/** * Cesium - https://github.com/CesiumGS/cesium * * Copyright 2011-2020 Cesium Contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Columbus View (Pat. Pend.) * * Portions licensed separately. * See https://github.com/CesiumGS/cesium/blob/master/LICENSE.md for full licensing details. */ define(['exports', './when-8d13db60', './Check-70bec281', './Math-61ede240', './Cartographic-f2a06374'], function (exports, when, Check, _Math, Cartographic) { 'use strict'; function initialize(ellipsoid, x, y, z) { x = when.defaultValue(x, 0.0); y = when.defaultValue(y, 0.0); z = when.defaultValue(z, 0.0); //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number.greaterThanOrEquals('x', x, 0.0); Check.Check.typeOf.number.greaterThanOrEquals('y', y, 0.0); Check.Check.typeOf.number.greaterThanOrEquals('z', z, 0.0); //>>includeEnd('debug'); if(_Math.CesiumMath.equalsEpsilon(z, 6356752.3142451793, _Math.CesiumMath.EPSILON10)){ _Math.CesiumMath.Radius = z; } ellipsoid._radii = new Cartographic.Cartesian3(x, y, z); ellipsoid._radiiSquared = new Cartographic.Cartesian3(x * x, y * y, z * z); ellipsoid._radiiToTheFourth = new Cartographic.Cartesian3(x * x * x * x, y * y * y * y, z * z * z * z); ellipsoid._oneOverRadii = new Cartographic.Cartesian3(x === 0.0 ? 0.0 : 1.0 / x, y === 0.0 ? 0.0 : 1.0 / y, z === 0.0 ? 0.0 : 1.0 / z); ellipsoid._oneOverRadiiSquared = new Cartographic.Cartesian3(x === 0.0 ? 0.0 : 1.0 / (x * x), y === 0.0 ? 0.0 : 1.0 / (y * y), z === 0.0 ? 0.0 : 1.0 / (z * z)); ellipsoid._minimumRadius = Math.min(x, y, z); ellipsoid._maximumRadius = Math.max(x, y, z); ellipsoid._centerToleranceSquared = _Math.CesiumMath.EPSILON1; if (ellipsoid._radiiSquared.z !== 0) { ellipsoid._squaredXOverSquaredZ = ellipsoid._radiiSquared.x / ellipsoid._radiiSquared.z; } } /** * A quadratic surface defined in Cartesian coordinates by the equation * <code>(x / a)^2 + (y / b)^2 + (z / c)^2 = 1</code>. Primarily used * by Cesium to represent the shape of planetary bodies. * * Rather than constructing this object directly, one of the provided * constants is normally used. * @alias Ellipsoid * @constructor * * @param {Number} [x=0] The radius in the x direction. * @param {Number} [y=0] The radius in the y direction. * @param {Number} [z=0] The radius in the z direction. * * @exception {DeveloperError} All radii components must be greater than or equal to zero. * * @see Ellipsoid.fromCartesian3 * @see Ellipsoid.WGS84 * @see Ellipsoid.UNIT_SPHERE */ function Ellipsoid(x, y, z) { this._radii = undefined; this._radiiSquared = undefined; this._radiiToTheFourth = undefined; this._oneOverRadii = undefined; this._oneOverRadiiSquared = undefined; this._minimumRadius = undefined; this._maximumRadius = undefined; this._centerToleranceSquared = undefined; this._squaredXOverSquaredZ = undefined; initialize(this, x, y, z); } Object.defineProperties(Ellipsoid.prototype, { /** * Gets the radii of the ellipsoid. * @memberof Ellipsoid.prototype * @type {Cartesian3} * @readonly */ radii : { get: function() { return this._radii; } }, /** * Gets the squared radii of the ellipsoid. * @memberof Ellipsoid.prototype * @type {Cartesian3} * @readonly */ radiiSquared : { get : function() { return this._radiiSquared; } }, /** * Gets the radii of the ellipsoid raise to the fourth power. * @memberof Ellipsoid.prototype * @type {Cartesian3} * @readonly */ radiiToTheFourth : { get : function() { return this._radiiToTheFourth; } }, /** * Gets one over the radii of the ellipsoid. * @memberof Ellipsoid.prototype * @type {Cartesian3} * @readonly */ oneOverRadii : { get : function() { return this._oneOverRadii; } }, /** * Gets one over the squared radii of the ellipsoid. * @memberof Ellipsoid.prototype * @type {Cartesian3} * @readonly */ oneOverRadiiSquared : { get : function() { return this._oneOverRadiiSquared; } }, /** * Gets the minimum radius of the ellipsoid. * @memberof Ellipsoid.prototype * @type {Number} * @readonly */ minimumRadius : { get : function() { return this._minimumRadius; } }, /** * Gets the maximum radius of the ellipsoid. * @memberof Ellipsoid.prototype * @type {Number} * @readonly */ maximumRadius : { get : function() { return this._maximumRadius; } } }); /** * Duplicates an Ellipsoid instance. * * @param {Ellipsoid} ellipsoid The ellipsoid to duplicate. * @param {Ellipsoid} [result] The object onto which to store the result, or undefined if a new * instance should be created. * @returns {Ellipsoid} The cloned Ellipsoid. (Returns undefined if ellipsoid is undefined) */ Ellipsoid.clone = function(ellipsoid, result) { if (!when.defined(ellipsoid)) { return undefined; } var radii = ellipsoid._radii; if (!when.defined(result)) { return new Ellipsoid(radii.x, radii.y, radii.z); } Cartographic.Cartesian3.clone(radii, result._radii); Cartographic.Cartesian3.clone(ellipsoid._radiiSquared, result._radiiSquared); Cartographic.Cartesian3.clone(ellipsoid._radiiToTheFourth, result._radiiToTheFourth); Cartographic.Cartesian3.clone(ellipsoid._oneOverRadii, result._oneOverRadii); Cartographic.Cartesian3.clone(ellipsoid._oneOverRadiiSquared, result._oneOverRadiiSquared); result._minimumRadius = ellipsoid._minimumRadius; result._maximumRadius = ellipsoid._maximumRadius; result._centerToleranceSquared = ellipsoid._centerToleranceSquared; return result; }; /** * Computes an Ellipsoid from a Cartesian specifying the radii in x, y, and z directions. * * @param {Cartesian3} [cartesian=Cartesian3.ZERO] The ellipsoid's radius in the x, y, and z directions. * @param {Ellipsoid} [result] The object onto which to store the result, or undefined if a new * instance should be created. * @returns {Ellipsoid} A new Ellipsoid instance. * * @exception {DeveloperError} All radii components must be greater than or equal to zero. * * @see Ellipsoid.WGS84 * @see Ellipsoid.UNIT_SPHERE */ Ellipsoid.fromCartesian3 = function(cartesian, result) { if (!when.defined(result)) { result = new Ellipsoid(); } if (!when.defined(cartesian)) { return result; } initialize(result, cartesian.x, cartesian.y, cartesian.z); return result; }; /** * An Ellipsoid instance initialized to the WGS84 standard. * * @type {Ellipsoid} * @constant */ Ellipsoid.WGS84 = Object.freeze(new Ellipsoid(6378137.0, 6378137.0, _Math.CesiumMath.Radius)); Ellipsoid.XIAN80 = Object.freeze(new Ellipsoid(6378140.0, 6378140.0, 6356755.29)); Ellipsoid.CGCS2000 = Object.freeze(new Ellipsoid(6378137.0, 6378137.0, 6356752.31)); /** * An Ellipsoid instance initialized to radii of (1.0, 1.0, 1.0). * * @type {Ellipsoid} * @constant */ Ellipsoid.UNIT_SPHERE = Object.freeze(new Ellipsoid(1.0, 1.0, 1.0)); /** * An Ellipsoid instance initialized to a sphere with the lunar radius. * * @type {Ellipsoid} * @constant */ Ellipsoid.MOON = Object.freeze(new Ellipsoid(_Math.CesiumMath.LUNAR_RADIUS, _Math.CesiumMath.LUNAR_RADIUS, _Math.CesiumMath.LUNAR_RADIUS)); /** * Duplicates an Ellipsoid instance. * * @param {Ellipsoid} [result] The object onto which to store the result, or undefined if a new * instance should be created. * @returns {Ellipsoid} The cloned Ellipsoid. */ Ellipsoid.prototype.clone = function(result) { return Ellipsoid.clone(this, result); }; /** * The number of elements used to pack the object into an array. * @type {Number} */ Ellipsoid.packedLength = Cartographic.Cartesian3.packedLength; /** * Stores the provided instance into the provided array. * * @param {Ellipsoid} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ Ellipsoid.pack = function(value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('value', value); Check.Check.defined('array', array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); Cartographic.Cartesian3.pack(value._radii, array, startingIndex); return array; }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {Ellipsoid} [result] The object into which to store the result. * @returns {Ellipsoid} The modified result parameter or a new Ellipsoid instance if one was not provided. */ Ellipsoid.unpack = function(array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('array', array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); var radii = Cartographic.Cartesian3.unpack(array, startingIndex); return Ellipsoid.fromCartesian3(radii, result); }; /** * Computes the unit vector directed from the center of this ellipsoid toward the provided Cartesian position. * @function * * @param {Cartesian3} cartesian The Cartesian for which to to determine the geocentric normal. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided. */ Ellipsoid.prototype.geocentricSurfaceNormal = Cartographic.Cartesian3.normalize; /** * Computes the normal of the plane tangent to the surface of the ellipsoid at the provided position. * * @param {Cartographic} cartographic The cartographic position for which to to determine the geodetic normal. