/** * Cesium - https://github.com/CesiumGS/cesium * * Copyright 2011-2020 Cesium Contributors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * * Columbus View (Pat. Pend.) * * Portions licensed separately. * See https://github.com/CesiumGS/cesium/blob/master/LICENSE.md for full licensing details. */ define(['exports', './when-8d13db60', './Check-70bec281', './Math-61ede240'], function (exports, when, Check, _Math) { 'use strict'; /** * A 4D Cartesian point. * @alias Cartesian4 * @constructor * * @param {Number} [x=0.0] The X component. * @param {Number} [y=0.0] The Y component. * @param {Number} [z=0.0] The Z component. * @param {Number} [w=0.0] The W component. * * @see Cartesian2 * @see Cartesian3 * @see Packable */ function Cartesian4(x, y, z, w) { /** * The X component. * @type {Number} * @default 0.0 */ this.x = when.defaultValue(x, 0.0); /** * The Y component. * @type {Number} * @default 0.0 */ this.y = when.defaultValue(y, 0.0); /** * The Z component. * @type {Number} * @default 0.0 */ this.z = when.defaultValue(z, 0.0); /** * The W component. * @type {Number} * @default 0.0 */ this.w = when.defaultValue(w, 0.0); } /** * Creates a Cartesian4 instance from x, y, z and w coordinates. * * @param {Number} x The x coordinate. * @param {Number} y The y coordinate. * @param {Number} z The z coordinate. * @param {Number} w The w coordinate. * @param {Cartesian4} [result] The object onto which to store the result. * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided. */ Cartesian4.fromElements = function(x, y, z, w, result) { if (!when.defined(result)) { return new Cartesian4(x, y, z, w); } result.x = x; result.y = y; result.z = z; result.w = w; return result; }; /** * Creates a Cartesian4 instance from a {@link Color}. <code>red</code>, <code>green</code>, <code>blue</code>, * and <code>alpha</code> map to <code>x</code>, <code>y</code>, <code>z</code>, and <code>w</code>, respectively. * * @param {Color} color The source color. * @param {Cartesian4} [result] The object onto which to store the result. * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided. */ Cartesian4.fromColor = function(color, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('color', color); //>>includeEnd('debug'); if (!when.defined(result)) { return new Cartesian4(color.red, color.green, color.blue, color.alpha); } result.x = color.red; result.y = color.green; result.z = color.blue; result.w = color.alpha; return result; }; /** * Duplicates a Cartesian4 instance. * * @param {Cartesian4} cartesian The Cartesian to duplicate. * @param {Cartesian4} [result] The object onto which to store the result. * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided. (Returns undefined if cartesian is undefined) */ Cartesian4.clone = function(cartesian, result) { if (!when.defined(cartesian)) { return undefined; } if (!when.defined(result)) { return new Cartesian4(cartesian.x, cartesian.y, cartesian.z, cartesian.w); } result.x = cartesian.x; result.y = cartesian.y; result.z = cartesian.z; result.w = cartesian.w; return result; }; /** * The number of elements used to pack the object into an array. * @type {Number} */ Cartesian4.packedLength = 4; /** * Stores the provided instance into the provided array. * * @param {Cartesian4} value The value to pack. * @param {Number[]} array The array to pack into. * @param {Number} [startingIndex=0] The index into the array at which to start packing the elements. * * @returns {Number[]} The array that was packed into */ Cartesian4.pack = function(value, array, startingIndex) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('value', value); Check.Check.defined('array', array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); array[startingIndex++] = value.x; array[startingIndex++] = value.y; array[startingIndex++] = value.z; array[startingIndex] = value.w; return array; }; /** * Retrieves an instance from a packed array. * * @param {Number[]} array The packed array. * @param {Number} [startingIndex=0] The starting index of the element to be unpacked. * @param {Cartesian4} [result] The object into which to store the result. * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided. */ Cartesian4.unpack = function(array, startingIndex, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('array', array); //>>includeEnd('debug'); startingIndex = when.defaultValue(startingIndex, 0); if (!when.defined(result)) { result = new Cartesian4(); } result.x = array[startingIndex++]; result.y = array[startingIndex++]; result.z = array[startingIndex++]; result.w = array[startingIndex]; return result; }; /** * Flattens an array of Cartesian4s into and array of components. * * @param {Cartesian4[]} array The array of cartesians to pack. * @param {Number[]} [result] The array onto which to store the result. If this is a typed array, it must have array.length * 4 components, else a {@link DeveloperError} will be thrown. If it is a regular array, it will be resized to have (array.length * 4) elements. * @returns {Number[]} The packed array. */ Cartesian4.packArray = function(array, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('array', array); //>>includeEnd('debug'); var length = array.length; var resultLength = length * 4; if (!when.defined(result)) { result = new Array(resultLength); } else if (!Array.isArray(result) && result.length !