Newer
Older
HuangJiPC / public / static / three / src / math / Vector4.js
@zhangdeliang zhangdeliang on 21 Jun 9 KB update
class Vector4 {

	constructor( x = 0, y = 0, z = 0, w = 1 ) {

		Vector4.prototype.isVector4 = true;

		this.x = x;
		this.y = y;
		this.z = z;
		this.w = w;

	}

	get width() {

		return this.z;

	}

	set width( value ) {

		this.z = value;

	}

	get height() {

		return this.w;

	}

	set height( value ) {

		this.w = value;

	}

	set( x, y, z, w ) {

		this.x = x;
		this.y = y;
		this.z = z;
		this.w = w;

		return this;

	}

	setScalar( scalar ) {

		this.x = scalar;
		this.y = scalar;
		this.z = scalar;
		this.w = scalar;

		return this;

	}

	setX( x ) {

		this.x = x;

		return this;

	}

	setY( y ) {

		this.y = y;

		return this;

	}

	setZ( z ) {

		this.z = z;

		return this;

	}

	setW( w ) {

		this.w = w;

		return this;

	}

	setComponent( index, value ) {

		switch ( index ) {

			case 0: this.x = value; break;
			case 1: this.y = value; break;
			case 2: this.z = value; break;
			case 3: this.w = value; break;
			default: throw new Error( 'index is out of range: ' + index );

		}

		return this;

	}

	getComponent( index ) {

		switch ( index ) {

			case 0: return this.x;
			case 1: return this.y;
			case 2: return this.z;
			case 3: return this.w;
			default: throw new Error( 'index is out of range: ' + index );

		}

	}

	clone() {

		return new this.constructor( this.x, this.y, this.z, this.w );

	}

	copy( v ) {

		this.x = v.x;
		this.y = v.y;
		this.z = v.z;
		this.w = ( v.w !== undefined ) ? v.w : 1;

		return this;

	}

	add( v ) {

		this.x += v.x;
		this.y += v.y;
		this.z += v.z;
		this.w += v.w;

		return this;

	}

	addScalar( s ) {

		this.x += s;
		this.y += s;
		this.z += s;
		this.w += s;

		return this;

	}

	addVectors( a, b ) {

		this.x = a.x + b.x;
		this.y = a.y + b.y;
		this.z = a.z + b.z;
		this.w = a.w + b.w;

		return this;

	}

	addScaledVector( v, s ) {

		this.x += v.x * s;
		this.y += v.y * s;
		this.z += v.z * s;
		this.w += v.w * s;

		return this;

	}

	sub( v ) {

		this.x -= v.x;
		this.y -= v.y;
		this.z -= v.z;
		this.w -= v.w;

		return this;

	}

	subScalar( s ) {

		this.x -= s;
		this.y -= s;
		this.z -= s;
		this.w -= s;

		return this;

	}

	subVectors( a, b ) {

		this.x = a.x - b.x;
		this.y = a.y - b.y;
		this.z = a.z - b.z;
		this.w = a.w - b.w;

		return this;

	}

	multiply( v ) {

		this.x *= v.x;
		this.y *= v.y;
		this.z *= v.z;
		this.w *= v.w;

		return this;

	}

	multiplyScalar( scalar ) {

		this.x *= scalar;
		this.y *= scalar;
		this.z *= scalar;
		this.w *= scalar;

		return this;

	}

	applyMatrix4( m ) {

		const x = this.x, y = this.y, z = this.z, w = this.w;
		const e = m.elements;

		this.x = e[ 0 ] * x + e[ 4 ] * y + e[ 8 ] * z + e[ 12 ] * w;
		this.y = e[ 1 ] * x + e[ 5 ] * y + e[ 9 ] * z + e[ 13 ] * w;
		this.z = e[ 2 ] * x + e[ 6 ] * y + e[ 10 ] * z + e[ 14 ] * w;
		this.w = e[ 3 ] * x + e[ 7 ] * y + e[ 11 ] * z + e[ 15 ] * w;

		return this;

	}

	divideScalar( scalar ) {

		return this.multiplyScalar( 1 / scalar );

	}

	setAxisAngleFromQuaternion( q ) {

		// http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToAngle/index.htm

		// q is assumed to be normalized

		this.w = 2 * Math.acos( q.w );

		const s = Math.sqrt( 1 - q.w * q.w );

		if ( s < 0.0001 ) {

			this.x = 1;
			this.y = 0;
			this.z = 0;