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided. */ Ellipsoid.prototype.geodeticSurfaceNormalCartographic = function(cartographic, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('cartographic', cartographic); //>>includeEnd('debug'); var longitude = cartographic.longitude; var latitude = cartographic.latitude; var cosLatitude = Math.cos(latitude); var x = cosLatitude * Math.cos(longitude); var y = cosLatitude * Math.sin(longitude); var z = Math.sin(latitude); if (!when.defined(result)) { result = new Cartographic.Cartesian3(); } result.x = x; result.y = y; result.z = z; return Cartographic.Cartesian3.normalize(result, result); }; /** * Computes the normal of the plane tangent to the surface of the ellipsoid at the provided position. * * @param {Cartesian3} cartesian The Cartesian position for which to to determine the surface normal. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided. */ Ellipsoid.prototype.geodeticSurfaceNormal = function(cartesian, result) { if (!when.defined(result)) { result = new Cartographic.Cartesian3(); } result = Cartographic.Cartesian3.multiplyComponents(cartesian, this._oneOverRadiiSquared, result); return Cartographic.Cartesian3.normalize(result, result); }; var cartographicToCartesianNormal = new Cartographic.Cartesian3(); var cartographicToCartesianK = new Cartographic.Cartesian3(); /** * Converts the provided cartographic to Cartesian representation. * * @param {Cartographic} cartographic The cartographic position. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided. * * @example * //Create a Cartographic and determine it's Cartesian representation on a WGS84 ellipsoid. * var position = new Cesium.Cartographic(Cesium.Math.toRadians(21), Cesium.Math.toRadians(78), 5000); * var cartesianPosition = Cesium.Ellipsoid.WGS84.cartographicToCartesian(position); */ Ellipsoid.prototype.cartographicToCartesian = function(cartographic, result) { //`cartographic is required` is thrown from geodeticSurfaceNormalCartographic. var n = cartographicToCartesianNormal; var k = cartographicToCartesianK; this.geodeticSurfaceNormalCartographic(cartographic, n); Cartographic.Cartesian3.multiplyComponents(this._radiiSquared, n, k); var gamma = Math.sqrt(Cartographic.Cartesian3.dot(n, k)); Cartographic.Cartesian3.divideByScalar(k, gamma, k); Cartographic.Cartesian3.multiplyByScalar(n, cartographic.height, n); if (!when.defined(result)) { result = new Cartographic.Cartesian3(); } return Cartographic.Cartesian3.add(k, n, result); }; /** * Converts the provided array of cartographics to an array of Cartesians. * * @param {Cartographic[]} cartographics An array of cartographic positions. * @param {Cartesian3[]} [result] The object onto which to store the result. * @returns {Cartesian3[]} The modified result parameter or a new Array instance if none was provided. * * @example * //Convert an array of Cartographics and determine their Cartesian representation on a WGS84 ellipsoid. * var positions = [new Cesium.Cartographic(Cesium.Math.toRadians(21), Cesium.Math.toRadians(78), 0), * new Cesium.Cartographic(Cesium.Math.toRadians(21.321), Cesium.Math.toRadians(78.123), 100), * new Cesium.Cartographic(Cesium.Math.toRadians(21.645), Cesium.Math.toRadians(78.456), 250)]; * var cartesianPositions = Cesium.Ellipsoid.WGS84.cartographicArrayToCartesianArray(positions); */ Ellipsoid.prototype.cartographicArrayToCartesianArray = function(cartographics, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('cartographics', cartographics); //>>includeEnd('debug') var length = cartographics.length; if (!when.defined(result)) { result = new Array(length); } else { result.length = length; } for ( var i = 0; i < length; i++) { result[i] = this.cartographicToCartesian(cartographics[i], result[i]); } return result; }; var cartesianToCartographicN = new Cartographic.Cartesian3(); var cartesianToCartographicP = new Cartographic.Cartesian3(); var cartesianToCartographicH = new Cartographic.Cartesian3(); /** * Converts the provided cartesian to cartographic representation. * The cartesian is undefined at the center of the ellipsoid. * * @param {Cartesian3} cartesian The Cartesian position to convert to cartographic representation. * @param {Cartographic} [result] The object onto which to store the result. * @returns {Cartographic} The modified result parameter, new Cartographic instance if none was provided, or undefined if the cartesian is at the center of the ellipsoid. * * @example * //Create a Cartesian and determine it's Cartographic representation on a WGS84 ellipsoid. * var position = new Cesium.Cartesian3(17832.12, 83234.52, 952313.73); * var cartographicPosition = Cesium.Ellipsoid.WGS84.cartesianToCartographic(position); */ Ellipsoid.prototype.cartesianToCartographic = function(cartesian, result) { //`cartesian is required.` is thrown from scaleToGeodeticSurface var p = this.scaleToGeodeticSurface(cartesian, cartesianToCartographicP); if (!when.defined(p)) { return undefined; } var n = this.geodeticSurfaceNormal(p, cartesianToCartographicN); var h = Cartographic.Cartesian3.subtract(cartesian, p, cartesianToCartographicH); var longitude = Math.atan2(n.y, n.x); var latitude = Math.asin(n.z); var height = _Math.CesiumMath.sign(Cartographic.Cartesian3.dot(h, cartesian)) * Cartographic.Cartesian3.magnitude(h); if (!when.defined(result)) { return new Cartographic.Cartographic(longitude, latitude, height); } result.longitude = longitude; result.latitude = latitude; result.height = height; return result; }; /** * Converts the provided array of cartesians to an array of cartographics. * * @param {Cartesian3[]} cartesians An array of Cartesian positions. * @param {Cartographic[]} [result] The object onto which to store the result. * @returns {Cartographic[]} The modified result parameter or a new Array instance if none was provided. * * @example * //Create an array of Cartesians and determine their Cartographic representation on a WGS84 ellipsoid. * var positions = [new Cesium.Cartesian3(17832.12, 83234.52, 952313.73), * new Cesium.Cartesian3(17832.13, 83234.53, 952313.73), * new Cesium.Cartesian3(17832.14, 83234.54, 952313.73)] * var cartographicPositions = Cesium.Ellipsoid.WGS84.cartesianArrayToCartographicArray(positions); */ Ellipsoid.prototype.cartesianArrayToCartographicArray = function(cartesians, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('cartesians', cartesians); //>>includeEnd('debug'); var length = cartesians.length; if (!when.defined(result)) { result = new Array(length); } else { result.length = length; } for ( var i = 0; i < length; ++i) { result[i] = this.cartesianToCartographic(cartesians[i], result[i]); } return result; }; /** * Scales the provided Cartesian position along the geodetic surface normal * so that it is on the surface of this ellipsoid. If the position is * at the center of the ellipsoid, this function returns undefined. * * @param {Cartesian3} cartesian The Cartesian position to scale. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter, a new Cartesian3 instance if none was provided, or undefined if the position is at the center. */ Ellipsoid.prototype.scaleToGeodeticSurface = function(cartesian, result) { return Cartographic.scaleToGeodeticSurface(cartesian, this._oneOverRadii, this._oneOverRadiiSquared, this._centerToleranceSquared, result); }; /** * Scales the provided Cartesian position along the geocentric surface normal * so that it is on the surface of this ellipsoid. * * @param {Cartesian3} cartesian The Cartesian position to scale. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if none was provided. */ Ellipsoid.prototype.scaleToGeocentricSurface = function(cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('cartesian', cartesian); //>>includeEnd('debug'); if (!when.defined(result)) { result = new Cartographic.Cartesian3(); } var positionX = cartesian.x; var positionY = cartesian.y; var positionZ = cartesian.z; var oneOverRadiiSquared = this._oneOverRadiiSquared; var beta = 1.0 / Math.sqrt((positionX * positionX) * oneOverRadiiSquared.x + (positionY * positionY) * oneOverRadiiSquared.y + (positionZ * positionZ) * oneOverRadiiSquared.z); return Cartographic.Cartesian3.multiplyByScalar(cartesian, beta, result); }; /** * Transforms a Cartesian X, Y, Z position to the ellipsoid-scaled space by multiplying * its components by the result of {@link Ellipsoid#oneOverRadii}. * * @param {Cartesian3} position The position to transform. * @param {Cartesian3} [result] The position to which to copy the result, or undefined to create and * return a new instance. * @returns {Cartesian3} The position expressed in the scaled space. The returned instance is the * one passed as the result parameter if it is not undefined, or a new instance of it is. */ Ellipsoid.prototype.transformPositionToScaledSpace = function(position, result) { if (!when.defined(result)) { result = new Cartographic.Cartesian3(); } return Cartographic.Cartesian3.multiplyComponents(position, this._oneOverRadii, result); }; /** * Transforms a Cartesian X, Y, Z position from the ellipsoid-scaled space by multiplying * its components by the result of {@link Ellipsoid#radii}. * * @param {Cartesian3} position The position to transform. * @param {Cartesian3} [result] The position to which to copy the result, or undefined to create and * return a new instance. * @returns {Cartesian3} The position expressed in the unscaled space. The returned instance is the * one passed as the result parameter if it is not undefined, or a new instance of it is. */ Ellipsoid.prototype.transformPositionFromScaledSpace = function(position, result) { if (!when.defined(result)) { result = new Cartographic.Cartesian3(); } return Cartographic.Cartesian3.multiplyComponents(position, this._radii, result); }; /** * Compares this Ellipsoid against the provided Ellipsoid componentwise and returns * <code>true</code> if they are equal, <code>false</code> otherwise. * * @param {Ellipsoid} [right] The other Ellipsoid. * @returns {Boolean} <code>true</code> if they are equal, <code>false</code> otherwise. */ Ellipsoid.prototype.equals = function(right) { return (this === right) || (when.defined(right) && Cartographic.Cartesian3.equals(this._radii, right._radii)); }; /** * Creates a string representing this Ellipsoid in the format '(radii.x, radii.y, radii.z)'. * * @returns {String} A string representing this ellipsoid in the format '(radii.x, radii.y, radii.z)'. */ Ellipsoid.prototype.toString = function() { return this._radii.toString(); }; /** * Computes a point which is the intersection of the surface normal with the z-axis. * * @param {Cartesian3} position the position. must be on the surface of the ellipsoid. * @param {Number} [buffer = 0.0] A buffer to subtract from the ellipsoid size when checking if the point is inside the ellipsoid. * In earth case, with common earth datums, there is no need for this buffer since the intersection point is always (relatively) very close to the center. * In WGS84 datum, intersection point is at max z = +-42841.31151331382 (0.673% of z-axis). * Intersection point could be outside the ellipsoid if the ratio of MajorAxis / AxisOfRotation is bigger than the square root of 2 * @param {Cartesian3} [result] The cartesian to which to copy the result, or undefined to create and * return a new instance. * @returns {Cartesian3 | undefined} the intersection point if it's inside the ellipsoid, undefined otherwise * * @exception {DeveloperError} position is required. * @exception {DeveloperError} Ellipsoid must be an ellipsoid of revolution (radii.x == radii.y). * @exception {DeveloperError} Ellipsoid.radii.z must be greater than 0. */ Ellipsoid.prototype.getSurfaceNormalIntersectionWithZAxis = function(position, buffer, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('position', position); if (!_Math.CesiumMath.equalsEpsilon(this._radii.x, this._radii.y, _Math.CesiumMath.EPSILON15)) { throw new Check.DeveloperError('Ellipsoid must be an ellipsoid of revolution (radii.x == radii.y)'); } Check.Check.typeOf.number.greaterThan('Ellipsoid.radii.z', this._radii.z, 0); //>>includeEnd('debug'); buffer = when.defaultValue(buffer, 0.0); var squaredXOverSquaredZ = this._squaredXOverSquaredZ; if (!when.defined(result)) { result = new Cartographic.Cartesian3(); } result.x = 0.0; result.y = 0.0; result.z = position.z * (1 - squaredXOverSquaredZ); if (Math.abs(result.z) >= this._radii.z - buffer) { return undefined; } return result; }; /** * A two dimensional region specified as longitude and latitude coordinates. * * @alias Rectangle * @constructor * * @param {Number} [west=0.0] The westernmost longitude, in radians, in the range [-Pi, Pi]. * @param {Number} [south=0.0] The southernmost latitude, in radians, in the range [-Pi/2, Pi/2]. * @param {Number} [east=0.0] The easternmost longitude, in radians, in the range [-Pi, Pi]. * @param {Number} [north=0.0] The northernmost latitude, in radians, in the range [-Pi/2, Pi/2]. * * @see Packable */ function Rectangle(west, south, east, north) { /** * The westernmost longitude in radians in the range [-Pi, Pi]. * * @type {Number} * @default 0.0 */ this.west = when.defaultValue(west, 0.0); /** * The southernmost latitude in radians in the range [-Pi/2, Pi/2]. * * @type {Number} * @default 0.0 */ this.south = when.defaultValue(south, 0.0); /** * The easternmost longitude in radians in the range [-Pi, Pi]. * * @type {Number} * @default 0.0 */ this.east = when.defaultValue(east, 0.0); /** * The northernmost latitude in radians in the range [-Pi/2, Pi/2]. * * @type {Number} * @default 0.0 */ this.north = when.defaultValue(north, 0.0); } Object.defineProperties(Rectangle.prototype, { /** * Gets the width of the rectangle in radians. * @memberof Rectangle.prototype * @type {Number} */ width : { get : function() { return Rectangle.computeWidth(this); } }, /** * Gets the height of the rectangle in radians. * @memberof Rectangle.prototype * @type {Number} */ height : { get : function() { return Rectangle.computeHeight(this); } } }); /** * The number of elements used to pack the object into an array. * @type {Number} */ Rectangle.packedLength = 4; /** * Stores the provided instance into the provided array. * * @param {Rectangle} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ Rectangle.pack = function(value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('value', value); Check.Check.defined('array', array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); array[startingIndex++] = value.west; array[startingIndex++] = value.south; array[startingIndex++] = value.east; array[startingIndex] = value.north; return array; }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {Rectangle} [result] The object into which to store the result. * @returns {Rectangle} The modified result parameter or a new Rectangle instance if one was not provided. */ Rectangle.unpack = function(array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('array', array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); if (!when.defined(result)) { result = new Rectangle(); } result.west = array[startingIndex++]; result.south = array[startingIndex++]; result.east = array[startingIndex++]; result.north = array[startingIndex]; return result; }; /** * Computes the width of a rectangle in radians. * @param {Rectangle} rectangle The rectangle to compute the width of. * @returns {Number} The width. */ Rectangle.computeWidth = function(rectangle) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('rectangle', rectangle); //>>includeEnd('debug'); var east = rectangle.east; var west = rectangle.west; if (east < west) { east += _Math.CesiumMath.TWO_PI; } return east - west; }; /** * Computes the height of a rectangle in radians. * @param {Rectangle} rectangle The rectangle to compute the height of. * @returns {Number} The height. */ Rectangle.computeHeight = function(rectangle) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('rectangle', rectangle); //>>includeEnd('debug'); return rectangle.north - rectangle.south; }; /** * Creates a rectangle given the boundary longitude and latitude in degrees. * * @param {Number} [west=0.0] The westernmost longitude in degrees in the range [-180.0, 180.0]. * @param {Number} [south=0.0] The southernmost latitude in degrees in the range [-90.0, 90.0]. * @param {Number} [east=0.0] The easternmost longitude in degrees in the range [-180.0, 180.0]. * @param {Number} [north=0.0] The northernmost latitude in degrees in the range [-90.0, 90.0]. * @param {Rectangle} [result] The object onto which to store the result, or undefined if a new instance should be created. * @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided. * * @example * var rectangle = Cesium.Rectangle.fromDegrees(0.0, 20.0, 10.0, 30.0); */ Rectangle.fromDegrees = function(west, south, east, north, result) { west = _Math.CesiumMath.toRadians(when.defaultValue(west, 0.0)); south = _Math.CesiumMath.toRadians(when.defaultValue(south, 0.0)); east = _Math.CesiumMath.toRadians(when.defaultValue(east, 0.0)); north = _Math.CesiumMath.toRadians(when.defaultValue(north, 0.0)); if (!when.defined(result)) { return new Rectangle(west, south, east, north); } result.west = west; result.south = south; result.east = east; result.north = north; return result; }; /** * Creates a rectangle given the boundary longitude and latitude in radians. * * @param {Number} [west=0.0] The westernmost longitude in radians in the range [-Math.PI, Math.PI]. * @param {Number} [south=0.0] The southernmost latitude in radians in the range [-Math.PI/2, Math.PI/2]. * @param {Number} [east=0.0] The easternmost longitude in radians in the range [-Math.PI, Math.PI]. * @param {Number} [north=0.0] The northernmost latitude in radians in the range [-Math.PI/2, Math.PI/2]. * @param {Rectangle} [result] The object onto which to store the result, or undefined if a new instance should be created. * @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided. * * @example * var rectangle = Cesium.Rectangle.fromRadians(0.0, Math.PI/4, Math.PI/8, 3*Math.PI/4); */ Rectangle.fromRadians = function(west, south, east, north, result) { if (!when.defined(result)) { return new Rectangle(west, south, east, north); } result.west = when.defaultValue(west, 0.0); result.south = when.defaultValue(south, 0.0); result.east = when.defaultValue(east, 0.0); result.north = when.defaultValue(north, 0.0); return result; }; /** * Creates the smallest possible Rectangle that encloses all positions in the provided array. * * @param {Cartographic[]} cartographics The list of Cartographic instances. * @param {Rectangle} [result] The object onto which to store the result, or undefined if a new instance should be created. * @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided. */ Rectangle.fromCartographicArray = function(cartographics, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('cartographics', cartographics); //>>includeEnd('debug'); var west = Number.MAX_VALUE; var east = -Number.MAX_VALUE; var westOverIDL = Number.MAX_VALUE; var eastOverIDL = -Number.MAX_VALUE; var south = Number.MAX_VALUE; var north = -Number.MAX_VALUE; for ( var i = 0, len = cartographics.length; i < len; i++) { var position = cartographics[i]; west = Math.min(west, position.longitude); east = Math.max(east, position.longitude); south = Math.min(south, position.latitude); north = Math.max(north, position.latitude); var lonAdjusted = position.longitude >= 0 ? position.longitude : position.longitude + _Math.CesiumMath.TWO_PI; westOverIDL = Math.min(westOverIDL, lonAdjusted); eastOverIDL = Math.max(eastOverIDL, lonAdjusted); } if(east - west > eastOverIDL - westOverIDL) { west = westOverIDL; east = eastOverIDL; if (east > _Math.CesiumMath.PI) { east = east - _Math.CesiumMath.TWO_PI; } if (west > _Math.CesiumMath.PI) { west = west - _Math.CesiumMath.TWO_PI; } } if (!when.defined(result)) { return new Rectangle(west, south, east, north); } result.west = west; result.south = south; result.east = east; result.north = north; return result; }; /** * Creates the smallest possible Rectangle that encloses all positions in the provided array. * * @param {Cartesian3[]} cartesians The list of Cartesian instances. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid the cartesians are on. * @param {Rectangle} [result] The object onto which to store the result, or undefined if a new instance should be created. * @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided. */ Rectangle.fromCartesianArray = function(cartesians, ellipsoid, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('cartesians', cartesians); //>>includeEnd('debug'); ellipsoid = when.defaultValue(ellipsoid, Ellipsoid.WGS84); var west = Number.MAX_VALUE; var east = -Number.MAX_VALUE; var westOverIDL = Number.MAX_VALUE; var eastOverIDL = -Number.MAX_VALUE; var south = Number.MAX_VALUE; var north = -Number.MAX_VALUE; for ( var i = 0, len = cartesians.length; i < len; i++) { var position = ellipsoid.cartesianToCartographic(cartesians[i]); west = Math.min(west, position.longitude); east = Math.max(east, position.longitude); south = Math.min(south, position.latitude); north = Math.max(north, position.latitude); var lonAdjusted = position.longitude >= 0 ? position.longitude : position.longitude + _Math.CesiumMath.TWO_PI; westOverIDL = Math.min(westOverIDL, lonAdjusted); eastOverIDL = Math.max(eastOverIDL, lonAdjusted); } if(east - west > eastOverIDL - westOverIDL) { west = westOverIDL; east = eastOverIDL; if (east > _Math.CesiumMath.PI) { east = east - _Math.CesiumMath.TWO_PI; } if (west > _Math.CesiumMath.PI) { west = west - _Math.CesiumMath.TWO_PI; } } if (!when.defined(result)) { return new Rectangle(west, south, east, north); } result.west = west; result.south = south; result.east = east; result.north = north; return result; }; /** * Duplicates a Rectangle. * * @param {Rectangle} rectangle The rectangle to clone. * @param {Rectangle} [result] The object onto which to store the result, or undefined if a new instance should be created. * @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided. (Returns undefined if rectangle is undefined) */ Rectangle.clone = function(rectangle, result) { if (!when.defined(rectangle)) { return undefined; } if (!when.defined(result)) { return new Rectangle(rectangle.west, rectangle.south, rectangle.east, rectangle.north); } result.west = rectangle.west; result.south = rectangle.south; result.east = rectangle.east; result.north = rectangle.north; return result; }; /** * Compares the provided Rectangles componentwise and returns * <code>true</code> if they pass an absolute or relative tolerance test, * <code>false</code> otherwise. * * @param {Rectangle} [left] The first Rectangle. * @param {Rectangle} [right] The second Rectangle. * @param {Number} absoluteEpsilon The absolute epsilon tolerance to use for equality testing. * @returns {Boolean} <code>true</code> if left and right are within the provided epsilon, <code>false</code> otherwise. */ Rectangle.equalsEpsilon = function(left, right, absoluteEpsilon) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number('absoluteEpsilon', absoluteEpsilon); //>>includeEnd('debug'); return (left === right) || (when.defined(left) && when.defined(right) && (Math.abs(left.west - right.west) <= absoluteEpsilon) && (Math.abs(left.south - right.south) <= absoluteEpsilon) && (Math.abs(left.east - right.east) <= absoluteEpsilon) && (Math.abs(left.north - right.north) <= absoluteEpsilon)); }; /** * Duplicates this Rectangle. * * @param {Rectangle} [result] The object onto which to store the result. * @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided. */ Rectangle.prototype.clone = function(result) { return Rectangle.clone(this, result); }; /** * Compares the provided Rectangle with this Rectangle componentwise and returns * <code>true</code> if they are equal, <code>false</code> otherwise. * * @param {Rectangle} [other] The Rectangle to compare. * @returns {Boolean} <code>true</code> if the Rectangles are equal, <code>false</code> otherwise. */ Rectangle.prototype.equals = function(other) { return Rectangle.equals(this, other); }; /** * Compares the provided rectangles and returns <code>true</code> if they are equal, * <code>false</code> otherwise. * * @param {Rectangle} [left] The first Rectangle. * @param {Rectangle} [right] The second Rectangle. * @returns {Boolean} <code>true</code> if left and right are equal; otherwise <code>false</code>. */ Rectangle.equals = function(left, right) { return (left === right) || ((when.defined(left)) && (when.defined(right)) && (left.west === right.west) && (left.south === right.south) && (left.east === right.east) && (left.north === right.north)); }; /** * Compares the provided Rectangle with this Rectangle componentwise and returns * <code>true</code> if they are within the provided epsilon, * <code>false</code> otherwise. * * @param {Rectangle} [other] The Rectangle to compare. * @param {Number} epsilon The epsilon to use for equality testing. * @returns {Boolean} <code>true</code> if the Rectangles are within the provided epsilon, <code>false</code> otherwise. */ Rectangle.prototype.equalsEpsilon = function(other, epsilon) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number('epsilon', epsilon); //>>includeEnd('debug'); return Rectangle.equalsEpsilon(this, other, epsilon); }; /** * Checks a Rectangle's properties and throws if they are not in valid ranges. * * @param {Rectangle} rectangle The rectangle to validate * * @exception {DeveloperError} <code>north</code> must be in the interval [<code>-Pi/2</code>, <code>Pi/2</code>]. * @exception {DeveloperError} <code>south</code> must be in the interval [<code>-Pi/2</code>, <code>Pi/2</code>]. * @exception {DeveloperError} <code>east</code> must be in the interval [<code>-Pi</code>, <code>Pi</code>]. * @exception {DeveloperError} <code>west</code> must be in the interval [<code>-Pi</code>, <code>Pi</code>]. */ Rectangle.validate = function(rectangle) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('rectangle', rectangle); var north = rectangle.north; Check.Check.typeOf.number.greaterThanOrEquals('north', north, -_Math.CesiumMath.PI_OVER_TWO); Check.Check.typeOf.number.lessThanOrEquals('north', north, _Math.CesiumMath.PI_OVER_TWO); var south = rectangle.south; Check.Check.typeOf.number.greaterThanOrEquals('south', south, -_Math.CesiumMath.PI_OVER_TWO); Check.Check.typeOf.number.lessThanOrEquals('south', south, _Math.CesiumMath.PI_OVER_TWO); var west = rectangle.west; Check.Check.typeOf.number.greaterThanOrEquals('west', west, -Math.PI); Check.Check.typeOf.number.lessThanOrEquals('west', west, Math.PI); var east = rectangle.east; Check.Check.typeOf.number.greaterThanOrEquals('east', east, -Math.PI); Check.Check.typeOf.number.lessThanOrEquals('east', east, Math.PI); //>>includeEnd('debug'); }; /** * Computes the southwest corner of a rectangle. * * @param {Rectangle} rectangle The rectangle for which to find the corner * @param {Cartographic} [result] The object onto which to store the result. * @returns {Cartographic} The modified result parameter or a new Cartographic instance if none was provided. */ Rectangle.southwest = function(rectangle, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('rectangle', rectangle); //>>includeEnd('debug'); if (!when.defined(result)) { return new Cartographic.Cartographic(rectangle.west, rectangle.south); } result.longitude = rectangle.west; result.latitude = rectangle.south; result.height = 0.0; return result; }; /** * Computes the northwest corner of a rectangle. * * @param {Rectangle} rectangle The rectangle for which to find the corner * @param {Cartographic} [result] The object onto which to store the result. * @returns {Cartographic} The modified result parameter or a new Cartographic instance if none was provided. */ Rectangle.northwest = function(rectangle, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('rectangle', rectangle); //>>includeEnd('debug'); if (!when.defined(result)) { return new Cartographic.Cartographic(rectangle.west, rectangle.north); } result.longitude = rectangle.west; result.latitude = rectangle.north; result.height = 0.0; return result; }; /** * Computes the northeast corner of a rectangle. * * @param {Rectangle} rectangle The rectangle for which to find the corner * @param {Cartographic} [result] The object onto which to store the result. * @returns {Cartographic} The modified result parameter or a new Cartographic instance if none was provided. */ Rectangle.northeast = function(rectangle, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('rectangle', rectangle); //>>includeEnd('debug'); if (!when.defined(result)) { return new Cartographic.Cartographic(rectangle.east, rectangle.north); } result.longitude = rectangle.east; result.latitude = rectangle.north; result.height = 0.0; return result; }; /** * Computes the southeast corner of a rectangle. * * @param {Rectangle} rectangle The rectangle for which to find the corner * @param {Cartographic} [result] The object onto which to store the result. * @returns {Cartographic} The modified result parameter or a new Cartographic instance if none was provided. */ Rectangle.southeast = function(rectangle, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('rectangle', rectangle); //>>includeEnd('debug'); if (!when.defined(result)) { return new Cartographic.Cartographic(rectangle.east, rectangle.south); } result.longitude = rectangle.east; result.latitude = rectangle.south; result.height = 0.0; return result; }; /** * Computes the center of a rectangle. * * @param {Rectangle} rectangle The rectangle for which to find the center * @param {Cartographic} [result] The object onto which to store the result. * @returns {Cartographic} The modified result parameter or a new Cartographic instance if none was provided. */ Rectangle.center = function(rectangle, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('rectangle', rectangle); //>>includeEnd('debug'); var east = rectangle.east; var west = rectangle.west; if (east < west) { east += _Math.CesiumMath.TWO_PI; } var longitude = _Math.CesiumMath.negativePiToPi((west + east) * 0.5); var latitude = (rectangle.south + rectangle.north) * 0.5; if (!when.defined(result)) { return new Cartographic.Cartographic(longitude, latitude); } result.longitude = longitude; result.latitude = latitude; result.height = 0.0; return result; }; /** * Computes the intersection of two rectangles. This function assumes that the rectangle's coordinates are * latitude and longitude in radians and produces a correct intersection, taking into account the fact that * the same angle can be represented with multiple values as well as the wrapping of longitude at the * anti-meridian. For a simple intersection that ignores these factors and can be used with projected * coordinates, see {@link Rectangle.simpleIntersection}. * * @param {Rectangle} rectangle On rectangle to find an intersection * @param {Rectangle} otherRectangle Another rectangle to find an intersection * @param {Rectangle} [result] The object onto which to store the result. * @returns {Rectangle|undefined} The modified result parameter, a new Rectangle instance if none was provided or undefined if there is no intersection. */ Rectangle.intersection = function(rectangle, otherRectangle, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('rectangle', rectangle); Check.Check.typeOf.object('otherRectangle', otherRectangle); //>>includeEnd('debug'); var rectangleEast = rectangle.east; var rectangleWest = rectangle.west; var otherRectangleEast = otherRectangle.east; var otherRectangleWest = otherRectangle.west; if (rectangleEast < rectangleWest && otherRectangleEast > 0.0) { rectangleEast += _Math.CesiumMath.TWO_PI; } else if (otherRectangleEast < otherRectangleWest && rectangleEast > 0.0) { otherRectangleEast += _Math.CesiumMath.TWO_PI; } if (rectangleEast < rectangleWest && otherRectangleWest < 0.0) { otherRectangleWest += _Math.CesiumMath.TWO_PI; } else if (otherRectangleEast < otherRectangleWest && rectangleWest < 0.0) { rectangleWest += _Math.CesiumMath.TWO_PI; } var west = _Math.CesiumMath.negativePiToPi(Math.max(rectangleWest, otherRectangleWest)); var east = _Math.CesiumMath.negativePiToPi(Math.min(rectangleEast, otherRectangleEast)); if ((rectangle.west < rectangle.east || otherRectangle.west < otherRectangle.east) && east <= west) { return undefined; } var south = Math.max(rectangle.south, otherRectangle.south); var north = Math.min(rectangle.north, otherRectangle.north); if (south >= north) { return undefined; } if (!when.defined(result)) { return new Rectangle(west, south, east, north); } result.west = west; result.south = south; result.east = east; result.north = north; return result; }; /** * Computes a simple intersection of two rectangles. Unlike {@link Rectangle.intersection}, this function * does not attempt to put the angular coordinates into a consistent range or to account for crossing the * anti-meridian. As such, it can be used for rectangles where the coordinates are not simply latitude * and longitude (i.e. projected coordinates). * * @param {Rectangle} rectangle On rectangle to find an intersection * @param {Rectangle} otherRectangle Another rectangle to find an intersection * @param {Rectangle} [result] The object onto which to store the result. * @returns {Rectangle|undefined} The modified result parameter, a new Rectangle instance if none was provided or undefined if there is no intersection. */ Rectangle.simpleIntersection = function(rectangle, otherRectangle, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('rectangle', rectangle); Check.Check.typeOf.object('otherRectangle', otherRectangle); //>>includeEnd('debug'); var west = Math.max(rectangle.west, otherRectangle.west); var south = Math.max(rectangle.south, otherRectangle.south); var east = Math.min(rectangle.east, otherRectangle.east); var north = Math.min(rectangle.north, otherRectangle.north); if (south >= north || west >= east) { return undefined; } if (!when.defined(result)) { return new Rectangle(west, south, east, north); } result.west = west; result.south = south; result.east = east; result.north = north; return result; }; /** * Computes a rectangle that is the union of two rectangles. * * @param {Rectangle} rectangle A rectangle to enclose in rectangle. * @param {Rectangle} otherRectangle A rectangle to enclose in a rectangle. * @param {Rectangle} [result] The object onto which to store the result. * @returns {Rectangle} The modified result parameter or a new Rectangle instance if none was provided. */ Rectangle.union = function(rectangle, otherRectangle, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('rectangle', rectangle); Check.Check.typeOf.object('otherRectangle', otherRectangle); //>>includeEnd('debug'); if (!when.defined(result)) { result = new Rectangle(); } var rectangleEast = rectangle.east; var rectangleWest = rectangle.west; var otherRectangleEast = otherRectangle.east; var otherRectangleWest = otherRectangle.west; if (rectangleEast < rectangleWest && otherRectangleEast > 0.0) { rectangleEast += _Math.CesiumMath.TWO_PI; } else