/** * Cesium - https://github.com/CesiumGS/cesium * * Copyright 2011-2020 Cesium Contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Columbus View (Pat. Pend.) * * Portions licensed separately. * See https://github.com/CesiumGS/cesium/blob/master/LICENSE.md for full licensing details. */ define(['exports', './when-8d13db60', './Check-70bec281', './Math-61ede240'], function (exports, when, Check, _Math) { 'use strict'; /** * A 3D Cartesian point. * @alias Cartesian3 * @constructor * * @param {Number} [x=0.0] The X component. * @param {Number} [y=0.0] The Y component. * @param {Number} [z=0.0] The Z component. * * @see Cartesian2 * @see Cartesian4 * @see Packable */ function Cartesian3(x, y, z) { /** * The X component. * @type {Number} * @default 0.0 */ this.x = when.defaultValue(x, 0.0); /** * The Y component. * @type {Number} * @default 0.0 */ this.y = when.defaultValue(y, 0.0); /** * The Z component. * @type {Number} * @default 0.0 */ this.z = when.defaultValue(z, 0.0); } /** * Converts the provided Spherical into Cartesian3 coordinates. * * @param {Spherical} spherical The Spherical to be converted to Cartesian3. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided. */ Cartesian3.fromSpherical = function(spherical, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('spherical', spherical); //>>includeEnd('debug'); if (!when.defined(result)) { result = new Cartesian3(); } var clock = spherical.clock; var cone = spherical.cone; var magnitude = when.defaultValue(spherical.magnitude, 1.0); var radial = magnitude * Math.sin(cone); result.x = radial * Math.cos(clock); result.y = radial * Math.sin(clock); result.z = magnitude * Math.cos(cone); return result; }; /** * Creates a Cartesian3 instance from x, y and z coordinates. * * @param {Number} x The x coordinate. * @param {Number} y The y coordinate. * @param {Number} z The z coordinate. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided. */ Cartesian3.fromElements = function(x, y, z, result) { if (!when.defined(result)) { return new Cartesian3(x, y, z); } result.x = x; result.y = y; result.z = z; return result; }; /** * Duplicates a Cartesian3 instance. * * @param {Cartesian3} cartesian The Cartesian to duplicate. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided. (Returns undefined if cartesian is undefined) */ Cartesian3.clone = function(cartesian, result) { if (!when.defined(cartesian)) { return undefined; } if (!when.defined(result)) { return new Cartesian3(cartesian.x, cartesian.y, cartesian.z); } result.x = cartesian.x; result.y = cartesian.y; result.z = cartesian.z; return result; }; /** * Creates a Cartesian3 instance from an existing Cartesian4. This simply takes the * x, y, and z properties of the Cartesian4 and drops w. * @function * * @param {Cartesian4} cartesian The Cartesian4 instance to create a Cartesian3 instance from. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided. */ Cartesian3.fromCartesian4 = Cartesian3.clone; /** * The number of elements used to pack the object into an array. * @type {Number} */ Cartesian3.packedLength = 3; /** * Stores the provided instance into the provided array. * * @param {Cartesian3} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ Cartesian3.pack = function(value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('value', value); Check.Check.defined('array', array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); array[startingIndex++] = value.x; array[startingIndex++] = value.y; array[startingIndex] = value.z; return array; }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {Cartesian3} [result] The object into which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided. */ Cartesian3.unpack = function(array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('array', array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); if (!when.defined(result)) { result = new Cartesian3(); } result.x = array[startingIndex++]; result.y = array[startingIndex++]; result.z = array[startingIndex]; return result; }; /** * Flattens an array of Cartesian3s into an array of components. * * @param {Cartesian3[]} array The array of cartesians to pack. * @param {Number[]} result The array onto which to store the result. * @returns {Number[]} The packed array. */ Cartesian3.packArray = function(array, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('array', array); //>>includeEnd('debug'); var length = array.length; if (!when.defined(result)) { result = new Array(length * 3); } else { result.length = length * 3; } for (var i = 0; i < length; ++i) { Cartesian3.pack(array[i], result, i * 3); } return result; }; /** * Unpacks an array of cartesian components into an array of Cartesian3s. * * @param {Number[]} array The array of components to unpack. * @param {Cartesian3[]} result The array onto which to store the result. * @returns {Cartesian3[]} The unpacked array. */ Cartesian3.unpackArray = function(array, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('array', array); Check.Check.typeOf.number.greaterThanOrEquals('array.length', array.length, 3); if (array.length % 3 !== 0) { throw new Check.DeveloperError('array length must be a multiple of 3.'); } //>>includeEnd('debug'); var length = array.length; if (!when.defined(result)) { result = new Array(length / 3); } else { result.length = length / 3; } for (var i = 0; i < length; i += 3) { var index = i / 3; result[index] = Cartesian3.unpack(array, i, result[index]); } return result; }; /** * Creates a Cartesian3 from three consecutive elements in an array. * @function * * @param {Number[]} array The array whose three consecutive elements correspond to the x, y, and z components, respectively. * @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to the x component. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided. * * @example * // Create a Cartesian3 with (1.0, 2.0, 3.0) * var v = [1.0, 2.0, 3.0]; * var p = Cesium.Cartesian3.fromArray(v); * * // Create a Cartesian3 with (1.0, 2.0, 3.0) using an offset into an array * var v2 = [0.0, 0.0, 1.0, 2.0, 3.0]; * var p2 = Cesium.Cartesian3.fromArray(v2, 2); */ Cartesian3.fromArray = Cartesian3.unpack; /** * Computes the value of the maximum component for the supplied Cartesian. * * @param {Cartesian3} cartesian The cartesian to use. * @returns {Number} The value of the maximum component. */ Cartesian3.maximumComponent = function(cartesian) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('cartesian', cartesian); //>>includeEnd('debug'); return Math.max(cartesian.x, cartesian.y, cartesian.z); }; /** * Computes the value of the minimum component for the supplied Cartesian. * * @param {Cartesian3} cartesian The cartesian to use. * @returns {Number} The value of the minimum component. */ Cartesian3.minimumComponent = function(cartesian) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('cartesian', cartesian); //>>includeEnd('debug'); return Math.min(cartesian.x, cartesian.y, cartesian.z); }; /** * Compares two Cartesians and computes a Cartesian which contains the minimum components of the supplied Cartesians. * * @param {Cartesian3} first A cartesian to compare. * @param {Cartesian3} second A cartesian to compare. * @param {Cartesian3} result The object into which to store the result. * @returns {Cartesian3} A cartesian with the minimum components. */ Cartesian3.minimumByComponent = function(first, second, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('first', first); Check.Check.typeOf.object('second', second); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = Math.min(first.x, second.x); result.y = Math.min(first.y, second.y); result.z = Math.min(first.z, second.z); return result; }; /** * Compares two Cartesians and computes a Cartesian which contains the maximum components of the supplied Cartesians. * * @param {Cartesian3} first A cartesian to compare. * @param {Cartesian3} second A cartesian to compare. * @param {Cartesian3} result The object into which to store the result. * @returns {Cartesian3} A cartesian with the maximum components. */ Cartesian3.maximumByComponent = function(first, second, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('first', first); Check.Check.typeOf.object('second', second); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = Math.max(first.x, second.x); result.y = Math.max(first.y, second.y); result.z = Math.max(first.z, second.z); return result; }; /** * Computes the provided Cartesian's squared magnitude. * * @param {Cartesian3} cartesian The Cartesian instance whose squared magnitude is to be computed. * @returns {Number} The squared magnitude. */ Cartesian3.magnitudeSquared = function(cartesian) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('cartesian', cartesian); //>>includeEnd('debug'); return cartesian.x * cartesian.x + cartesian.y * cartesian.y + cartesian.z * cartesian.z; }; /** * Computes the Cartesian's magnitude (length). * * @param {Cartesian3} cartesian The Cartesian instance whose magnitude is to be computed. * @returns {Number} The magnitude. */ Cartesian3.magnitude = function(cartesian) { return Math.sqrt(Cartesian3.magnitudeSquared(cartesian)); }; var distanceScratch = new Cartesian3(); /** * Computes the distance between two points. * * @param {Cartesian3} left The first point to compute the distance from. * @param {Cartesian3} right The second point to compute the distance to. * @returns {Number} The distance between two points. * * @example * // Returns 1.0 * var d = Cesium.Cartesian3.distance(new Cesium.Cartesian3(1.0, 0.0, 0.0), new Cesium.Cartesian3(2.0, 0.0, 0.0)); */ Cartesian3.distance = function(left, right) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); //>>includeEnd('debug'); Cartesian3.subtract(left, right, distanceScratch); return Cartesian3.magnitude(distanceScratch); }; /** * Computes the squared distance between two points. Comparing squared distances * using this function is more efficient than comparing distances using {@link Cartesian3#distance}. * * @param {Cartesian3} left The first point to compute the distance from. * @param {Cartesian3} right The second point to compute the distance to. * @returns {Number} The distance between two points. * * @example * // Returns 4.0, not 2.0 * var d = Cesium.Cartesian3.distanceSquared(new Cesium.Cartesian3(1.0, 0.0, 0.0), new Cesium.Cartesian3(3.0, 0.0, 0.0)); */ Cartesian3.distanceSquared = function(left, right) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); //>>includeEnd('debug'); Cartesian3.subtract(left, right, distanceScratch); return Cartesian3.magnitudeSquared(distanceScratch); }; /** * Computes the normalized form of the supplied Cartesian. * * @param {Cartesian3} cartesian The Cartesian to be normalized. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.normalize = function(cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('cartesian', cartesian); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var magnitude = Cartesian3.magnitude(cartesian); result.x = cartesian.x / magnitude; result.y = cartesian.y / magnitude; result.z = cartesian.z / magnitude; //>>includeStart('debug', pragmas.debug); if (isNaN(result.x) || isNaN(result.y) || isNaN(result.z)) { throw new Check.DeveloperError('normalized result is not a number'); } //>>includeEnd('debug'); return result; }; /** * Computes the dot (scalar) product of two Cartesians. * * @param {Cartesian3} left The first Cartesian. * @param {Cartesian3} right The second Cartesian. * @returns {Number} The dot product. */ Cartesian3.dot = function(left, right) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); //>>includeEnd('debug'); return left.x * right.x + left.y * right.y + left.z * right.z; }; /** * Computes the componentwise product of two Cartesians. * * @param {Cartesian3} left The first Cartesian. * @param {Cartesian3} right The second Cartesian. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.multiplyComponents = function(left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = left.x * right.x; result.y = left.y * right.y; result.z = left.z * right.z; return result; }; /** * Computes the componentwise quotient of two Cartesians. * * @param {Cartesian3} left The first Cartesian. * @param {Cartesian3} right The second Cartesian. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.divideComponents = function(left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = left.x / right.x; result.y = left.y / right.y; result.z = left.z / right.z; return result; }; /** * Computes the componentwise sum of two Cartesians. * * @param {Cartesian3} left The first Cartesian. * @param {Cartesian3} right The second Cartesian. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.add = function(left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = left.x + right.x; result.y = left.y + right.y; result.z = left.z + right.z; return result; }; /** * Computes the componentwise difference of two Cartesians. * * @param {Cartesian3} left The first Cartesian. * @param {Cartesian3} right The second Cartesian. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.subtract = function(left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = left.x - right.x; result.y = left.y - right.y; result.z = left.z - right.z; return result; }; /** * Multiplies the provided Cartesian componentwise by the provided scalar. * * @param {Cartesian3} cartesian The Cartesian to be scaled. * @param {Number} scalar The scalar to multiply with. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.multiplyByScalar = function(cartesian, scalar, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('cartesian', cartesian); Check.Check.typeOf.number('scalar', scalar); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = cartesian.x * scalar; result.y = cartesian.y * scalar; result.z = cartesian.z * scalar; return result; }; /** * Divides the provided Cartesian componentwise by the provided scalar. * * @param {Cartesian3} cartesian The Cartesian to be divided. * @param {Number} scalar The scalar to divide by. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.divideByScalar = function(cartesian, scalar, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('cartesian', cartesian); Check.Check.typeOf.number('scalar', scalar); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = cartesian.x / scalar; result.y = cartesian.y / scalar; result.z = cartesian.z / scalar; return result; }; /** * Negates the provided Cartesian. * * @param {Cartesian3} cartesian The Cartesian to be negated. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.negate = function(cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('cartesian', cartesian); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = -cartesian.x; result.y = -cartesian.y; result.z = -cartesian.z; return result; }; /** * Computes the absolute value of the provided Cartesian. * * @param {Cartesian3} cartesian The Cartesian whose absolute value is to be computed. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.abs = function(cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('cartesian', cartesian); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = Math.abs(cartesian.x); result.y = Math.abs(cartesian.y); result.z = Math.abs(cartesian.z); return result; }; var lerpScratch = new Cartesian3(); /** * Computes the linear interpolation or extrapolation at t using the provided cartesians. * * @param {Cartesian3} start The value corresponding to t at 0.0. * @param {Cartesian3} end The value corresponding to t at 1.0. * @param {Number} t The point along t at which to interpolate. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The modified result parameter. */ Cartesian3.lerp = function(start, end, t, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('start', start); Check.Check.typeOf.object('end', end); Check.Check.typeOf.number('t', t); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); Cartesian3.multiplyByScalar(end, t, lerpScratch); result = Cartesian3.multiplyByScalar(start, 1.0 - t, result); return Cartesian3.add(lerpScratch, result, result); }; var angleBetweenScratch = new Cartesian3(); var angleBetweenScratch2 = new Cartesian3(); /** * Returns the angle, in radians, between the provided Cartesians. * * @param {Cartesian3} left The first Cartesian. * @param {Cartesian3} right The second Cartesian. * @returns {Number} The angle between the Cartesians. */ Cartesian3.angleBetween = function(left, right) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); //>>includeEnd('debug'); Cartesian3.normalize(left, angleBetweenScratch); Cartesian3.normalize(right, angleBetweenScratch2); var cosine = Cartesian3.dot(angleBetweenScratch, angleBetweenScratch2); var sine = Cartesian3.magnitude(Cartesian3.cross(angleBetweenScratch, angleBetweenScratch2, angleBetweenScratch)); return Math.atan2(sine, cosine); }; var mostOrthogonalAxisScratch = new Cartesian3(); /** * Returns the axis that is most orthogonal to the provided Cartesian. * * @param {Cartesian3} cartesian The Cartesian on which to find the most orthogonal axis. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The most orthogonal axis. */ Cartesian3.mostOrthogonalAxis = function(cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('cartesian', cartesian); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var f = Cartesian3.normalize(cartesian, mostOrthogonalAxisScratch); Cartesian3.abs(f, f); if (f.x <= f.y) { if (f.x <= f.z) { result = Cartesian3.clone(Cartesian3.UNIT_X, result); } else { result = Cartesian3.clone(Cartesian3.UNIT_Z, result); } } else if (f.y <= f.z) { result = Cartesian3.clone(Cartesian3.UNIT_Y, result); } else { result = Cartesian3.clone(Cartesian3.UNIT_Z, result); } return result; }; /** * Projects vector a onto vector b * @param {Cartesian3} a The vector that needs projecting * @param {Cartesian3} b The vector to project onto * @param {Cartesian3} result The result cartesian * @returns {Cartesian3} The modified result parameter */ Cartesian3.projectVector = function(a, b, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('a', a); Check.Check.defined('b', b); Check.Check.defined('result', result); //>>includeEnd('debug'); var scalar = Cartesian3.dot(a, b) / Cartesian3.dot(b, b); return Cartesian3.multiplyByScalar(b, scalar, result); }; /** * Compares the provided Cartesians componentwise and returns * <code>true</code> if they are equal, <code>false</code> otherwise. * * @param {Cartesian3} [left] The first Cartesian. * @param {Cartesian3} [right] The second Cartesian. * @returns {Boolean} <code>true</code> if left and right are equal, <code>false</code> otherwise. */ Cartesian3.equals = function(left, right) { return (left === right) || ((when.defined(left)) && (when.defined(right)) && (left.x === right.x) && (left.y === right.y) && (left.z === right.z)); }; /** * @private */ Cartesian3.equalsArray = function(cartesian, array, offset) { return cartesian.x === array[offset] && cartesian.y === array[offset + 1] && cartesian.z === array[offset + 2]; }; /** * Compares the provided Cartesians componentwise and returns * <code>true</code> if they pass an absolute or relative tolerance test, * <code>false</code> otherwise. * * @param {Cartesian3} [left] The first Cartesian. * @param {Cartesian3} [right] The second Cartesian. * @param {Number} relativeEpsilon The relative epsilon tolerance to use for equality testing. * @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing. * @returns {Boolean} <code>true</code> if left and right are within the provided epsilon, <code>false</code> otherwise. */ Cartesian3.equalsEpsilon = function(left, right, relativeEpsilon, absoluteEpsilon) { return (left === right) || (when.defined(left) && when.defined(right) && _Math.CesiumMath.equalsEpsilon(left.x, right.x, relativeEpsilon, absoluteEpsilon) && _Math.CesiumMath.equalsEpsilon(left.y, right.y, relativeEpsilon, absoluteEpsilon) && _Math.CesiumMath.equalsEpsilon(left.z, right.z, relativeEpsilon, absoluteEpsilon)); }; /** * Computes the cross (outer) product of two Cartesians. * * @param {Cartesian3} left The first Cartesian. * @param {Cartesian3} right The second Cartesian. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The cross product. */ Cartesian3.cross = function(left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var leftX = left.x; var leftY = left.y; var leftZ = left.z; var rightX = right.x; var rightY = right.y; var rightZ = right.z; var x = leftY * rightZ - leftZ * rightY; var y = leftZ * rightX - leftX * rightZ; var z = leftX * rightY - leftY * rightX; result.x = x; result.y = y; result.z = z; return result; }; /** * Computes the midpoint between the right and left Cartesian. * @param {Cartesian3} left The first Cartesian. * @param {Cartesian3} right The second Cartesian. * @param {Cartesian3} result The object onto which to store the result. * @returns {Cartesian3} The midpoint. */ Cartesian3.midpoint = function(left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = (left.x + right.x) * 0.5; result.y = (left.y + right.y) * 0.5; result.z = (left.z + right.z) * 0.5; return result; }; /** * Returns a Cartesian3 position from longitude and latitude values given in degrees. * * @param {Number} longitude The longitude, in degrees * @param {Number} latitude The latitude, in degrees * @param {Number} [height=0.0] The height, in meters, above the ellipsoid. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the position lies. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The position * * @example * var position = Cesium.Cartesian3.fromDegrees(-115.0, 37.0); */ Cartesian3.fromDegrees = function(longitude, latitude, height, ellipsoid, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number('longitude', longitude); Check.Check.typeOf.number('latitude', latitude); //>>includeEnd('debug'); longitude = _Math.CesiumMath.toRadians(longitude); latitude = _Math.CesiumMath.toRadians(latitude); return Cartesian3.fromRadians(longitude, latitude, height, ellipsoid, result); }; var scratchN = new Cartesian3(); var scratchK = new Cartesian3(); var wgs84RadiiSquared = new Cartesian3(6378137.0 * 6378137.0, 6378137.0 * 6378137.0, 6356752.3142451793 * 6356752.3142451793); var wgs84RadiiSquaredEx = new Cartesian3(6378137.0 * 6378137.0, 6378137.0 * 6378137.0, 6378137 * 6378137); /** * Returns a Cartesian3 position from longitude and latitude values given in radians. * * @param {Number} longitude The longitude, in radians * @param {Number} latitude The latitude, in radians * @param {Number} [height=0.0] The height, in meters, above the ellipsoid. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the position lies. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The position * * @example * var position = Cesium.Cartesian3.fromRadians(-2.007, 0.645); */ Cartesian3.fromRadians = function(longitude, latitude, height, ellipsoid, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number('longitude', longitude); Check.Check.typeOf.number('latitude', latitude); //>>includeEnd('debug'); height = when.defaultValue(height, 0.0); var radiiSquared = when.defined(ellipsoid) ? ellipsoid.radiiSquared : wgs84RadiiSquaredEx; if(_Math.CesiumMath.equalsEpsilon(_Math.CesiumMath.Radius, 6356752.3142451793, _Math.CesiumMath.EPSILON10)) { radiiSquared = when.defined(ellipsoid) ? ellipsoid.radiiSquared : wgs84RadiiSquared; } var cosLatitude = Math.cos(latitude); scratchN.x = cosLatitude * Math.cos(longitude); scratchN.y = cosLatitude * Math.sin(longitude); scratchN.z = Math.sin(latitude); scratchN = Cartesian3.normalize(scratchN, scratchN); Cartesian3.multiplyComponents(radiiSquared, scratchN, scratchK); var gamma = Math.sqrt(Cartesian3.dot(scratchN, scratchK)); scratchK = Cartesian3.divideByScalar(scratchK, gamma, scratchK); scratchN = Cartesian3.multiplyByScalar(scratchN, height, scratchN); if (!when.defined(result)) { result = new Cartesian3(); } return Cartesian3.add(scratchK, scratchN, result); }; /** * Returns an array of Cartesian3 positions given an array of longitude and latitude values given in degrees. * * @param {Number[]} coordinates A list of longitude and latitude values. Values alternate [longitude, latitude, longitude, latitude...]. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the coordinates lie. * @param {Cartesian3[]} [result] An array of Cartesian3 objects to store the result. * @returns {Cartesian3[]} The array of positions. * * @example * var positions = Cesium.Cartesian3.fromDegreesArray([-115.0, 37.0, -107.0, 33.0]); */ Cartesian3.fromDegreesArray = function(coordinates, ellipsoid, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('coordinates', coordinates); if (coordinates.length < 2 || coordinates.length % 2 !== 0) { throw new Check.DeveloperError('the number of coordinates must be a multiple of 2 and at least 2'); } //>>includeEnd('debug'); var length = coordinates.length; if (!when.defined(result)) { result = new Array(length / 2); } else { result.length = length / 2; } for (var i = 0; i < length; i += 2) { var longitude = coordinates[i]; var latitude = coordinates[i + 1]; var index = i / 2; result[index] = Cartesian3.fromDegrees(longitude, latitude, 0, ellipsoid, result[index]); } return result; }; /** * Returns an array of Cartesian3 positions given an array of longitude and latitude values given in radians. * * @param {Number[]} coordinates A list of longitude and latitude values. Values alternate [longitude, latitude, longitude, latitude...]. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the coordinates lie. * @param {Cartesian3[]} [result] An array of Cartesian3 objects to store the result. * @returns {Cartesian3[]} The array of positions. * * @example * var positions = Cesium.Cartesian3.fromRadiansArray([-2.007, 0.645, -1.867, .575]); */ Cartesian3.fromRadiansArray = function(coordinates, ellipsoid, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('coordinates', coordinates); if (coordinates.length < 2 || coordinates.length % 2 !== 0) { throw new Check.DeveloperError('the number of coordinates must be a multiple of 2 and at least 2'); } //>>includeEnd('debug'); var length = coordinates.length; if (!when.defined(result)) { result = new Array(length / 2); } else { result.length = length / 2; } for (var i = 0; i < length; i += 2) { var longitude = coordinates[i]; var latitude = coordinates[i + 1]; var index = i / 2; result[index] = Cartesian3.fromRadians(longitude, latitude, 0, ellipsoid, result[index]); } return result; }; /** * Returns an array of Cartesian3 positions given an array of longitude, latitude and height values where longitude and latitude are given in degrees. * * @param {Number[]} coordinates A list of longitude, latitude and height values. Values alternate [longitude, latitude, height, longitude, latitude, height...]. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the position lies. * @param {Cartesian3[]} [result] An array of Cartesian3 objects to store the result. * @returns {Cartesian3[]} The array of positions. * * @example * var positions = Cesium.Cartesian3.fromDegreesArrayHeights([-115.0, 37.0, 100000.0, -107.0, 33.0, 150000.0]); */ Cartesian3.fromDegreesArrayHeights = function(coordinates, ellipsoid, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('coordinates', coordinates); if (coordinates.length < 3 || coordinates.length % 3 !== 0) { throw new Check.DeveloperError('the number of coordinates must be a multiple of 3 and at least 3'); } //>>includeEnd('debug'); var length = coordinates.length; if (!when.defined(result)) { result = new Array(length / 3); } else { result.length = length / 3; } for (var i = 0; i < length; i += 3) { var longitude = coordinates[i]; var latitude = coordinates[i + 1]; var height = coordinates[i + 2]; var index = i / 3; result[index] = Cartesian3.fromDegrees(longitude, latitude, height, ellipsoid, result[index]); } return result; }; /** * Returns an array of Cartesian3 positions given an array of longitude, latitude and height values where longitude and latitude are given in radians. * * @param {Number[]} coordinates A list of longitude, latitude and height values. Values alternate [longitude, latitude, height, longitude, latitude, height...]. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the position lies. * @param {Cartesian3[]} [result] An array of Cartesian3 objects to store the result. * @returns {Cartesian3[]} The array of positions. * * @example * var positions = Cesium.Cartesian3.fromRadiansArrayHeights([-2.007, 0.645, 100000.0, -1.867, .575, 150000.0]); */ Cartesian3.fromRadiansArrayHeights = function(coordinates, ellipsoid, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('coordinates', coordinates); if (coordinates.length < 3 || coordinates.length % 3 !== 0) { throw new Check.DeveloperError('the number of coordinates must be a multiple of 3 and at least 3'); } //>>includeEnd('debug'); var length = coordinates.length; if (!when.defined(result)) { result = new Array(length / 3); } else { result.length = length / 3; } for (var i = 0; i < length; i += 3) { var longitude = coordinates[i]; var latitude = coordinates[i + 1]; var height = coordinates[i + 2]; var index = i / 3; result[index] = Cartesian3.fromRadians(longitude, latitude, height, ellipsoid, result[index]); } return result; }; /** * An immutable Cartesian3 instance initialized to (0.0, 0.0, 0.0). * * @type {Cartesian3} * @constant */ Cartesian3.ZERO = Object.freeze(new Cartesian3(0.0, 0.0, 0.0)); /** * An immutable Cartesian3 instance initialized to (1.0, 0.0, 0.0). * * @type {Cartesian3} * @constant */ Cartesian3.UNIT_X = Object.freeze(new Cartesian3(1.0, 0.0, 0.0)); /** * An immutable Cartesian3 instance initialized to (0.0, 1.0, 