype = { constructor: IFFParser, parse: function ( buffer ) { this.reader = new DataViewReader( buffer ); this.tree = { materials: {}, layers: [], tags: [], textures: [], }; // start out at the top level to add any data before first layer is encountered this.currentLayer = this.tree; this.currentForm = this.tree; this.parseTopForm(); if ( this.tree.format === undefined ) return; if ( this.tree.format === 'LWO2' ) { this.parser = new LWO2Parser( this ); while ( ! this.reader.endOfFile() ) this.parser.parseBlock(); } else if ( this.tree.format === 'LWO3' ) { this.parser = new LWO3Parser( this ); while ( ! this.reader.endOfFile() ) this.parser.parseBlock(); } this.debugger.offset = this.reader.offset; this.debugger.closeForms(); return this.tree; }, parseTopForm() { this.debugger.offset = this.reader.offset; var topForm = this.reader.getIDTag(); if ( topForm !== 'FORM' ) { console.warn( "LWOLoader: Top-level FORM missing." ); return; } var length = this.reader.getUint32(); this.debugger.dataOffset = this.reader.offset; this.debugger.length = length; var type = this.reader.getIDTag(); if ( type === 'LWO2' ) { this.tree.format = type; } else if ( type === 'LWO3' ) { this.tree.format = type; } this.debugger.node = 0; this.debugger.nodeID = type; this.debugger.log(); return; }, /// // FORM PARSING METHODS /// // Forms are organisational and can contain any number of sub chunks and sub forms // FORM ::= 'FORM'[ID4], length[U4], type[ID4], ( chunk[CHUNK] | form[FORM] ) * } parseForm( length ) { var type = this.reader.getIDTag(); switch ( type ) { // SKIPPED FORMS // if skipForm( length ) is called, the entire form and any sub forms and chunks are skipped case 'ISEQ': // Image sequence case 'ANIM': // plug in animation case 'STCC': // Color-cycling Still case 'VPVL': case 'VPRM': case 'NROT': case 'WRPW': // image wrap w ( for cylindrical and spherical projections) case 'WRPH': // image wrap h case 'FUNC': case 'FALL': case 'OPAC': case 'GRAD': // gradient texture case 'ENVS': case 'VMOP': case 'VMBG': // Car Material FORMS case 'OMAX': case 'STEX': case 'CKBG': case 'CKEY': case 'VMLA': case 'VMLB': this.debugger.skipped = true; this.skipForm( length ); // not currently supported break; // if break; is called directly, the position in the lwoTree is not created // any sub chunks and forms are added to the parent form instead case 'META': case 'NNDS': case 'NODS': case 'NDTA': case 'ADAT': case 'AOVS': case 'BLOK': // used by texture nodes case 'IBGC': // imageBackgroundColor case 'IOPC': // imageOpacity case 'IIMG': // hold reference to image path case 'TXTR': // this.setupForm( type, length ); this.debugger.length = 4; this.debugger.skipped = true; break; case 'IFAL': // imageFallof case 'ISCL': // imageScale case 'IPOS': // imagePosition case 'IROT': // imageRotation case 'IBMP': case 'IUTD': case 'IVTD': this.parseTextureNodeAttribute( type ); break; case 'ENVL': this.parseEnvelope( length ); break; // CLIP FORM AND SUB FORMS case 'CLIP': if ( this.tree.format === 'LWO2' ) { this.parseForm( length ); } else { this.parseClip( length ); } break; case 'STIL': this.parseImage(); break; case 'XREF': // clone of another STIL this.reader.skip( 8 ); // unknown this.currentForm.referenceTexture = { index: this.reader.getUint32(), refName: this.reader.getString() // internal unique ref }; break; // Not in spec, used by texture nodes case 'IMST': this.parseImageStateForm( length ); break; // SURF FORM AND SUB FORMS case 'SURF': this.parseSurfaceForm( length ); break; case 'VALU': // Not in spec this.parseValueForm( length ); break; case 'NTAG': this.parseSubNode( length ); break; case 'ATTR': // BSDF Node Attributes case 'SATR': // Standard Node Attributes this.setupForm( 'attributes', length ); break; case 'NCON': this.parseConnections( length ); break; case 'SSHA': this.parentForm = this.currentForm; this.currentForm = this.currentSurface; this.setupForm( 'surfaceShader', length ); break; case 'SSHD': this.setupForm( 'surfaceShaderData', length ); break; case 'ENTR': // Not in spec this.parseEntryForm( length ); break; // Image Map Layer case 'IMAP': this.parseImageMap( length ); break; case 'TAMP': this.parseXVAL( 'amplitude', length ); break; //Texture Mapping Form case 'TMAP': this.setupForm( 'textureMap', length ); break; case 'CNTR': this.parseXVAL3( 'center', length ); break; case 'SIZE': this.parseXVAL3( 'scale', length ); break; case 'ROTA': this.parseXVAL3( 'rotation', length ); break; default: this.parseUnknownForm( type, length ); } this.debugger.node = 0; this.debugger.nodeID = type; this.debugger.log(); }, setupForm( type, length ) { if ( ! this.currentForm ) this.currentForm = this.currentNode; this.currentFormEnd = this.reader.offset + length; this.parentForm = this.currentForm; if ( ! this.currentForm[ type ] ) { this.currentForm[ type ] = {}; this.currentForm = this.currentForm[ type ]; } else { // should never see this unless there's a bug in the reader console.warn( 'LWOLoader: form already exists on parent: ', type, this.currentForm ); this.currentForm = this.currentForm[ type ]; } }, skipForm( length ) { this.reader.skip( length - 4 ); }, parseUnknownForm( type, length ) { console.warn( 'LWOLoader: unknown FORM encountered: ' + type, length ); printBuffer( this.reader.dv.buffer, this.reader.offset, length - 4 ); this.reader.skip( length - 4 ); }, parseSurfaceForm( length ) { this.reader.skip( 