if (otherRectangleEast < otherRectangleWest && rectangleEast > 0.0) { otherRectangleEast += _Math.CesiumMath.TWO_PI; } if (rectangleEast < rectangleWest && otherRectangleWest < 0.0) { otherRectangleWest += _Math.CesiumMath.TWO_PI; } else if (otherRectangleEast < otherRectangleWest && rectangleWest < 0.0) { rectangleWest += _Math.CesiumMath.TWO_PI; } var west = _Math.CesiumMath.convertLongitudeRange(Math.min(rectangleWest, otherRectangleWest)); var east = _Math.CesiumMath.convertLongitudeRange(Math.max(rectangleEast, otherRectangleEast)); result.west = west; result.south = Math.min(rectangle.south, otherRectangle.south); result.east = east; result.north = Math.max(rectangle.north, otherRectangle.north); return result; }; /** * Computes a rectangle by enlarging the provided rectangle until it contains the provided cartographic. * * @param {Rectangle} rectangle A rectangle to expand. * @param {Cartographic} cartographic A cartographic to enclose in a rectangle. * @param {Rectangle} [result] The object onto which to store the result. * @returns {Rectangle} The modified result parameter or a new Rectangle instance if one was not provided. */ Rectangle.expand = function(rectangle, cartographic, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('rectangle', rectangle); Check.Check.typeOf.object('cartographic', cartographic); //>>includeEnd('debug'); if (!when.defined(result)) { result = new Rectangle(); } result.west = Math.min(rectangle.west, cartographic.longitude); result.south = Math.min(rectangle.south, cartographic.latitude); result.east = Math.max(rectangle.east, cartographic.longitude); result.north = Math.max(rectangle.north, cartographic.latitude); return result; }; /** * Returns true if the cartographic is on or inside the rectangle, false otherwise. * * @param {Rectangle} rectangle The rectangle * @param {Cartographic} cartographic The cartographic to test. * @returns {Boolean} true if the provided cartographic is inside the rectangle, false otherwise. */ Rectangle.contains = function(rectangle, cartographic) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('rectangle', rectangle); Check.Check.typeOf.object('cartographic', cartographic); //>>includeEnd('debug'); var longitude = cartographic.longitude; var latitude = cartographic.latitude; var west = rectangle.west; var east = rectangle.east; if (east < west) { east += _Math.CesiumMath.TWO_PI; if (longitude < 0.0) { longitude += _Math.CesiumMath.TWO_PI; } } return (longitude > west || _Math.CesiumMath.equalsEpsilon(longitude, west, _Math.CesiumMath.EPSILON14)) && (longitude < east || _Math.CesiumMath.equalsEpsilon(longitude, east, _Math.CesiumMath.EPSILON14)) && latitude >= rectangle.south && latitude <= rectangle.north; }; var subsampleLlaScratch = new Cartographic.Cartographic(); /** * Samples a rectangle so that it includes a list of Cartesian points suitable for passing to * {@link BoundingSphere#fromPoints}. Sampling is necessary to account * for rectangles that cover the poles or cross the equator. * * @param {Rectangle} rectangle The rectangle to subsample. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid to use. * @param {Number} [surfaceHeight=0.0] The height of the rectangle above the ellipsoid. * @param {Cartesian3[]} [result] The array of Cartesians onto which to store the result. * @returns {Cartesian3[]} The modified result parameter or a new Array of Cartesians instances if none was provided. */ Rectangle.subsample = function(rectangle, ellipsoid, surfaceHeight, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('rectangle', rectangle); //>>includeEnd('debug'); ellipsoid = when.defaultValue(ellipsoid, Ellipsoid.WGS84); surfaceHeight = when.defaultValue(surfaceHeight, 0.0); if (!when.defined(result)) { result = []; } var length = 0; var north = rectangle.north; var south = rectangle.south; var east = rectangle.east; var west = rectangle.west; var lla = subsampleLlaScratch; lla.height = surfaceHeight; lla.longitude = west; lla.latitude = north; result[length] = ellipsoid.cartographicToCartesian(lla, result[length]); length++; lla.longitude = east; result[length] = ellipsoid.cartographicToCartesian(lla, result[length]); length++; lla.latitude = south; result[length] = ellipsoid.cartographicToCartesian(lla, result[length]); length++; lla.longitude = west; result[length] = ellipsoid.cartographicToCartesian(lla, result[length]); length++; if (north < 0.0) { lla.latitude = north; } else if (south > 0.0) { lla.latitude = south; } else { lla.latitude = 0.0; } for ( var i = 1; i < 8; ++i) { lla.longitude = -Math.PI + i * _Math.CesiumMath.PI_OVER_TWO; if (Rectangle.contains(rectangle, lla)) { result[length] = ellipsoid.cartographicToCartesian(lla, result[length]); length++; } } if (lla.latitude === 0.0) { lla.longitude = west; result[length] = ellipsoid.cartographicToCartesian(lla, result[length]); length++; lla.longitude = east; result[length] = ellipsoid.cartographicToCartesian(lla, result[length]); length++; } result.length = length; return result; }; var scratchCartographic = new Cartographic.Cartographic(); Rectangle.prototype.contains = function(rectangle) { return Rectangle.contains(this, Rectangle.southwest(rectangle, scratchCartographic)) && Rectangle.contains(this, Rectangle.northwest(rectangle, scratchCartographic)) && Rectangle.contains(this, Rectangle.southeast(rectangle, scratchCartographic)) && Rectangle.contains(this, Rectangle.northeast(rectangle, scratchCartographic)); }; /** * The largest possible rectangle. * * @type {Rectangle} * @constant */ Rectangle.MAX_VALUE = Object.freeze(new Rectangle(-Math.PI, -_Math.CesiumMath.PI_OVER_TWO, Math.PI, _Math.CesiumMath.PI_OVER_TWO)); /** * A 2D Cartesian point. * @alias Cartesian2 * @constructor * * @param {Number} [x=0.0] The X component. * @param {Number} [y=0.0] The Y component. * * @see Cartesian3 * @see Cartesian4 * @see Packable */ function Cartesian2(x, y) { /** * The X component. * @type {Number} * @default 0.0 */ this.x = when.defaultValue(x, 0.0); /** * The Y component. * @type {Number} * @default 0.0 */ this.y = when.defaultValue(y, 0.0); } /** * Creates a Cartesian2 instance from x and y coordinates. * * @param {Number} x The x coordinate. * @param {Number} y The y coordinate. * @param {Cartesian2} [result] The object onto which to store the result. * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided. */ Cartesian2.fromElements = function(x, y, result) { if (!when.defined(result)) { return new Cartesian2(x, y); } result.x = x; result.y = y; return result; }; /** * Duplicates a Cartesian2 instance. * * @param {Cartesian2} cartesian The Cartesian to duplicate. * @param {Cartesian2} [result] The object onto which to store the result. * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided. (Returns undefined if cartesian is undefined) */ Cartesian2.clone = function(cartesian, result) { if (!when.defined(cartesian)) { return undefined; } if (!when.defined(result)) { return new Cartesian2(cartesian.x, cartesian.y); } result.x = cartesian.x; result.y = cartesian.y; return result; }; /** * Creates a Cartesian2 instance from an existing Cartesian3. This simply takes the * x and y properties of the Cartesian3 and drops z. * @function * * @param {Cartesian3} cartesian The Cartesian3 instance to create a Cartesian2 instance from. * @param {Cartesian2} [result] The object onto which to store the result. * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided. */ Cartesian2.fromCartesian3 = Cartesian2.clone; /** * Creates a Cartesian2 instance from an existing Cartesian4. This simply takes the * x and y properties of the Cartesian4 and drops z and w. * @function * * @param {Cartesian4} cartesian The Cartesian4 instance to create a Cartesian2 instance from. * @param {Cartesian2} [result] The object onto which to store the result. * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided. */ Cartesian2.fromCartesian4 = Cartesian2.clone; /** * The number of elements used to pack the object into an array. * @type {Number} */ Cartesian2.packedLength = 2; /** * Stores the provided instance into the provided array. * * @param {Cartesian2} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ Cartesian2.pack = function(value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('value', value); Check.Check.defined('array', array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); array[startingIndex++] = value.x; array[startingIndex] = value.y; return array; }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {Cartesian2} [result] The object into which to store the result. * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided. */ Cartesian2.unpack = function(array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('array', array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); if (!when.defined(result)) { result = new Cartesian2(); } result.x = array[startingIndex++]; result.y = array[startingIndex]; return result; }; /** * Flattens an array of Cartesian2s into and array of components. * * @param {Cartesian2[]} array The array of cartesians to pack. * @param {Number[]} [result] The array onto which to store the result. If this is a typed array, it must have array.length * 2 components, else a {@link DeveloperError} will be thrown. If it is a regular array, it will be resized to have (array.length * 2) elements. * @returns {Number[]} The packed array. */ Cartesian2.packArray = function(array, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('array', array); //>>includeEnd('debug'); var length = array.length; var resultLength = length * 2; if (!when.defined(result)) { result = new Array(resultLength); } else if (!Array.isArray(result) && result.length !