0.0). * * @type {Cartesian3} * @constant */ Cartesian3.UNIT_Y = Object.freeze(new Cartesian3(0.0, 1.0, 0.0)); /** * An immutable Cartesian3 instance initialized to (0.0, 0.0, 1.0). * * @type {Cartesian3} * @constant */ Cartesian3.UNIT_Z = Object.freeze(new Cartesian3(0.0, 0.0, 1.0)); /** * An immutable Cartesian3 instance initialized to (1.0, 1.0, 1.0). * * @type {Cartesian3} * @constant */ Cartesian3.UNIT_XYZ = Object.freeze(new Cartesian3(1.0, 1.0, 1.0)); /** * Duplicates this Cartesian3 instance. * * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter or a new Cartesian3 instance if one was not provided. */ Cartesian3.prototype.clone = function(result) { return Cartesian3.clone(this, result); }; /** * Compares this Cartesian against the provided Cartesian componentwise and returns * <code>true</code> if they are equal, <code>false</code> otherwise. * * @param {Cartesian3} [right] The right hand side Cartesian. * @returns {Boolean} <code>true</code> if they are equal, <code>false</code> otherwise. */ Cartesian3.prototype.equals = function(right) { return Cartesian3.equals(this, right); }; /** * Compares this Cartesian against the provided Cartesian componentwise and returns * <code>true</code> if they pass an absolute or relative tolerance test, * <code>false</code> otherwise. * * @param {Cartesian3} [right] The right hand side Cartesian. * @param {Number} relativeEpsilon The relative epsilon tolerance to use for equality testing. * @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing. * @returns {Boolean} <code>true</code> if they are within the provided epsilon, <code>false</code> otherwise. */ Cartesian3.prototype.equalsEpsilon = function(right, relativeEpsilon, absoluteEpsilon) { return Cartesian3.equalsEpsilon(this, right, relativeEpsilon, absoluteEpsilon); }; /** * Creates a string representing this Cartesian in the format '(x, y, z)'. * * @returns {String} A string representing this Cartesian in the format '(x, y, z)'. */ Cartesian3.prototype.toString = function() { return '(' + this.x + ', ' + this.y + ', ' + this.z + ')'; }; var scaleToGeodeticSurfaceIntersection = new Cartesian3(); var scaleToGeodeticSurfaceGradient = new Cartesian3(); /** * Scales the provided Cartesian position along the geodetic surface normal * so that it is on the surface of this ellipsoid. If the position is * at the center of the ellipsoid, this function returns undefined. * * @param {Cartesian3} cartesian The Cartesian position to scale. * @param {Cartesian3} oneOverRadii One over radii of the ellipsoid. * @param {Cartesian3} oneOverRadiiSquared One over radii squared of the ellipsoid. * @param {Number} centerToleranceSquared Tolerance for closeness to the center. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The modified result parameter, a new Cartesian3 instance if none was provided, or undefined if the position is at the center. * * @exports scaleToGeodeticSurface * * @private */ function scaleToGeodeticSurface(cartesian, oneOverRadii, oneOverRadiiSquared, centerToleranceSquared, result) { //>>includeStart('debug', pragmas.debug); if (!when.defined(cartesian)) { throw new Check.DeveloperError('cartesian is required.'); } if (!when.defined(oneOverRadii)) { throw new Check.DeveloperError('oneOverRadii is required.'); } if (!when.defined(oneOverRadiiSquared)) { throw new Check.DeveloperError('oneOverRadiiSquared is required.'); } if (!when.defined(centerToleranceSquared)) { throw new Check.DeveloperError('centerToleranceSquared is required.'); } //>>includeEnd('debug'); var positionX = cartesian.x; var positionY = cartesian.y; var positionZ = cartesian.z; var oneOverRadiiX = oneOverRadii.x; var oneOverRadiiY = oneOverRadii.y; var oneOverRadiiZ = oneOverRadii.z; var x2 = positionX * positionX * oneOverRadiiX * oneOverRadiiX; var y2 = positionY * positionY * oneOverRadiiY * oneOverRadiiY; var z2 = positionZ * positionZ * oneOverRadiiZ * oneOverRadiiZ; // Compute the squared ellipsoid norm. var squaredNorm = x2 + y2 + z2; var ratio = Math.sqrt(1.0 / squaredNorm); // As an initial approximation, assume that the radial intersection is the projection point. var intersection = Cartesian3.multiplyByScalar(cartesian, ratio, scaleToGeodeticSurfaceIntersection); // If the position is near the center, the iteration will not converge. if (squaredNorm < centerToleranceSquared) { return !isFinite(ratio) ? undefined : Cartesian3.clone(intersection, result); } var oneOverRadiiSquaredX = oneOverRadiiSquared.x; var oneOverRadiiSquaredY = oneOverRadiiSquared.y; var oneOverRadiiSquaredZ = oneOverRadiiSquared.z; // Use the gradient at the intersection point in place of the true unit normal. // The difference in magnitude will be absorbed in the multiplier. var gradient = scaleToGeodeticSurfaceGradient; gradient.x = intersection.x * oneOverRadiiSquaredX * 2.0; gradient.y = intersection.y * oneOverRadiiSquaredY * 2.0; gradient.z = intersection.z * oneOverRadiiSquaredZ * 2.0; // Compute the initial guess at the normal vector multiplier, lambda. var lambda = (1.0 - ratio) * Cartesian3.magnitude(cartesian) / (0.5 * Cartesian3.magnitude(gradient)); var correction = 0.0; var func; var denominator; var xMultiplier; var yMultiplier; var zMultiplier; var xMultiplier2; var yMultiplier2; var zMultiplier2; var xMultiplier3; var yMultiplier3; var zMultiplier3; do { lambda -= correction; xMultiplier = 1.0 / (1.0 + lambda * oneOverRadiiSquaredX); yMultiplier = 1.0 / (1.0 + lambda * oneOverRadiiSquaredY); zMultiplier = 1.0 / (1.0 + lambda * oneOverRadiiSquaredZ); xMultiplier2 = xMultiplier * xMultiplier; yMultiplier2 = yMultiplier * yMultiplier; zMultiplier2 = zMultiplier * zMultiplier; xMultiplier3 = xMultiplier2 * xMultiplier; yMultiplier3 = yMultiplier2 * yMultiplier; zMultiplier3 = zMultiplier2 * zMultiplier; func = x2 * xMultiplier2 + y2 * yMultiplier2 + z2 * zMultiplier2 - 1.0; // "denominator" here refers to the use of this expression in the velocity