		} else {

			this.x = q.x / s;
			this.y = q.y / s;
			this.z = q.z / s;

		}

		return this;

	}

	setAxisAngleFromRotationMatrix( m ) {

		// http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToAngle/index.htm

		// assumes the upper 3x3 of m is a pure rotation matrix (i.e, unscaled)

		let angle, x, y, z; // variables for result
		const epsilon = 0.01,		// margin to allow for rounding errors
			epsilon2 = 0.1,		// margin to distinguish between 0 and 180 degrees

			te = m.elements,

			m11 = te[ 0 ], m12 = te[ 4 ], m13 = te[ 8 ],
			m21 = te[ 1 ], m22 = te[ 5 ], m23 = te[ 9 ],
			m31 = te[ 2 ], m32 = te[ 6 ], m33 = te[ 10 ];

		if ( ( Math.abs( m12 - m21 ) < epsilon ) &&
		     ( Math.abs( m13 - m31 ) < epsilon ) &&
		     ( Math.abs( m23 - m32 ) < epsilon ) ) {

			// singularity found
			// first check for identity matrix which must have +1 for all terms
			// in leading diagonal and zero in other terms

			if ( ( Math.abs( m12 + m21 ) < epsilon2 ) &&
			     ( Math.abs( m13 + m31 ) < epsilon2 ) &&
			     ( Math.abs( m23 + m32 ) < epsilon2 ) &&
			     ( Math.abs( m11 + m22 + m33 - 3 ) < epsilon2 ) ) {

				// this singularity is identity matrix so angle = 0

				this.set( 1, 0, 0, 0 );

				return this; // zero angle, arbitrary axis

			}

			// otherwise this singularity is angle = 180

			angle = Math.PI;

			const xx = ( m11 + 1 ) / 2;
			const yy = ( m22 + 1 ) / 2;
			const zz = ( m33 + 1 ) / 2;
			const xy = ( m12 + m21 ) / 4;
			const xz = ( m13 + m31 ) / 4;
			const yz = ( m23 + m32 ) / 4;

			if ( ( xx > yy ) && ( xx > zz ) ) {

				// m11 is the largest diagonal term

				if ( xx < epsilon ) {

					x = 0;
					y = 0.707106781;
					z = 0.707106781;

				} else {

					x = Math.sqrt( xx );
					y = xy / x;
					z = xz / x;

				}

			} else if ( yy > zz ) {

				// m22 is the largest diagonal term

				if ( yy < epsilon ) {

					x = 0.707106781;
					y = 0;
					z = 0.707106781;

				} else {

					y = Math.sqrt( yy );
					x = xy / y;
					z = yz / y;

				}

			} else {

				// m33 is the largest diagonal term so base result on this

				if ( zz < epsilon ) {

					x = 0.707106781;
					y = 0.707106781;
					z = 0;

				} else {

					z = Math.sqrt( zz );
					x = xz / z;
					y = yz / z;

				}

			}

			this.set( x, y, z, angle );

			return this; // return 180 deg rotation

		}

		// as we have reached here there are no singularities so we can handle normally

		let s = Math.sqrt( ( m32 - m23 ) * ( m32 - m23 ) +
			( m13 - m31 ) * ( m13 - m31 ) +
			( m21 - m12 ) * ( m21 - m12 ) ); // used to normalize

		if ( Math.abs( s ) < 0.001 ) s = 1;

		// prevent divide by zero, should not happen if matrix is orthogonal and should be
		// caught by singularity test above, but I've left it in just in case

		this.x = ( m32 - m23 ) / s;
		this.y = ( m13 - m31 ) / s;
		this.z = ( m21 - m12 ) / s;
		this.w = Math.acos( ( m11 + m22 + m33 - 1 ) / 2 );

		return this;

	}

	min( v ) {

		this.x = Math.min( this.x, v.x );
		this.y = Math.min( this.y, v.y );
		this.z = Math.min( this.z, v.z );
		this.w = Math.min( this.w, v.w );

		return this;

	}

	max( v ) {

		this.x = Math.max( this.x, v.x );
		this.y = Math.max( this.y, v.y );
		this.z = Math.max( this.z, v.z );
		this.w = Math.max( this.w, v.w );

		return this;