== resultLength) { throw new Check.DeveloperError('If result is a typed array, it must have exactly array.length * 2 elements'); } else if (result.length !== resultLength) { result.length = resultLength; } for (var i = 0; i < length; ++i) { Cartesian2.pack(array[i], result, i * 2); } return result; }; /** * Unpacks an array of cartesian components into and array of Cartesian2s. * * @param {Number[]} array The array of components to unpack. * @param {Cartesian2[]} [result] The array onto which to store the result. * @returns {Cartesian2[]} The unpacked array. */ Cartesian2.unpackArray = function(array, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('array', array); Check.Check.typeOf.number.greaterThanOrEquals('array.length', array.length, 2); if (array.length % 2 !== 0) { throw new Check.DeveloperError('array length must be a multiple of 2.'); } //>>includeEnd('debug'); var length = array.length; if (!when.defined(result)) { result = new Array(length / 2); } else { result.length = length / 2; } for (var i = 0; i < length; i += 2) { var index = i / 2; result[index] = Cartesian2.unpack(array, i, result[index]); } return result; }; /** * Creates a Cartesian2 from two consecutive elements in an array. * @function * * @param {Number[]} array The array whose two consecutive elements correspond to the x and y components, respectively. * @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to the x component. * @param {Cartesian2} [result] The object onto which to store the result. * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided. * * @example * // Create a Cartesian2 with (1.0, 2.0) * var v = [1.0, 2.0]; * var p = Cesium.Cartesian2.fromArray(v); * * // Create a Cartesian2 with (1.0, 2.0) using an offset into an array * var v2 = [0.0, 0.0, 1.0, 2.0]; * var p2 = Cesium.Cartesian2.fromArray(v2, 2); */ Cartesian2.fromArray = Cartesian2.unpack; /** * Computes the value of the maximum component for the supplied Cartesian. * * @param {Cartesian2} cartesian The cartesian to use. * @returns {Number} The value of the maximum component. */ Cartesian2.maximumComponent = function(cartesian) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('cartesian', cartesian); //>>includeEnd('debug'); return Math.max(cartesian.x, cartesian.y); }; /** * Computes the value of the minimum component for the supplied Cartesian. * * @param {Cartesian2} cartesian The cartesian to use. * @returns {Number} The value of the minimum component. */ Cartesian2.minimumComponent = function(cartesian) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('cartesian', cartesian); //>>includeEnd('debug'); return Math.min(cartesian.x, cartesian.y); }; /** * Compares two Cartesians and computes a Cartesian which contains the minimum components of the supplied Cartesians. * * @param {Cartesian2} first A cartesian to compare. * @param {Cartesian2} second A cartesian to compare. * @param {Cartesian2} result The object into which to store the result. * @returns {Cartesian2} A cartesian with the minimum components. */ Cartesian2.minimumByComponent = function(first, second, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('first', first); Check.Check.typeOf.object('second', second); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = Math.min(first.x, second.x); result.y = Math.min(first.y, second.y); return result; }; /** * Compares two Cartesians and computes a Cartesian which contains the maximum components of the supplied Cartesians. * * @param {Cartesian2} first A cartesian to compare. * @param {Cartesian2} second A cartesian to compare. * @param {Cartesian2} result The object into which to store the result. * @returns {Cartesian2} A cartesian with the maximum components. */ Cartesian2.maximumByComponent = function(first, second, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('first', first); Check.Check.typeOf.object('second', second); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = Math.max(first.x, second.x); result.y = Math.max(first.y, second.y); return result; }; /** * Computes the provided Cartesian's squared magnitude. * * @param {Cartesian2} cartesian The Cartesian instance whose squared magnitude is to be computed. * @returns {Number} The squared magnitude. */ Cartesian2.magnitudeSquared = function(cartesian) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('cartesian', cartesian); //>>includeEnd('debug'); return cartesian.x * cartesian.x + cartesian.y * cartesian.y; }; /** * Computes the Cartesian's magnitude (length). * * @param {Cartesian2} cartesian The Cartesian instance whose magnitude is to be computed. * @returns {Number} The magnitude. */ Cartesian2.magnitude = function(cartesian) { return Math.sqrt(Cartesian2.magnitudeSquared(cartesian)); }; var distanceScratch = new Cartesian2(); /** * Computes the distance between two points. * * @param {Cartesian2} left The first point to compute the distance from. * @param {Cartesian2} right The second point to compute the distance to. * @returns {Number} The distance between two points. * * @example * // Returns 1.0 * var d = Cesium.Cartesian2.distance(new Cesium.Cartesian2(1.0, 0.0), new Cesium.Cartesian2(2.0, 0.0)); */ Cartesian2.distance = function(left, right) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); //>>includeEnd('debug'); Cartesian2.subtract(left, right, distanceScratch); return Cartesian2.magnitude(distanceScratch); }; /** * Computes the squared distance between two points. Comparing squared distances * using this function is more efficient than comparing distances using {@link Cartesian2#distance}. * * @param {Cartesian2} left The first point to compute the distance from. * @param {Cartesian2} right The second point to compute the distance to. * @returns {Number} The distance between two points. * * @example * // Returns 4.0, not 2.0 * var d = Cesium.Cartesian2.distance(new Cesium.Cartesian2(1.0, 0.0), new Cesium.Cartesian2(3.0, 0.0)); */ Cartesian2.distanceSquared = function(left, right) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); //>>includeEnd('debug'); Cartesian2.subtract(left, right, distanceScratch); return Cartesian2.magnitudeSquared(distanceScratch); }; /** * Computes the normalized form of the supplied Cartesian. * * @param {Cartesian2} cartesian The Cartesian to be normalized. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. */ Cartesian2.normalize = function(cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('cartesian', cartesian); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var magnitude = Cartesian2.magnitude(cartesian); result.x = cartesian.x / magnitude; result.y = cartesian.y / magnitude; //>>includeStart('debug', pragmas.debug); if (isNaN(result.x) || isNaN(result.y)) { throw new Check.DeveloperError('normalized result is not a number'); } //>>includeEnd('debug'); return result; }; /** * Computes the dot (scalar) product of two Cartesians. * * @param {Cartesian2} left The first Cartesian. * @param {Cartesian2} right The second Cartesian. * @returns {Number} The dot product. */ Cartesian2.dot = function(left, right) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); //>>includeEnd('debug'); return left.x * right.x + left.y * right.y; }; /** * Computes the componentwise product of two Cartesians. * * @param {Cartesian2} left The first Cartesian. * @param {Cartesian2} right The second Cartesian. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. */ Cartesian2.multiplyComponents = function(left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = left.x * right.x; result.y = left.y * right.y; return result; }; /** * Computes the componentwise quotient of two Cartesians. * * @param {Cartesian2} left The first Cartesian. * @param {Cartesian2} right The second Cartesian. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. */ Cartesian2.divideComponents = function(left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = left.x / right.x; result.y = left.y / right.y; return result; }; /** * Computes the componentwise sum of two Cartesians. * * @param {Cartesian2} left The first Cartesian. * @param {Cartesian2} right The second Cartesian. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. */ Cartesian2.add = function(left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = left.x + right.x; result.y = left.y + right.y; return result; }; /** * Computes the componentwise difference of two Cartesians. * * @param {Cartesian2} left The first Cartesian. * @param {Cartesian2} right The second Cartesian. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. */ Cartesian2.subtract = function(left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = left.x - right.x; result.y = left.y - right.y; return result; }; /** * Multiplies the provided Cartesian componentwise by the provided scalar. * * @param {Cartesian2} cartesian The Cartesian to be scaled. * @param {Number} scalar The scalar to multiply with. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. */ Cartesian2.multiplyByScalar = function(cartesian, scalar, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('cartesian', cartesian); Check.Check.typeOf.number('scalar', scalar); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = cartesian.x * scalar; result.y = cartesian.y * scalar; return result; }; /** * Divides the provided Cartesian componentwise by the provided scalar. * * @param {Cartesian2} cartesian The Cartesian to be divided. * @param {Number} scalar The scalar to divide by. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. */ Cartesian2.divideByScalar = function(cartesian, scalar, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('cartesian', cartesian); Check.Check.typeOf.number('scalar', scalar); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = cartesian.x / scalar; result.y = cartesian.y / scalar; return result; }; /** * Negates the provided Cartesian. * * @param {Cartesian2} cartesian The Cartesian to be negated. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. */ Cartesian2.negate = function(cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('cartesian', cartesian); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = -cartesian.x; result.y = -cartesian.y; return result; }; /** * Computes the absolute value of the provided Cartesian. * * @param {Cartesian2} cartesian The Cartesian whose absolute value is to be computed. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. */ Cartesian2.abs = function(cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('cartesian', cartesian); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = Math.abs(cartesian.x); result.y = Math.abs(cartesian.y); return result; }; var lerpScratch = new Cartesian2(); /** * Computes the linear interpolation or extrapolation at t using the provided cartesians. * * @param {Cartesian2} start The value corresponding to t at 0.0. * @param {Cartesian2} end The value corresponding to t at 1.0. * @param {Number} t The point along t at which to interpolate. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The modified result parameter. */ Cartesian2.lerp = function(start, end, t, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('start', start); Check.Check.typeOf.object('end', end); Check.Check.typeOf.number('t', t); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); Cartesian2.multiplyByScalar(end, t, lerpScratch); result = Cartesian2.multiplyByScalar(start, 1.0 - t, result); return Cartesian2.add(lerpScratch, result, result); }; var angleBetweenScratch = new Cartesian2(); var angleBetweenScratch2 = new Cartesian2(); /** * Returns the angle, in radians, between the provided Cartesians. * * @param {Cartesian2} left The first Cartesian. * @param {Cartesian2} right The second Cartesian. * @returns {Number} The angle between the Cartesians. */ Cartesian2.angleBetween = function(left, right) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); //>>includeEnd('debug'); Cartesian2.normalize(left, angleBetweenScratch); Cartesian2.normalize(right, angleBetweenScratch2); return _Math.CesiumMath.acosClamped(Cartesian2.dot(angleBetweenScratch, angleBetweenScratch2)); }; var mostOrthogonalAxisScratch = new Cartesian2(); /** * Returns the axis that is most orthogonal to the provided Cartesian. * * @param {Cartesian2} cartesian The Cartesian on which to find the most orthogonal axis. * @param {Cartesian2} result The object onto which to store the result. * @returns {Cartesian2} The most orthogonal axis. */ Cartesian2.mostOrthogonalAxis = function(cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('cartesian', cartesian); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var f = Cartesian2.normalize(cartesian, mostOrthogonalAxisScratch); Cartesian2.abs(f, f); if (f.x <= f.y) { result = Cartesian2.clone(Cartesian2.UNIT_X, result); } else { result = Cartesian2.clone(Cartesian2.UNIT_Y, result); } return result; }; /** * Compares the provided Cartesians componentwise and returns * <code>true</code> if they are equal, <code>false</code> otherwise. * * @param {Cartesian2} [left] The first Cartesian. * @param {Cartesian2} [right] The second Cartesian. * @returns {Boolean} <code>true</code> if left and right are equal, <code>false</code> otherwise. */ Cartesian2.equals = function(left, right) { return (left === right) || ((when.defined(left)) && (when.defined(right)) && (left.x === right.x) && (left.y === right.y)); }; /** * @private */ Cartesian2.equalsArray = function(cartesian, array, offset) { return cartesian.x === array[offset] && cartesian.y === array[offset + 1]; }; /** * Compares the provided Cartesians componentwise and returns * <code>true</code> if they pass an absolute or relative tolerance test, * <code>false</code> otherwise. * * @param {Cartesian2} [left] The first Cartesian. * @param {Cartesian2} [right] The second Cartesian. * @param {Number} relativeEpsilon The relative epsilon tolerance to use for equality testing. * @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing. * @returns {Boolean} <code>true</code> if left and right are within the provided epsilon, <code>false</code> otherwise. */ Cartesian2.equalsEpsilon = function(left, right, relativeEpsilon, absoluteEpsilon) { return (left === right) || (when.defined(left) && when.defined(right) && _Math.CesiumMath.equalsEpsilon(left.x, right.x, relativeEpsilon, absoluteEpsilon) && _Math.CesiumMath.equalsEpsilon(left.y, right.y, relativeEpsilon, absoluteEpsilon)); }; /** * An immutable Cartesian2 instance initialized to (0.0, 0.0). * * @type {Cartesian2} * @constant */ Cartesian2.ZERO = Object.freeze(new Cartesian2(0.0, 0.0)); /** * An immutable Cartesian2 instance initialized to (1.0, 0.0). * * @type {Cartesian2} * @constant */ Cartesian2.UNIT_X = Object.freeze(new Cartesian2(1.0, 0.0)); /** * An immutable Cartesian2 instance initialized to (0.0, 1.0). * * @type {Cartesian2} * @constant */ Cartesian2.UNIT_Y = Object.freeze(new Cartesian2(0.0, 1.0)); /** * Duplicates this Cartesian2 instance. * * @param {Cartesian2} [result] The object onto which to store the result. * @returns {Cartesian2} The modified result parameter or a new Cartesian2 instance if one was not provided. */ Cartesian2.prototype.clone = function(result) { return Cartesian2.clone(this, result); }; /** * Compares this Cartesian against the provided Cartesian componentwise and returns * <code>true</code> if they are equal, <code>false</code> otherwise. * * @param {Cartesian2} [right] The right hand side Cartesian. * @returns {Boolean} <code>true</code> if they are equal, <code>false</code> otherwise. */ Cartesian2.prototype.equals = function(right) { return Cartesian2.equals(this, right); }; /** * Compares this Cartesian against the provided Cartesian componentwise and returns * <code>true</code> if they pass an absolute or relative tolerance test, * <code>false</code> otherwise. * * @param {Cartesian2} [right] The right hand side Cartesian. * @param {Number} relativeEpsilon The relative epsilon tolerance to use for equality testing. * @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing. * @returns {Boolean} <code>true</code> if they are within the provided epsilon, <code>false</code> otherwise. */ Cartesian2.prototype.equalsEpsilon = function(right, relativeEpsilon, absoluteEpsilon) { return Cartesian2.equalsEpsilon(this, right, relativeEpsilon, absoluteEpsilon); }; /** * Creates a string representing this Cartesian in the format '(x, y)'. * * @returns {String} A string representing the provided Cartesian in the format '(x, y)'. */ Cartesian2.prototype.toString = function() { return '(' + this.x + ', ' + this.y + ')'; }; exports.Cartesian2 = Cartesian2; exports.Ellipsoid = Ellipsoid; exports.Rectangle = Rectangle; });