and acceleration // computations in the sections to follow. denominator = x2 * xMultiplier3 * oneOverRadiiSquaredX + y2 * yMultiplier3 * oneOverRadiiSquaredY + z2 * zMultiplier3 * oneOverRadiiSquaredZ; var derivative = -2.0 * denominator; correction = func / derivative; } while (Math.abs(func) > _Math.CesiumMath.EPSILON12); if (!when.defined(result)) { return new Cartesian3(positionX * xMultiplier, positionY * yMultiplier, positionZ * zMultiplier); } result.x = positionX * xMultiplier; result.y = positionY * yMultiplier; result.z = positionZ * zMultiplier; return result; } /** * A position defined by longitude, latitude, and height. * @alias Cartographic * @constructor * * @param {Number} [longitude=0.0] The longitude, in radians. * @param {Number} [latitude=0.0] The latitude, in radians. * @param {Number} [height=0.0] The height, in meters, above the ellipsoid. * * @see Ellipsoid */ function Cartographic(longitude, latitude, height) { /** * The longitude, in radians. * @type {Number} * @default 0.0 */ this.longitude = when.defaultValue(longitude, 0.0); /** * The latitude, in radians. * @type {Number} * @default 0.0 */ this.latitude = when.defaultValue(latitude, 0.0); /** * The height, in meters, above the ellipsoid. * @type {Number} * @default 0.0 */ this.height = when.defaultValue(height, 0.0); } /** * Creates a new Cartographic instance from longitude and latitude * specified in radians. * * @param {Number} longitude The longitude, in radians. * @param {Number} latitude The latitude, in radians. * @param {Number} [height=0.0] The height, in meters, above the ellipsoid. * @param {Cartographic} [result] The object onto which to store the result. * @returns {Cartographic} The modified result parameter or a new Cartographic instance if one was not provided. */ Cartographic.fromRadians = function(longitude, latitude, height, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number('longitude', longitude); Check.Check.typeOf.number('latitude', latitude); //>>includeEnd('debug'); height = when.defaultValue(height, 0.0); if (!when.defined(result)) { return new Cartographic(longitude, latitude, height); } result.longitude = longitude; result.latitude = latitude; result.height = height; return result; }; /** * Creates a new Cartographic instance from longitude and latitude * specified in degrees. The values in the resulting object will * be in radians. * * @param {Number} longitude The longitude, in degrees. * @param {Number} latitude The latitude, in degrees. * @param {Number} [height=0.0] The height, in meters, above the ellipsoid. * @param {Cartographic} [result] The object onto which to store the result. * @returns {Cartographic} The modified result parameter or a new Cartographic instance if one was not provided. */ Cartographic.fromDegrees = function(longitude, latitude, height, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number('longitude', longitude); Check.Check.typeOf.number('latitude', latitude); //>>includeEnd('debug'); longitude = _Math.CesiumMath.toRadians(longitude); latitude = _Math.CesiumMath.toRadians(latitude); return Cartographic.fromRadians(longitude, latitude, height, result); }; var cartesianToCartographicN = new Cartesian3(); var cartesianToCartographicP = new Cartesian3(); var cartesianToCartographicH = new Cartesian3(); var wgs84OneOverRadii = new Cartesian3(1.0 / 6378137.0, 1.0 / 6378137.0, 1.0 / 6356752.3142451793); var wgs84OneOverRadiiEx = new Cartesian3(1.0 / 6378137.0, 1.0 / 6378137.0, 1.0 / 6378137.0); var wgs84OneOverRadiiSquared = new Cartesian3(1.0 / (6378137.0 * 6378137.0), 1.0 / (6378137.0 * 6378137.0), 1.0 / (6356752.3142451793 * 6356752.3142451793)); var wgs84OneOverRadiiSquaredEx = new Cartesian3(1.0 / (6378137.0 * 6378137.0), 1.0 / (6378137.0 * 6378137.0), 1.0 / (6378137.0 * 6378137.0)); var wgs84CenterToleranceSquared = _Math.CesiumMath.EPSILON1; /** * Creates a new Cartographic instance from a Cartesian position. The values in the * resulting object will be in radians. * * @param {Cartesian3} cartesian The Cartesian position to convert to cartographic representation. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the position lies. * @param {Cartographic} [result] The object onto which to store the result. * @returns {Cartographic} The modified result parameter, new Cartographic instance if none was provided, or undefined if the cartesian is at the center of the ellipsoid. */ Cartographic.fromCartesian = function(cartesian, ellipsoid, result) { var oneOverRadii = when.defined(ellipsoid) ? ellipsoid.oneOverRadii : wgs84OneOverRadiiEx; var oneOverRadiiSquared = when.defined(ellipsoid) ? ellipsoid.oneOverRadiiSquared : wgs84OneOverRadiiSquaredEx; var centerToleranceSquared = when.defined(ellipsoid) ? ellipsoid._centerToleranceSquared : wgs84CenterToleranceSquared; if(_Math.CesiumMath.equalsEpsilon(_Math.CesiumMath.Radius, 6356752.3142451793, _Math.CesiumMath.EPSILON10)) { oneOverRadii = when.defined(ellipsoid) ? ellipsoid.oneOverRadii : wgs84OneOverRadii; oneOverRadiiSquared = when.defined(ellipsoid) ? ellipsoid.oneOverRadiiSquared : wgs84OneOverRadiiSquared; } //`cartesian is required.