8 ); // unknown Uint32 x2 var name = this.reader.getString(); var surface = { attributes: {}, // LWO2 style non-node attributes will go here connections: {}, name: name, inputName: name, nodes: {}, source: this.reader.getString(), }; this.tree.materials[ name ] = surface; this.currentSurface = surface; this.parentForm = this.tree.materials; this.currentForm = surface; this.currentFormEnd = this.reader.offset + length; }, parseSurfaceLwo2( length ) { var name = this.reader.getString(); var surface = { attributes: {}, // LWO2 style non-node attributes will go here connections: {}, name: name, nodes: {}, source: this.reader.getString(), }; this.tree.materials[ name ] = surface; this.currentSurface = surface; this.parentForm = this.tree.materials; this.currentForm = surface; this.currentFormEnd = this.reader.offset + length; }, parseSubNode( length ) { // parse the NRNM CHUNK of the subnode FORM to get // a meaningful name for the subNode // some subnodes can be renamed, but Input and Surface cannot this.reader.skip( 8 ); // NRNM + length var name = this.reader.getString(); var node = { name: name }; this.currentForm = node; this.currentNode = node; this.currentFormEnd = this.reader.offset + length; }, // collect attributes from all nodes at the top level of a surface parseConnections( length ) { this.currentFormEnd = this.reader.offset + length; this.parentForm = this.currentForm; this.currentForm = this.currentSurface.connections; }, // surface node attribute data, e.g. specular, roughness etc parseEntryForm( length ) { this.reader.skip( 8 ); // NAME + length var name = this.reader.getString(); this.currentForm = this.currentNode.attributes; this.setupForm( name, length ); }, // parse values from material - doesn't match up to other LWO3 data types // sub form of entry form parseValueForm() { this.reader.skip( 8 ); // unknown + length var valueType = this.reader.getString(); if ( valueType === 'double' ) { this.currentForm.value = this.reader.getUint64(); } else if ( valueType === 'int' ) { this.currentForm.value = this.reader.getUint32(); } else if ( valueType === 'vparam' ) { this.reader.skip( 24 ); this.currentForm.value = this.reader.getFloat64(); } else if ( valueType === 'vparam3' ) { this.reader.skip( 24 ); this.currentForm.value = this.reader.getFloat64Array( 3 ); } }, // holds various data about texture node image state // Data other thanmipMapLevel unknown parseImageStateForm() { this.reader.skip( 8 ); // unknown this.currentForm.mipMapLevel = this.reader.getFloat32(); }, // LWO2 style image data node OR LWO3 textures defined at top level in editor (not as SURF node) parseImageMap( length ) { this.currentFormEnd = this.reader.offset + length; this.parentForm = this.currentForm; if ( ! this.currentForm.maps ) this.currentForm.maps = []; var map = {}; this.currentForm.maps.push( map ); this.currentForm = map; this.reader.skip( 10 ); // unknown, could be an issue if it contains a VX }, parseTextureNodeAttribute( type ) { this.reader.skip( 28 ); // FORM + length + VPRM + unknown + Uint32 x2 + float32 this.reader.skip( 20 ); // FORM + length + VPVL + float32 + Uint32 switch ( type ) { case 'ISCL': this.currentNode.scale = this.reader.getFloat32Array( 3 ); break; case 'IPOS': this.currentNode.position = this.reader.getFloat32Array( 3 ); break; case 'IROT': this.currentNode.rotation = this.reader.getFloat32Array( 3 ); break; case 'IFAL': this.currentNode.falloff = this.reader.getFloat32Array( 3 ); break; case 'IBMP': this.currentNode.amplitude = this.reader.getFloat32(); break; case 'IUTD': this.currentNode.uTiles = this.reader.getFloat32(); break; case 'IVTD': this.currentNode.vTiles = this.reader.getFloat32(); break; } this.reader.skip( 2 ); // unknown }, // ENVL forms are currently ignored parseEnvelope( length ) { this.reader.skip( length - 4 ); // skipping entirely for now }, /// // CHUNK PARSING METHODS /// // clips can either be defined inside a surface node, or at the top // level and they have a different format in each case parseClip( length ) { var tag = this.reader.getIDTag(); // inside surface node if ( tag === 'FORM' ) { this.reader.skip( 16 ); this.currentNode.fileName = this.reader.getString(); return; } // otherwise top level this.reader.setOffset( this.reader.offset - 4 ); this.currentFormEnd = this.reader.offset + length; this.parentForm = this.currentForm; this.reader.skip( 8 ); // unknown var texture = { index: this.reader.getUint32() }; this.tree.textures.push( texture ); this.currentForm = texture; }, parseClipLwo2( length ) { var texture = { index: this.reader.getUint32(), fileName: "" }; // seach STIL block while ( true ) { var tag = this.reader.getIDTag(); var n_length = this.reader.getUint16(); if ( tag === 'STIL' ) { texture.fileName = this.reader.getString(); break; } if ( n_length >= length ) { break; } } this.tree.textures.push( texture ); this.currentForm = texture; }, parseImage() { this.reader.skip( 8 ); // unknown this.currentForm.fileName = this.reader.getString(); }, parseXVAL( type, length ) { var endOffset = this.reader.offset + length - 4; this.reader.skip( 8 ); this.currentForm[ type ] = this.reader.getFloat32(); this.reader.setOffset( endOffset ); // set end offset directly to skip optional envelope }, parseXVAL3( type, length ) { var endOffset = this.reader.offset + length - 4; this.reader.skip( 8 ); this.currentForm[ type ] = { x: this.reader.getFloat32(), y: this.reader.getFloat32(), z: this.reader.getFloat32(), }; this.reader.setOffset( endOffset ); }, // Tags associated with an object // OTAG { type[ID4], tag-string[S0] } parseObjectTag() { if ( ! this.tree.objectTags ) this.tree.objectTags = {}; this.tree.objectTags[ this.reader.getIDTag() ] = { tagString: this.reader.getString() }; }, // Signals the start of a new layer. All the data chunks which follow will be included in this layer until another layer chunk is encountered. // LAYR: number[U2], flags[U2], pivot[VEC12], name[S0], parent[U2] parseLayer( length ) { var layer = { number: this.reader.getUint16(), flags: this.reader.getUint16(), // If the least significant bit of flags is set, the layer is hidden. pivot: this.reader.getFloat32Array( 3 ), // Note: this seems to be superflous, as the geometry is translated when pivot is present name: this.reader.getString(), }; this.tree.layers.push( layer ); this.currentLayer = layer; var parsedLength = 16 + stringOffset( this.currentLayer.name ); // index ( 2 ) + flags( 2 ) + pivot( 12 ) + stringlength // if we have not reached then end of the layer block, there must be a parent defined this.currentLayer.parent = ( parsedLength < length ) ? this.reader.getUint16() : - 1; // omitted or -1 for no parent }, // VEC12 * ( F4 + F4 + F4 ) array of x,y,z vectors // Converting from left to right handed coordinate system: // x -> -x and switch material FrontSide -> BackSide parsePoints( length ) { this.currentPoints = []; for ( var i = 0; i < length / 4; i += 3 ) { // z -> -z to match three.js right handed coords this.currentPoints.push( this.reader.getFloat32(), this.reader.getFloat32(), - this.reader.getFloat32() ); } }, // parse VMAP or VMAD // Associates a set of floating-point vectors with a set of points. // VMAP: { type[ID4], dimension[U2], name[S0], ( vert[VX], value[F4] # dimension ) * } // VMAD Associates a set of floating-point vectors with the vertices of specific polygons. // Similar to VMAP UVs, but associates with polygon vertices rather than points // to solve to problem of UV seams: VMAD chunks are paired with VMAPs of the same name, // if they exist. The vector values in the VMAD will then replace those in the // corresponding VMAP, but only for calculations involving the specified polygons. // VMAD { type[ID4], dimension[U2], name[S0], ( vert[VX], poly[VX], value[F4] # dimension ) * } parseVertexMapping( length, discontinuous ) { var finalOffset = this.reader.offset + length; var channelName = this.reader.getString(); if ( this.reader.offset === finalOffset ) { // then we are in a texture node and the VMAP chunk is just a reference to a UV channel name this.currentForm.UVChannel = channelName; return; } // otherwise reset to initial length and parse normal VMAP CHUNK this.reader.setOffset( this.reader.offset - stringOffset( channelName ) ); var type = this.reader.getIDTag(); this.reader.getUint16(); // dimension var name = this.reader.getString(); var remainingLength = length - 6 - stringOffset( name ); switch ( type ) { case 'TXUV': this.parseUVMapping( name, finalOffset, discontinuous ); break; case 'MORF': case 'SPOT': this.parseMorphTargets( name, finalOffset, type ); // can't be discontinuous break; // unsupported VMAPs case 'APSL': case 'NORM': case 'WGHT': case 'MNVW': case 'PICK': case 'RGB ': case 'RGBA': this.reader.skip( remainingLength ); break; default: console.warn( 'LWOLoader: unknown vertex map type: ' + type ); this.reader.skip( remainingLength ); } }, parseUVMapping( name, finalOffset, discontinuous ) { var uvIndices = []; var polyIndices = []; var uvs = []; while ( this.reader.offset < finalOffset ) { uvIndices.push( this.reader.getVariableLengthIndex() ); if ( discontinuous ) polyIndices.push( this.reader.getVariableLengthIndex() ); uvs.push( this.reader.getFloat32(), this.reader.getFloat32() ); } if ( discontinuous ) { if ( ! this.currentLayer.discontinuousUVs ) this.currentLayer.discontinuousUVs = {}; this.currentLayer.discontinuousUVs[ name ] = { uvIndices: uvIndices, polyIndices: polyIndices, uvs: uvs, }; } else { if ( ! this.currentLayer.uvs ) this.currentLayer.uvs = {}; this.currentLayer.uvs[ name ] = { uvIndices: uvIndices, uvs: uvs, }; } }, parseMorphTargets( name, finalOffset, type ) { var indices = []; var points = []; type = ( type === 'MORF' ) ? 'relative' : 'absolute'; while ( this.reader.offset < finalOffset ) { indices.push( this.reader.getVariableLengthIndex() ); // z -> -z to match three.js right handed coords points.push( this.reader.getFloat32(), this.reader.getFloat32(), - this.reader.getFloat32() ); } if ( ! this.currentLayer.morphTargets ) this.currentLayer.morphTargets = {}; this.currentLayer.morphTargets[ name ] = { indices: indices, points: points, type: type, }; }, // A list of polygons for the current layer. // POLS { type[ID4], ( numvert+flags[U2], vert[VX] # numvert ) * } parsePolygonList( length ) { var finalOffset = this.reader.offset + length; var type = this.reader.getIDTag(); var indices = []; // hold a list of polygon sizes, to be split up later var polygonDimensions = []; while ( this.reader.offset < finalOffset ) { var numverts = this.reader.getUint16(); //var flags = numverts & 64512; // 6 high order bits are flags - ignoring for now numverts = numverts & 1023; // remaining ten low order bits are vertex num polygonDimensions.push( numverts ); for ( var