	}

	clamp( min, max ) {

		// assumes min < max, componentwise

		this.x = Math.max( min.x, Math.min( max.x, this.x ) );
		this.y = Math.max( min.y, Math.min( max.y, this.y ) );
		this.z = Math.max( min.z, Math.min( max.z, this.z ) );
		this.w = Math.max( min.w, Math.min( max.w, this.w ) );

		return this;

	}

	clampScalar( minVal, maxVal ) {

		this.x = Math.max( minVal, Math.min( maxVal, this.x ) );
		this.y = Math.max( minVal, Math.min( maxVal, this.y ) );
		this.z = Math.max( minVal, Math.min( maxVal, this.z ) );
		this.w = Math.max( minVal, Math.min( maxVal, this.w ) );

		return this;

	}

	clampLength( min, max ) {

		const length = this.length();

		return this.divideScalar( length || 1 ).multiplyScalar( Math.max( min, Math.min( max, length ) ) );

	}

	floor() {

		this.x = Math.floor( this.x );
		this.y = Math.floor( this.y );
		this.z = Math.floor( this.z );
		this.w = Math.floor( this.w );

		return this;

	}

	ceil() {

		this.x = Math.ceil( this.x );
		this.y = Math.ceil( this.y );
		this.z = Math.ceil( this.z );
		this.w = Math.ceil( this.w );

		return this;

	}

	round() {

		this.x = Math.round( this.x );
		this.y = Math.round( this.y );
		this.z = Math.round( this.z );
		this.w = Math.round( this.w );

		return this;

	}

	roundToZero() {

		this.x = ( this.x < 0 ) ? Math.ceil( this.x ) : Math.floor( this.x );
		this.y = ( this.y < 0 ) ? Math.ceil( this.y ) : Math.floor( this.y );
		this.z = ( this.z < 0 ) ? Math.ceil( this.z ) : Math.floor( this.z );
		this.w = ( this.w < 0 ) ? Math.ceil( this.w ) : Math.floor( this.w );

		return this;

	}

	negate() {

		this.x = - this.x;
		this.y = - this.y;
		this.z = - this.z;
		this.w = - this.w;

		return this;

	}

	dot( v ) {

		return this.x * v.x + this.y * v.y + this.z * v.z + this.w * v.w;

	}

	lengthSq() {

		return this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w;

	}

	length() {

		return Math.sqrt( this.x * this.x + this.y * this.y + this.z * this.z + this.w * this.w );

	}

	manhattanLength() {

		return Math.abs( this.x ) + Math.abs( this.y ) + Math.abs( this.z ) + Math.abs( this.w );

	}

	normalize() {

		return this.divideScalar( this.length() || 1 );

	}

	setLength( length ) {

		return this.normalize().multiplyScalar( length );

	}

	lerp( v, alpha ) {

		this.x += ( v.x - this.x ) * alpha;
		this.y += ( v.y - this.y ) * alpha;
		this.z += ( v.z - this.z ) * alpha;
		this.w += ( v.w - this.w ) * alpha;

		return this;

	}

	lerpVectors( v1, v2, alpha ) {

		this.x = v1.x + ( v2.x - v1.x ) * alpha;
		this.y = v1.y + ( v2.y - v1.y ) * alpha;
		this.z = v1.z + ( v2.z - v1.z ) * alpha;
		this.w = v1.w + ( v2.w - v1.w ) * alpha;

		return this;

	}

	equals( v ) {

		return ( ( v.x === this.x ) && ( v.y === this.y ) && ( v.z === this.z ) && ( v.w === this.w ) );

	}

	fromArray( array, offset = 0 ) {

		this.x = array[ offset ];
		this.y = array[ offset + 1 ];
		this.z = array[ offset + 2 ];
		this.w = array[ offset + 3 ];

		return this;

	}

	toArray( array = [], offset = 0 ) {

		array[ offset ] = this.x;
		array[ offset + 1 ] = this.y;
		array[ offset + 2 ] = this.z;
		array[ offset + 3 ] = this.w;

		return array;

	}

	fromBufferAttribute( attribute, index ) {

		this.x = attribute.getX( index );
		this.y = attribute.getY( index );
		this.z = attribute.getZ( index );
		this.w = attribute.getW( index );

		return this;

	}

	random() {

		this.x = Math.random();
		this.y = Math.random();
		this.z = Math.random();
		this.w = Math.random();

		return this;

	}

	*[ Symbol.iterator ]() {

		yield this.x;
		yield this.y;
		yield this.z;
		yield this.w;

	}

}

export { Vector4 };