` is thrown from scaleToGeodeticSurface var p = scaleToGeodeticSurface(cartesian, oneOverRadii, oneOverRadiiSquared, centerToleranceSquared, cartesianToCartographicP); if (!when.defined(p)) { return undefined; } var n = Cartesian3.multiplyComponents(p, oneOverRadiiSquared, cartesianToCartographicN); n = Cartesian3.normalize(n, n); var h = Cartesian3.subtract(cartesian, p, cartesianToCartographicH); var longitude = Math.atan2(n.y, n.x); var latitude = Math.asin(n.z); var height = _Math.CesiumMath.sign(Cartesian3.dot(h, cartesian)) * Cartesian3.magnitude(h); if (!when.defined(result)) { return new Cartographic(longitude, latitude, height); } result.longitude = longitude; result.latitude = latitude; result.height = height; return result; }; /** * Creates a new Cartesian3 instance from a Cartographic input. The values in the inputted * object should be in radians. * * @param {Cartographic} cartographic Input to be converted into a Cartesian3 output. * @param {Ellipsoid} [ellipsoid=Ellipsoid.WGS84] The ellipsoid on which the position lies. * @param {Cartesian3} [result] The object onto which to store the result. * @returns {Cartesian3} The position */ Cartographic.toCartesian = function(cartographic, ellipsoid, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('cartographic', cartographic); //>>includeEnd('debug'); return Cartesian3.fromRadians(cartographic.longitude, cartographic.latitude, cartographic.height, ellipsoid, result); }; /** * Computes the distance between two points by global * * @param {Number} longitudeA The longitude, in degrees. * @param {Number} latitudeA The latitude, in degrees. * @param {Number} longitudeB The longitude, in degrees. * @param {Number} latitudeB The latitude, in degrees. */ Cartographic.sphericalDistance = function(longitudeA, latitudeA, longitudeB, latitudeB) { Check.Check.defined('longitudeA', longitudeA); Check.Check.defined('longitudeB', longitudeB); Check.Check.defined('latitudeA', latitudeA); Check.Check.defined('latitudeB', latitudeB); if(longitudeA === longitudeB && latitudeA === latitudeB){ return 0.0; } var latA = _Math.CesiumMath.toRadians(latitudeA); var latB = _Math.CesiumMath.toRadians(latitudeB); var lonA = _Math.CesiumMath.toRadians(longitudeA); var lonB = _Math.CesiumMath.toRadians(longitudeB); var a2 = lonA * lonA + latA * latA; var b2 = lonB * lonB + latB * latB; var c2 = (lonA - lonB) * (lonA - lonB) + (latA - latB) * (latA - latB); var dacos = (a2 + b2 - c2) / (2.0 * Math.sqrt(a2) * Math.sqrt(b2)); dacos = _Math.CesiumMath.clamp(dacos, -1.0, 1.0); return Math.acos(dacos) * _Math.CesiumMath.Radius; }; /** * Duplicates a Cartographic instance. * * @param {Cartographic} cartographic The cartographic to duplicate. * @param {Cartographic} [result] The object onto which to store the result. * @returns {Cartographic} The modified result parameter or a new Cartographic instance if one was not provided. (Returns undefined if cartographic is undefined) */ Cartographic.clone = function(cartographic, result) { if (!when.defined(cartographic)) { return undefined; } if (!when.defined(result)) { return new Cartographic(cartographic.longitude, cartographic.latitude, cartographic.height); } result.longitude = cartographic.longitude; result.latitude = cartographic.latitude; result.height = cartographic.height; return result; }; /** * Compares the provided cartographics componentwise and returns * <code>true</code> if they are equal, <code>false</code> otherwise. * * @param {Cartographic} [left] The first cartographic. * @param {Cartographic} [right] The second cartographic. * @returns {Boolean} <code>true</code> if left and right are equal, <code>false</code> otherwise. */ Cartographic.equals = function(left, right) { return (left === right) || ((when.defined(left)) && (when.defined(right)) && (left.longitude === right.longitude) && (left.latitude === right.latitude) && (left.height === right.height)); }; /** * Compares the provided cartographics componentwise and returns * <code>true</code> if they are within the provided epsilon, * <code>false</code> otherwise. * * @param {Cartographic} [left] The first cartographic. * @param {Cartographic} [right] The second cartographic. * @param {Number} epsilon The epsilon to use for equality testing. * @returns {Boolean} <code>true</code> if left and right are within the provided epsilon, <code>false</code> otherwise. */ Cartographic.equalsEpsilon = function(left, right, epsilon) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number('epsilon', epsilon); //>>includeEnd('debug'); return (left === right) || ((when.defined(left)) && (when.defined(right)) && (Math.abs(left.longitude - right.longitude) <= epsilon) && (Math.abs(left.latitude - right.latitude) <= epsilon) && (Math.abs(left.height - right.height) <= epsilon)); }; /** * An immutable Cartographic instance initialized to (0.0, 0.0, 0.0). * * @type {Cartographic} * @constant */ Cartographic.ZERO = Object.freeze(new Cartographic(0.0, 0.0, 0.0)); /** * Duplicates this instance. * * @param {Cartographic} [result] The object onto which to store the result. * @returns {Cartographic} The modified result parameter or a new Cartographic instance if one was not provided. */ Cartographic.prototype.clone = function(result) { return Cartographic.clone(this, result); }; /** * Compares the provided against this cartographic componentwise and returns * <code>true</code> if they are equal, <code>false</code> otherwise. * * @param {Cartographic} [right] The second cartographic. * @returns {Boolean} <code>true</code> if left and right are equal, <code>false</code> otherwise. */ Cartographic.prototype.equals = function(right) { return Cartographic.equals(this, right); }; /** * Compares the provided against this cartographic componentwise and returns * <code>true</code> if they are within the provided epsilon, * <code>false</code> otherwise. * * @param {Cartographic} [right] The second cartographic. * @param {Number} epsilon The epsilon to use for equality testing. * @returns {Boolean} <code>true</code> if left and right are within the provided epsilon, <code>false</code> otherwise. */ Cartographic.prototype.equalsEpsilon = function(right, epsilon) { return Cartographic.equalsEpsilon(this, right, epsilon); }; /** * Creates a string representing this cartographic in the format '(longitude, latitude, height)'. * * @returns {String} A string representing the provided cartographic in the format '(longitude, latitude, height)'. */ Cartographic.prototype.toString = function() { return '(' + this.longitude + ', ' + this.latitude + ', ' + this.height + ')'; }; exports.Cartesian3 = Cartesian3; exports.Cartographic = Cartographic; exports.scaleToGeodeticSurface = scaleToGeodeticSurface; });