j = 0; j < numverts; j ++ ) indices.push( this.reader.getVariableLengthIndex() ); } var geometryData = { type: type, vertexIndices: indices, polygonDimensions: polygonDimensions, points: this.currentPoints }; // Note: assuming that all polys will be lines or points if the first is if ( polygonDimensions[ 0 ] === 1 ) geometryData.type = 'points'; else if ( polygonDimensions[ 0 ] === 2 ) geometryData.type = 'lines'; this.currentLayer.geometry = geometryData; }, // Lists the tag strings that can be associated with polygons by the PTAG chunk. // TAGS { tag-string[S0] * } parseTagStrings( length ) { this.tree.tags = this.reader.getStringArray( length ); }, // Associates tags of a given type with polygons in the most recent POLS chunk. // PTAG { type[ID4], ( poly[VX], tag[U2] ) * } parsePolygonTagMapping( length ) { var finalOffset = this.reader.offset + length; var type = this.reader.getIDTag(); if ( type === 'SURF' ) this.parseMaterialIndices( finalOffset ); else { //PART, SMGP, COLR not supported this.reader.skip( length - 4 ); } }, parseMaterialIndices( finalOffset ) { // array holds polygon index followed by material index this.currentLayer.geometry.materialIndices = []; while ( this.reader.offset < finalOffset ) { var polygonIndex = this.reader.getVariableLengthIndex(); var materialIndex = this.reader.getUint16(); this.currentLayer.geometry.materialIndices.push( polygonIndex, materialIndex ); } }, parseUnknownCHUNK( blockID, length ) { console.warn( 'LWOLoader: unknown chunk type: ' + blockID + ' length: ' + length ); // print the chunk plus some bytes padding either side // printBuffer( this.reader.dv.buffer, this.reader.offset - 20, length + 40 ); var data = this.reader.getString( length ); this.currentForm[ blockID ] = data; } }; function DataViewReader( buffer ) { this.dv = new DataView( buffer ); this.offset = 0; } DataViewReader.prototype = { constructor: DataViewReader, size: function () { return this.dv.buffer.byteLength; }, setOffset( offset ) { if ( offset > 0 && offset < this.dv.buffer.byteLength ) { this.offset = offset; } else { console.error( 'LWOLoader: invalid buffer offset' ); } }, endOfFile: function () { if ( this.offset >= this.size() ) return true; return false; }, skip: function ( length ) { this.offset += length; }, getUint8: function () { var value = this.dv.getUint8( this.offset ); this.offset += 1; return value; }, getUint16: function () { var value = this.dv.getUint16( this.offset ); this.offset += 2; return value; }, getInt32: function () { var value = this.dv.getInt32( this.offset, false ); this.offset += 4; return value; }, getUint32: function () { var value = this.dv.getUint32( this.offset, false ); this.offset += 4; return value; }, getUint64: function () { var low, high; high = this.getUint32(); low = this.getUint32(); return high * 0x100000000 + low; }, getFloat32: function () { var value = this.dv.getFloat32( this.offset, false ); this.offset += 4; return value; }, getFloat32Array: function ( size ) { var a = []; for ( var i = 0; i < size; i ++ ) { a.push( this.getFloat32() ); } return a; }, getFloat64: function () { var value = this.dv.getFloat64( this.offset, this.littleEndian ); this.offset += 8; return value; }, getFloat64Array: function ( size ) { var a = []; for ( var i = 0; i < size; i ++ ) { a.push( this.getFloat64() ); } return a; }, // get variable-length index data type // VX ::= index[U2] | (index + 0xFF000000)[U4] // If the index value is less than 65,280 (0xFF00),then VX === U2 // otherwise VX === U4 with bits 24-31 set // When reading an index, if the first byte encountered is 255 (0xFF), then // the four-byte form is being used and the first byte should be discarded or masked out. getVariableLengthIndex() { var firstByte = this.getUint8(); if ( firstByte === 255 ) { return this.getUint8() * 65536 + this.getUint8() * 256 + this.getUint8(); } return firstByte * 256 + this.getUint8(); }, // An ID tag is a sequence of 4 bytes containing 7-bit ASCII values getIDTag() { return this.getString( 4 ); }, getString: function ( size ) { if ( size === 0 ) return; // note: safari 9 doesn't support Uint8Array.indexOf; create intermediate array instead var a = []; if ( size ) { for ( var i = 0; i < size; i ++ ) { a[ i ] = this.getUint8(); } } else { var currentChar; var len = 0; while ( currentChar !== 0 ) { currentChar = this.getUint8(); if ( currentChar !== 0 ) a.push( currentChar ); len ++; } if ( ! isEven( len + 1 ) ) this.getUint8(); // if string with terminating nullbyte is uneven, extra nullbyte is added } return LoaderUtils.decodeText( new Uint8Array( a ) ); }, getStringArray: function ( size ) { var a = this.getString( size ); a = a.split( '\0' ); return a.filter( Boolean ); // return array with any empty strings removed } }; // ************** DEBUGGER ************** function Debugger( ) { this.active = false; this.depth = 0; this.formList = []; } Debugger.prototype = { constructor: Debugger, enable: function () { this.active = true; }, log: function () { if ( ! this.active ) return; var nodeType; switch ( this.node ) { case 0: nodeType = "FORM"; break; case 1: nodeType = "CHK"; break; case 2: nodeType = "S-CHK"; break; } console.log( "| ".repeat( this.depth ) + nodeType, this.nodeID, `( ${this.offset} ) -> ( ${this.dataOffset + this.length} )`, ( ( this.node == 0 ) ? " {" : "" ), ( ( this.skipped ) ? "SKIPPED" : "" ), ( ( this.node == 0 && this.skipped ) ? "}" : "" ) ); if ( this.node == 0 && ! this.skipped ) { this.depth += 1; this.formList.push( this.dataOffset + this.length ); } this.skipped = false; }, closeForms: function () { if ( ! this.active ) return; for ( var i = this.formList.length - 1; i >= 0; i -- ) { if ( this.offset >= this.formList[ i ] ) { this.depth -= 1; console.log( "| ".repeat( this.depth ) + "}" ); this.formList.splice( - 1, 1 ); } } } }; // ************** UTILITY FUNCTIONS ************** function isEven( num ) { return num % 2; } // calculate the length of the string in the buffer // this will be string.length + nullbyte + optional padbyte to make the length even function stringOffset( string ) { return string.length + 1 + ( isEven( string.length + 1 ) ? 1 : 0 ); } // for testing purposes, dump buffer to console // printBuffer( this.reader.dv.buffer, this.reader.offset, length ); function printBuffer( buffer, from, to ) { console.log( LoaderUtils.decodeText( new Uint8Array( buffer, from, to ) ) ); } var lwoTree; var LWOLoader = function ( manager, parameters ) { Loader.call( this, manager ); parameters = parameters || {}; this.resourcePath = ( parameters.resourcePath !== undefined ) ? parameters.resourcePath : ''; }; LWOLoader.prototype = Object.assign( Object.create( Loader.prototype ), { constructor: LWOLoader, load: function ( url, onLoad, onProgress, onError ) { var self = this; var path = ( self.path === '' ) ? extractParentUrl( url, 'Objects' ) : self.path; // give the mesh a default name based on the filename var modelName = url.split( path ).pop().split( '.' )[ 0 ]; var loader = new FileLoader( this.manager ); loader.setPath( self.path ); loader.setResponseType( 'arraybuffer' ); loader.load( url, function ( buffer ) { // console.time( 'Total parsing: ' ); onLoad( self.parse( buffer, path, modelName ) ); // console.timeEnd( 'Total parsing: ' ); }, onProgress, onError ); }, parse: function ( iffBuffer, path, modelName ) { lwoTree = new IFFParser().parse( iffBuffer ); // console.log( 'lwoTree', lwoTree ); var textureLoader = new TextureLoader( this.manager ).setPath( this.resourcePath || path ).setCrossOrigin( this.crossOrigin ); return new LWOTreeParser( textureLoader ).parse( modelName ); } } ); // Parse the lwoTree object function LWOTreeParser( textureLoader ) { this.textureLoader = textureLoader; } LWOTreeParser.prototype = { constructor: LWOTreeParser, parse: function ( modelName ) { this.materials = new MaterialParser( this.textureLoader ).parse(); this.defaultLayerName = modelName; this.meshes = this.parseLayers(); return { materials: this.materials, meshes: this.meshes, }; }, parseLayers() { // array of all meshes for building hierarchy var meshes = []; // final array containing meshes with scene graph hierarchy set up var finalMeshes = []; var geometryParser = new GeometryParser(); var self = this; lwoTree.layers.forEach( function ( layer ) { var geometry = geometryParser.parse( layer.geometry, layer ); var mesh = self.parseMesh( geometry, layer ); meshes[ layer.number ] = mesh; if ( layer.parent === - 1 ) finalMeshes.push( mesh ); else meshes[ layer.parent ].add( mesh ); } ); this.applyPivots( finalMeshes ); return finalMeshes; }, parseMesh( geometry, layer ) { var mesh; var materials = this.getMaterials( geometry.userData.matNames, layer.geometry.type ); this.duplicateUVs( geometry, materials ); if ( layer.geometry.type === 'points' ) mesh = new Points( geometry, materials ); else if ( layer.geometry.type === 'lines' ) mesh = new LineSegments( geometry, materials ); else mesh = new Mesh( geometry, materials ); if ( layer.name ) mesh.name = layer.name; else mesh.name = this.defaultLayerName + '_layer_' + layer.number; mesh.userData.pivot = layer.pivot; return mesh; }, // TODO: may need to be reversed in z to convert LWO to three.js coordinates applyPivots( meshes ) { meshes.forEach( function ( mesh ) { mesh.traverse( function ( child ) { var pivot = child.userData.pivot; child.position.x += pivot[ 0 ]; child.position.y += pivot[ 1 ]; child.position.z += pivot[ 2 ]; if ( child.parent ) { var parentPivot = child.parent.userData.pivot; child.position.x -= parentPivot[ 0 ]; child.position.y -= parentPivot[ 1 ]; child.position.z -= parentPivot[ 2 ]; } } ); } ); }, getMaterials( namesArray, type ) { var materials = []; var self = this; namesArray.forEach( function ( name, i ) { materials[ i ] = self.getMaterialByName( name ); } ); // convert materials to line or point mats if required if ( type === 'points' || type === 'lines' ) { materials.forEach( function ( mat, i ) { var spec = { color: mat.color, }; if ( type === 'points' ) { spec.size = 0.1; spec.map = mat.map; spec.morphTargets = mat.morphTargets; materials[ i ] = new PointsMaterial( spec ); } else if ( type === 'lines' ) { materials[ i ] = new LineBasicMaterial( spec ); } } ); } // if there is only one material, return that directly instead of array var filtered = materials.filter( Boolean ); if ( filtered.length === 1 ) return filtered[ 0 ]; return materials; }, getMaterialByName( name ) { return this.materials.filter( function ( m ) { return m.name === name; } )[ 0 ]; }, // If the material has an aoMap, duplicate UVs duplicateUVs( geometry, materials ) { var duplicateUVs = false; if ( ! Array.isArray( materials ) ) { if ( materials.aoMap ) duplicateUVs = true; } else { materials.forEach( function ( material ) { if ( material.aoMap ) duplicateUVs = true; } ); } if ( ! duplicateUVs ) return; geometry.setAttribute( 'uv2', new BufferAttribute( geometry.attributes.uv.array, 2 ) ); }, }; function MaterialParser( textureLoader ) { this.textureLoader = textureLoader; } MaterialParser.prototype = { constructor: MaterialParser, parse: function () { var materials = []; this.textures = {}; for ( var name in lwoTree.materials ) { if ( lwoTree.format === 'LWO3' ) { materials.push( this.parseMaterial( lwoTree.materials[ name ], name, lwoTree.textures ) ); } else if ( lwoTree.format === 'LWO2' ) { materials.push( this.parseMaterialLwo2( lwoTree.materials[ name ], name, lwoTree.textures ) ); } } return materials; }, parseMaterial( materialData, name, textures ) { var params = { name: name, side: this.getSide( materialData.attributes ), flatShading: this.getSmooth( materialData.attributes ), }; var connections = this.parseConnections( materialData.connections, materialData.nodes ); var maps = this.parseTextureNodes( connections.maps ); this.parseAttributeImageMaps( connections.attributes, textures, maps, materialData.maps ); var attributes = this.parseAttributes( connections.attributes, maps ); this.parseEnvMap( connections, maps, attributes ); params = Object.assign( maps, params ); params = Object.assign( params, attributes ); var materialType = this.getMaterialType( connections.attributes ); return new materialType( params ); }, parseMaterialLwo2( materialData, name/*, textures*/ ) { var params = { name: name, side: this.getSide( materialData.attributes ), flatShading: this.getSmooth( materialData.attributes ), }; var attributes = this.parseAttributes( materialData.attributes, {} ); params = Object.assign( params, attributes ); return new MeshPhongMaterial( params ); }, // Note: converting from left to right handed coords by switching x -> -x in vertices, and // then switching mat FrontSide -> BackSide // NB: this means that FrontSide and BackSide have been switched! getSide( attributes ) { if ( ! attributes.side ) return BackSide; switch ( attributes.side ) { case 0: case 1: return BackSide; case 2: return FrontSide; case 3: return DoubleSide; } }, getSmooth( attributes ) { if ( ! attributes.smooth ) return true; return ! attributes.smooth; }, parseConnections( connections, nodes ) { var materialConnections = { maps: {} }; var inputName = connections.inputName; var inputNodeName = connections.inputNodeName; var nodeName = connections.nodeName; var self = this; inputName.forEach( function ( name, index ) { if ( name === 'Material' ) { var matNode = self.getNodeByRefName( inputNodeName[ index ], nodes ); materialConnections.attributes = matNode.attributes; materialConnections.envMap = matNode.fileName; materialConnections.name = inputNodeName[ index ]; } } ); nodeName.forEach( function ( name, index ) { if ( name === materialConnections.name ) { materialConnections.maps[ inputName[ index ] ] = self.getNodeByRefName( inputNodeName[ index ], nodes ); } } ); return materialConnections; }, getNodeByRefName( refName, nodes ) { for ( var name in nodes ) { if ( nodes[ name ].refName === refName ) return nodes[ name ]; } }, parseTextureNodes( textureNodes ) { var maps = {}; for ( var name in textureNodes ) { var node = textureNodes[ name ]; var path = node.fileName; if ( ! path ) return; var texture = this.loadTexture( path ); if ( node.widthWrappingMode !== undefined ) texture.wrapS = this.getWrappingType( node.widthWrappingMode ); if ( node.heightWrappingMode !== undefined ) texture.wrapT = this.getWrappingType( node.heightWrappingMode ); switch ( name ) { case 'Color': maps.map = texture; break; case 'Roughness': maps.roughnessMap = texture; maps.roughness = 0.5; break; case 'Specular': maps.specularMap = texture; maps.specular = 0xffffff; break; case 'Luminous': maps.emissiveMap = texture; maps.emissive = 0x808080; break; case 'Luminous Color': maps.emissive = 0x808080; break; case 'Metallic': maps.metalnessMap = texture; maps.metalness = 0.5; break; case 'Transparency': case 'Alpha': maps.alphaMap = texture; maps.transparent = true; break; case 'Normal': maps.normalMap = texture; if ( node.amplitude !== undefined ) maps.normalScale = new Vector2( node.amplitude, node.amplitude ); break; case 'Bump': maps.bumpMap = texture; break; } } // LWO BSDF materials can have both spec and rough, but this is not valid in three if ( maps.roughnessMap && maps.specularMap ) delete maps.specularMap; return maps; }, // maps can also be defined on individual material attributes, parse those here // This occurs on Standard (Phong) surfaces parseAttributeImageMaps( attributes, textures, maps ) { for ( var name in attributes ) { var attribute = attributes[ name ]; if ( attribute.maps ) { var mapData = attribute.maps[ 0 ]; var path = this.getTexturePathByIndex( mapData.imageIndex, textures ); if ( ! path ) return; var texture = this.loadTexture( path ); if ( mapData.wrap !== undefined ) texture.wrapS = this.getWrappingType( mapData.wrap.w ); if ( mapData.wrap !== undefined ) texture.wrapT = this.getWrappingType( mapData.wrap.h ); switch ( name ) { case 'Color': maps.map = texture; break; case 'Diffuse': maps.aoMap = texture; break; case 'Roughness': maps.roughnessMap = texture; maps.roughness = 1; break; case 'Specular': maps.specularMap = texture; maps.specular = 0xffffff; break; case 'Luminosity': maps.emissiveMap = texture; maps.emissive = 0x808080; break; case 'Metallic': maps.metalnessMap = texture; maps.metalness = 1; break; case 'Transparency': case 'Alpha': maps.alphaMap = texture; maps.transparent = true; break; case 'Normal': maps.normalMap = texture; break; case 'Bump': maps.bumpMap = texture; break; } } } }, parseAttributes( attributes, maps ) { var params = {}; // don't use color data if color map is present if ( attributes.Color && ! maps.map ) { params.color = new Color().fromArray( attributes.Color.value ); } else params.color = new Color(); if ( attributes.Transparency && attributes.Transparency.value !== 0 ) { params.opacity = 1 - attributes.Transparency.value; params.transparent = true; } if ( attributes[ 'Bump Height' ] ) params.bumpScale = attributes[ 'Bump Height' ].value * 0.1; if ( attributes[ 'Refraction Index' ] ) params.refractionRatio = 1 / attributes[ 'Refraction Index' ].value; this.parsePhysicalAttributes( params, attributes, maps ); this.parseStandardAttributes( params, attributes, maps ); this.parsePhongAttributes( params, attributes, maps ); return params; }, parsePhysicalAttributes( params, attributes/*, maps*/ ) { if ( attributes.Clearcoat && attributes.Clearcoat.value > 0 ) { params.clearcoat = attributes.Clearcoat.value; if ( attributes[ 'Clearcoat Gloss' ] ) { params.clearcoatRoughness = 0.5 * ( 1 - attributes[ 'Clearcoat Gloss' ].value ); } } }, parseStandardAttributes( params, attributes, maps ) { if ( attributes.Luminous ) { params.emissiveIntensity = attributes.Luminous.value; if ( attributes[ 'Luminous Color' ] && ! maps.emissive ) { params.emissive = new Color().fromArray( attributes[ 'Luminous Color' ].value ); } else { params.emissive = new Color( 0x808080 ); } } if ( attributes.Roughness && ! maps.roughnessMap ) params.roughness = attributes.Roughness.value; if ( attributes.Metallic && ! maps.metalnessMap ) params.metalness = attributes.Metallic.value; }, parsePhongAttributes( params, attributes, maps ) { if ( attributes.Diffuse ) params.color.multiplyScalar( attributes.Diffuse.value ); if ( attributes.Reflection ) { params.reflectivity = attributes.Reflection.value; params.combine = AddOperation; } if ( attributes.Luminosity ) { params.emissiveIntensity = attributes.Luminosity.value; if ( ! maps.emissiveMap && ! maps.map ) { params.emissive = params.color; } else { params.emissive = new Color( 0x808080 ); } } // parse specular if there is no roughness - we will interpret the material as 'Phong' in this case if ( ! attributes.Roughness && attributes.Specular && ! maps.specularMap ) { if ( attributes[ 'Color Highlight' ] ) { params.specular = new Color().setScalar( attributes.Specular.value ).lerp( params.color.clone().multiplyScalar( attributes.Specular.value ), attributes[ 'Color Highlight' ].value ); } else { params.specular = new Color().setScalar( attributes.Specular.value ); } } if ( params.specular && attributes.Glossiness ) params.shininess = 7 + Math.pow( 2, attributes.Glossiness.value * 12 + 2 ); }, parseEnvMap( connections, maps, attributes ) { if ( connections.envMap ) { var envMap = this.loadTexture( connections.envMap ); if ( attributes.transparent && attributes.opacity < 0.999 ) { envMap.mapping = EquirectangularRefractionMapping; // Reflectivity and refraction mapping don't work well together in Phong materials if ( attributes.reflectivity !== undefined ) { delete attributes.reflectivity; delete attributes.combine; } if ( attributes.metalness !== undefined ) { delete attributes.metalness; } } else envMap.mapping = EquirectangularReflectionMapping; maps.envMap = envMap; } }, // get texture defined at top level by its index getTexturePathByIndex( index ) { var fileName = ''; if ( ! lwoTree.textures ) return fileName; lwoTree.textures.forEach( function ( texture ) { if ( texture.index === index ) fileName = texture.fileName; } ); return fileName; }, loadTexture( path ) { if ( ! path ) return null; var texture; texture = this.textureLoader.load( path, undefined, undefined, function () { console.warn( 'LWOLoader: non-standard resource hierarchy. Use \`resourcePath\` parameter to specify root content directory.' ); } ); return texture; }, // 0 = Reset, 1 = Repeat, 2 = Mirror, 3 = Edge getWrappingType( num ) { switch ( num ) { case 0: console.warn( 'LWOLoader: "Reset" texture wrapping type is not supported in three.js' ); return ClampToEdgeWrapping; case 1: return RepeatWrapping; case 2: return MirroredRepeatWrapping; case 3: return ClampToEdgeWrapping; } }, getMaterialType( nodeData ) { if ( nodeData.Clearcoat && nodeData.Clearcoat.value > 0 ) return MeshPhysicalMaterial; if ( nodeData.Roughness ) return MeshStandardMaterial; return MeshPhongMaterial; } }; function GeometryParser() {} GeometryParser.prototype = { constructor: GeometryParser, parse( geoData, layer ) { var geometry = new BufferGeometry(); geometry.setAttribute( 'position', new Float32BufferAttribute( geoData.points, 3 ) ); var indices = this.splitIndices( geoData.vertexIndices, geoData.polygonDimensions ); geometry.setIndex( indices ); this.parseGroups( geometry, geoData ); geometry.computeVertexNormals(); this.parseUVs( geometry, layer, indices ); this.parseMorphTargets( geometry, layer, indices ); // TODO: z may need to be reversed to account for coordinate system change geometry.translate( - layer.pivot[ 0 ], - layer.pivot[ 1 ], - layer.pivot[ 2 ] ); // var userData = geometry.userData; // geometry = geometry.toNonIndexed() // geometry.userData = userData; return geometry; }, // split quads into tris splitIndices( indices, polygonDimensions ) { var remappedIndices = []; var i = 0; polygonDimensions.forEach( function ( dim ) { if ( dim < 4 ) { for ( var k = 0; k < dim; k ++ ) remappedIndices.push( indices[ i + k ] ); } else if ( dim === 4 ) { remappedIndices.push( indices[ i ], indices[ i + 1 ], indices[ i + 2 ], indices[ i ], indices[ i + 2 ], indices[ i + 3 ] ); } else if ( dim > 4 ) { for ( var k = 1; k < dim - 1; k ++ ) { remappedIndices.push( indices[ i ], indices[ i + k ], indices[ i + k + 1 ] ); } console.warn( 'LWOLoader: polygons with greater than 4 sides are not supported' ); } i += dim; } ); return remappedIndices; }, // NOTE: currently ignoring poly indices and assuming that they are intelligently ordered parseGroups( geometry, geoData ) { var tags = lwoTree.tags; var matNames = []; var elemSize = 3; if ( geoData.type === 'lines' ) elemSize = 2; if ( geoData.type === 'points' ) elemSize = 1; var remappedIndices = this.splitMaterialIndices( geoData.polygonDimensions, geoData.materialIndices ); var indexNum = 0; // create new indices in numerical order var indexPairs = {}; // original indices mapped to numerical indices var prevMaterialIndex; var prevStart = 0; var currentCount = 0; for ( var i = 0; i < remappedIndices.length; i += 2 ) { var materialIndex = remappedIndices[ i + 1 ]; if ( i === 0 ) matNames[ indexNum ] = tags[ materialIndex ]; if ( prevMaterialIndex === undefined ) prevMaterialIndex = materialIndex; if ( materialIndex !== prevMaterialIndex ) { var currentIndex; if ( indexPairs[ tags[ prevMaterialIndex ] ] ) { currentIndex = indexPairs[ tags[ prevMaterialIndex ] ]; } else { currentIndex = indexNum; indexPairs[ tags[ prevMaterialIndex ] ] = indexNum; matNames[ indexNum ] = tags[ prevMaterialIndex ]; indexNum ++; } geometry.addGroup( prevStart, currentCount, currentIndex ); prevStart += currentCount; prevMaterialIndex = materialIndex; currentCount = 0; } currentCount += elemSize; } // the loop above doesn't add the last group, do that here. if ( geometry.groups.length > 0 ) { var currentIndex; if ( indexPairs[ tags[ materialIndex ] ] ) { currentIndex = indexPairs[ tags[ materialIndex ] ]; } else { currentIndex = indexNum; indexPairs[ tags[ materialIndex ] ] = indexNum; matNames[ indexNum ] = tags[ materialIndex ]; } geometry.addGroup( prevStart, currentCount, currentIndex ); } // Mat names from TAGS chunk, used to build up an array of materials for this geometry geometry.userData.matNames = matNames; }, splitMaterialIndices( polygonDimensions, indices ) { var remappedIndices = []; polygonDimensions.forEach( function ( dim, i ) { if ( dim <= 3 ) { remappedIndices.push( indices[ i * 2 ], indices[ i * 2 + 1 ] ); } else if ( dim === 4 ) { remappedIndices.push( indices[ i * 2 ], indices[ i * 2 + 1 ], indices[ i * 2 ], indices[ i * 2 + 1 ] ); } else { // ignore > 4 for now for ( var k = 0; k < dim - 2; k ++ ) { remappedIndices.push( indices[ i * 2 ], indices[ i * 2 + 1 ] ); } } } ); return remappedIndices; }, // UV maps: // 1: are defined via index into an array of points, not into a geometry // - the geometry is also defined by an index into this array, but the indexes may not match // 2: there can be any number of UV maps for a single geometry. Here these are combined, // with preference given to the first map encountered // 3: UV maps can be partial - that is, defined for only a part of the geometry // 4: UV maps can be VMAP or VMAD (discontinuous, to allow for seams). In practice, most // UV maps are defined as partially VMAP and partially VMAD // VMADs are currently not supported parseUVs( geometry, layer ) { // start by creating a UV map set to zero for the whole geometry var remappedUVs = Array.from( Array( geometry.attributes.position.count * 2 ), function () { return 0; } ); for ( var name in layer.uvs ) { var uvs = layer.uvs[ name ].uvs; var uvIndices = layer.uvs[ name ].uvIndices; uvIndices.forEach( function ( i, j ) { remappedUVs[ i * 2 ] = uvs[ j * 2 ]; remappedUVs[ i * 2 + 1 ] = uvs[ j * 2 + 1 ]; } ); } geometry.setAttribute( 'uv', new Float32BufferAttribute( remappedUVs, 2 ) ); }, parseMorphTargets( geometry, layer ) { var num = 0; for ( var name in layer.morphTargets ) { var remappedPoints = geometry.attributes.position.array.slice(); if ( ! geometry.morphAttributes.position ) geometry.morphAttributes.position = []; var morphPoints = layer.morphTargets[ name ].points; var morphIndices = layer.morphTargets[ name ].indices; var type = layer.morphTargets[ name ].type; morphIndices.forEach( function ( i, j ) { if ( type === 'relative' ) { remappedPoints[ i * 3 ] += morphPoints[ j * 3 ]; remappedPoints[ i * 3 + 1 ] += morphPoints[ j * 3 + 1 ]; remappedPoints[ i * 3 + 2 ] += morphPoints[ j * 3 + 2 ]; } else { remappedPoints[ i * 3 ] = morphPoints[ j * 3 ]; remappedPoints[ i * 3 + 1 ] = morphPoints[ j * 3 + 1 ]; remappedPoints[ i * 3 + 2 ] = morphPoints[ j * 3 + 2 ]; } } ); geometry.morphAttributes.position[ num ] = new Float32BufferAttribute( remappedPoints, 3 ); geometry.morphAttributes.position[ num ].name = name; num ++; } geometry.morphTargetsRelative = false; }, }; // ************** UTILITY FUNCTIONS ************** function extractParentUrl( url, dir ) { var index = url.indexOf( dir ); if ( index === - 1 ) return './'; return url.substr( 0, index ); } export { LWOLoader };