== resultLength) { throw new Check.DeveloperError('If result is a typed array, it must have exactly array.length * 4 elements'); } else if (result.length !== resultLength) { result.length = resultLength; } for (var i = 0; i < length; ++i) { Cartesian4.pack(array[i], result, i * 4); } return result; }; /** * Unpacks an array of cartesian components into and array of Cartesian4s. * * @param {Number[]} array The array of components to unpack. * @param {Cartesian4[]} [result] The array onto which to store the result. * @returns {Cartesian4[]} The unpacked array. */ Cartesian4.unpackArray = function(array, result) { //>>includeStart('debug', pragmas.debug); Check.Check.defined('array', array); Check.Check.typeOf.number.greaterThanOrEquals('array.length', array.length, 4); if (array.length % 4 !== 0) { throw new Check.DeveloperError('array length must be a multiple of 4.'); } //>>includeEnd('debug'); var length = array.length; if (!when.defined(result)) { result = new Array(length / 4); } else { result.length = length / 4; } for (var i = 0; i < length; i += 4) { var index = i / 4; result[index] = Cartesian4.unpack(array, i, result[index]); } return result; }; /** * Creates a Cartesian4 from four consecutive elements in an array. * @function * * @param {Number[]} array The array whose four consecutive elements correspond to the x, y, z, and w components, respectively. * @param {Number} [startingIndex=0] The offset into the array of the first element, which corresponds to the x component. * @param {Cartesian4} [result] The object onto which to store the result. * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided. * * @example * // Create a Cartesian4 with (1.0, 2.0, 3.0, 4.0) * var v = [1.0, 2.0, 3.0, 4.0]; * var p = Cesium.Cartesian4.fromArray(v); * * // Create a Cartesian4 with (1.0, 2.0, 3.0, 4.0) using an offset into an array * var v2 = [0.0, 0.0, 1.0, 2.0, 3.0, 4.0]; * var p2 = Cesium.Cartesian4.fromArray(v2, 2); */ Cartesian4.fromArray = Cartesian4.unpack; /** * Computes the value of the maximum component for the supplied Cartesian. * * @param {Cartesian4} cartesian The cartesian to use. * @returns {Number} The value of the maximum component. */ Cartesian4.maximumComponent = function(cartesian) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('cartesian', cartesian); //>>includeEnd('debug'); return Math.max(cartesian.x, cartesian.y, cartesian.z, cartesian.w); }; /** * Computes the value of the minimum component for the supplied Cartesian. * * @param {Cartesian4} cartesian The cartesian to use. * @returns {Number} The value of the minimum component. */ Cartesian4.minimumComponent = function(cartesian) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('cartesian', cartesian); //>>includeEnd('debug'); return Math.min(cartesian.x, cartesian.y, cartesian.z, cartesian.w); }; /** * Compares two Cartesians and computes a Cartesian which contains the minimum components of the supplied Cartesians. * * @param {Cartesian4} first A cartesian to compare. * @param {Cartesian4} second A cartesian to compare. * @param {Cartesian4} result The object into which to store the result. * @returns {Cartesian4} A cartesian with the minimum components. */ Cartesian4.minimumByComponent = function(first, second, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('first', first); Check.Check.typeOf.object('second', second); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = Math.min(first.x, second.x); result.y = Math.min(first.y, second.y); result.z = Math.min(first.z, second.z); result.w = Math.min(first.w, second.w); return result; }; /** * Compares two Cartesians and computes a Cartesian which contains the maximum components of the supplied Cartesians. * * @param {Cartesian4} first A cartesian to compare. * @param {Cartesian4} second A cartesian to compare. * @param {Cartesian4} result The object into which to store the result. * @returns {Cartesian4} A cartesian with the maximum components. */ Cartesian4.maximumByComponent = function(first, second, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('first', first); Check.Check.typeOf.object('second', second); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = Math.max(first.x, second.x); result.y = Math.max(first.y, second.y); result.z = Math.max(first.z, second.z); result.w = Math.max(first.w, second.w); return result; }; /** * Computes the provided Cartesian's squared magnitude. * * @param {Cartesian4} cartesian The Cartesian instance whose squared magnitude is to be computed. * @returns {Number} The squared magnitude. */ Cartesian4.magnitudeSquared = function(cartesian) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('cartesian', cartesian); //>>includeEnd('debug'); return cartesian.x * cartesian.x + cartesian.y * cartesian.y + cartesian.z * cartesian.z + cartesian.w * cartesian.w; }; /** * Computes the Cartesian's magnitude (length). * * @param {Cartesian4} cartesian The Cartesian instance whose magnitude is to be computed. * @returns {Number} The magnitude. */ Cartesian4.magnitude = function(cartesian) { return Math.sqrt(Cartesian4.magnitudeSquared(cartesian)); }; var distanceScratch = new Cartesian4(); /** * Computes the 4-space distance between two points. * * @param {Cartesian4} left The first point to compute the distance from. * @param {Cartesian4} right The second point to compute the distance to. * @returns {Number} The distance between two points. * * @example * // Returns 1.0 * var d = Cesium.Cartesian4.distance( * new Cesium.Cartesian4(1.0, 0.0, 0.0, 0.0), * new Cesium.Cartesian4(2.0, 0.0, 0.0, 0.0)); */ Cartesian4.distance = function(left, right) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); //>>includeEnd('debug'); Cartesian4.subtract(left, right, distanceScratch); return Cartesian4.magnitude(distanceScratch); }; /** * Computes the squared distance between two points. Comparing squared distances * using this function is more efficient than comparing distances using {@link Cartesian4#distance}. * * @param {Cartesian4} left The first point to compute the distance from. * @param {Cartesian4} right The second point to compute the distance to. * @returns {Number} The distance between two points. * * @example * // Returns 4.0, not 2.0 * var d = Cesium.Cartesian4.distance( * new Cesium.Cartesian4(1.0, 0.0, 0.0, 0.0), * new Cesium.Cartesian4(3.0, 0.0, 0.0, 0.0)); */ Cartesian4.distanceSquared = function(left, right) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); //>>includeEnd('debug'); Cartesian4.subtract(left, right, distanceScratch); return Cartesian4.magnitudeSquared(distanceScratch); }; /** * Computes the normalized form of the supplied Cartesian. * * @param {Cartesian4} cartesian The Cartesian to be normalized. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Cartesian4.normalize = function(cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('cartesian', cartesian); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var magnitude = Cartesian4.magnitude(cartesian); result.x = cartesian.x / magnitude; result.y = cartesian.y / magnitude; result.z = cartesian.z / magnitude; result.w = cartesian.w / magnitude; //>>includeStart('debug', pragmas.debug); if (isNaN(result.x) || isNaN(result.y) || isNaN(result.z) || isNaN(result.w)) { throw new Check.DeveloperError('normalized result is not a number'); } //>>includeEnd('debug'); return result; }; /** * Computes the dot (scalar) product of two Cartesians. * * @param {Cartesian4} left The first Cartesian. * @param {Cartesian4} right The second Cartesian. * @returns {Number} The dot product. */ Cartesian4.dot = function(left, right) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); //>>includeEnd('debug'); return left.x * right.x + left.y * right.y + left.z * right.z + left.w * right.w; }; /** * Computes the componentwise product of two Cartesians. * * @param {Cartesian4} left The first Cartesian. * @param {Cartesian4} right The second Cartesian. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Cartesian4.multiplyComponents = function(left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = left.x * right.x; result.y = left.y * right.y; result.z = left.z * right.z; result.w = left.w * right.w; return result; }; /** * Computes the componentwise quotient of two Cartesians. * * @param {Cartesian4} left The first Cartesian. * @param {Cartesian4} right The second Cartesian. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Cartesian4.divideComponents = function(left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = left.x / right.x; result.y = left.y / right.y; result.z = left.z / right.z; result.w = left.w / right.w; return result; }; /** * Computes the componentwise sum of two Cartesians. * * @param {Cartesian4} left The first Cartesian. * @param {Cartesian4} right The second Cartesian. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Cartesian4.add = function(left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = left.x + right.x; result.y = left.y + right.y; result.z = left.z + right.z; result.w = left.w + right.w; return result; }; /** * Computes the componentwise difference of two Cartesians. * * @param {Cartesian4} left The first Cartesian. * @param {Cartesian4} right The second Cartesian. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Cartesian4.subtract = function(left, right, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('left', left); Check.Check.typeOf.object('right', right); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = left.x - right.x; result.y = left.y - right.y; result.z = left.z - right.z; result.w = left.w - right.w; return result; }; /** * Multiplies the provided Cartesian componentwise by the provided scalar. * * @param {Cartesian4} cartesian The Cartesian to be scaled. * @param {Number} scalar The scalar to multiply with. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Cartesian4.multiplyByScalar = function(cartesian, scalar, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('cartesian', cartesian); Check.Check.typeOf.number('scalar', scalar); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = cartesian.x * scalar; result.y = cartesian.y * scalar; result.z = cartesian.z * scalar; result.w = cartesian.w * scalar; return result; }; /** * Divides the provided Cartesian componentwise by the provided scalar. * * @param {Cartesian4} cartesian The Cartesian to be divided. * @param {Number} scalar The scalar to divide by. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Cartesian4.divideByScalar = function(cartesian, scalar, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('cartesian', cartesian); Check.Check.typeOf.number('scalar', scalar); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = cartesian.x / scalar; result.y = cartesian.y / scalar; result.z = cartesian.z / scalar; result.w = cartesian.w / scalar; return result; }; /** * Negates the provided Cartesian. * * @param {Cartesian4} cartesian The Cartesian to be negated. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Cartesian4.negate = function(cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('cartesian', cartesian); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = -cartesian.x; result.y = -cartesian.y; result.z = -cartesian.z; result.w = -cartesian.w; return result; }; /** * Computes the absolute value of the provided Cartesian. * * @param {Cartesian4} cartesian The Cartesian whose absolute value is to be computed. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Cartesian4.abs = function(cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('cartesian', cartesian); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); result.x = Math.abs(cartesian.x); result.y = Math.abs(cartesian.y); result.z = Math.abs(cartesian.z); result.w = Math.abs(cartesian.w); return result; }; var lerpScratch = new Cartesian4(); /** * Computes the linear interpolation or extrapolation at t using the provided cartesians. * * @param {Cartesian4} start The value corresponding to t at 0.0. * @param {Cartesian4}end The value corresponding to t at 1.0. * @param {Number} t The point along t at which to interpolate. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The modified result parameter. */ Cartesian4.lerp = function(start, end, t, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('start', start); Check.Check.typeOf.object('end', end); Check.Check.typeOf.number('t', t); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); Cartesian4.multiplyByScalar(end, t, lerpScratch); result = Cartesian4.multiplyByScalar(start, 1.0 - t, result); return Cartesian4.add(lerpScratch, result, result); }; var mostOrthogonalAxisScratch = new Cartesian4(); /** * Returns the axis that is most orthogonal to the provided Cartesian. * * @param {Cartesian4} cartesian The Cartesian on which to find the most orthogonal axis. * @param {Cartesian4} result The object onto which to store the result. * @returns {Cartesian4} The most orthogonal axis. */ Cartesian4.mostOrthogonalAxis = function(cartesian, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('cartesian', cartesian); Check.Check.typeOf.object('result', result); //>>includeEnd('debug'); var f = Cartesian4.normalize(cartesian, mostOrthogonalAxisScratch); Cartesian4.abs(f, f); if (f.x <= f.y) { if (f.x <= f.z) { if (f.x <= f.w) { result = Cartesian4.clone(Cartesian4.UNIT_X, result); } else { result = Cartesian4.clone(Cartesian4.UNIT_W, result); } } else if (f.z <= f.w) { result = Cartesian4.clone(Cartesian4.UNIT_Z, result); } else { result = Cartesian4.clone(Cartesian4.UNIT_W, result); } } else if (f.y <= f.z) { if (f.y <= f.w) { result = Cartesian4.clone(Cartesian4.UNIT_Y, result); } else { result = Cartesian4.clone(Cartesian4.UNIT_W, result); } } else if (f.z <= f.w) { result = Cartesian4.clone(Cartesian4.UNIT_Z, result); } else { result = Cartesian4.clone(Cartesian4.UNIT_W, result); } return result; }; /** * Compares the provided Cartesians componentwise and returns * <code>true</code> if they are equal, <code>false</code> otherwise. * * @param {Cartesian4} [left] The first Cartesian. * @param {Cartesian4} [right] The second Cartesian. * @returns {Boolean} <code>true</code> if left and right are equal, <code>false</code> otherwise. */ Cartesian4.equals = function(left, right) { return (left === right) || ((when.defined(left)) && (when.defined(right)) && (left.x === right.x) && (left.y === right.y) && (left.z === right.z) && (left.w === right.w)); }; /** * @private */ Cartesian4.equalsArray = function(cartesian, array, offset) { return cartesian.x === array[offset] && cartesian.y === array[offset + 1] && cartesian.z === array[offset + 2] && cartesian.w === array[offset + 3]; }; /** * Compares the provided Cartesians componentwise and returns * <code>true</code> if they pass an absolute or relative tolerance test, * <code>false</code> otherwise. * * @param {Cartesian4} [left] The first Cartesian. * @param {Cartesian4} [right] The second Cartesian. * @param {Number} relativeEpsilon The relative epsilon tolerance to use for equality testing. * @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing. * @returns {Boolean} <code>true</code> if left and right are within the provided epsilon, <code>false</code> otherwise. */ Cartesian4.equalsEpsilon = function(left, right, relativeEpsilon, absoluteEpsilon) { return (left === right) || (when.defined(left) && when.defined(right) && _Math.CesiumMath.equalsEpsilon(left.x, right.x, relativeEpsilon, absoluteEpsilon) && _Math.CesiumMath.equalsEpsilon(left.y, right.y, relativeEpsilon, absoluteEpsilon) && _Math.CesiumMath.equalsEpsilon(left.z, right.z, relativeEpsilon, absoluteEpsilon) && _Math.CesiumMath.equalsEpsilon(left.w, right.w, relativeEpsilon, absoluteEpsilon)); }; /** * An immutable Cartesian4 instance initialized to (0.0, 0.0, 0.0, 0.0). * * @type {Cartesian4} * @constant */ Cartesian4.ZERO = Object.freeze(new Cartesian4(0.0, 0.0, 0.0, 0.0)); /** * An immutable Cartesian4 instance initialized to (1.0, 0.0, 0.0, 0.0). * * @type {Cartesian4} * @constant */ Cartesian4.UNIT_X = Object.freeze(new Cartesian4(1.0, 0.0, 0.0, 0.0)); /** * An immutable Cartesian4 instance initialized to (0.0, 1.0, 0.0, 0.0). * * @type {Cartesian4} * @constant */ Cartesian4.UNIT_Y = Object.freeze(new Cartesian4(0.0, 1.0, 0.0, 0.0)); /** * An immutable Cartesian4 instance initialized to (0.0, 0.0, 1.0, 0.0). * * @type {Cartesian4} * @constant */ Cartesian4.UNIT_Z = Object.freeze(new Cartesian4(0.0, 0.0, 1.0, 0.0)); /** * An immutable Cartesian4 instance initialized to (0.0, 0.0, 0.0, 1.0). * * @type {Cartesian4} * @constant */ Cartesian4.UNIT_W = Object.freeze(new Cartesian4(0.0, 0.0, 0.0, 1.0)); /** * Duplicates this Cartesian4 instance. * * @param {Cartesian4} [result] The object onto which to store the result. * @returns {Cartesian4} The modified result parameter or a new Cartesian4 instance if one was not provided. */ Cartesian4.prototype.clone = function(result) { return Cartesian4.clone(this, result); }; /** * Compares this Cartesian against the provided Cartesian componentwise and returns * <code>true</code> if they are equal, <code>false</code> otherwise. * * @param {Cartesian4} [right] The right hand side Cartesian. * @returns {Boolean} <code>true</code> if they are equal, <code>false</code> otherwise. */ Cartesian4.prototype.equals = function(right) { return Cartesian4.equals(this, right); }; /** * Compares this Cartesian against the provided Cartesian componentwise and returns * <code>true</code> if they pass an absolute or relative tolerance test, * <code>false</code> otherwise. * * @param {Cartesian4} [right] The right hand side Cartesian. * @param {Number} relativeEpsilon The relative epsilon tolerance to use for equality testing. * @param {Number} [absoluteEpsilon=relativeEpsilon] The absolute epsilon tolerance to use for equality testing. * @returns {Boolean} <code>true</code> if they are within the provided epsilon, <code>false</code> otherwise. */ Cartesian4.prototype.equalsEpsilon = function(right, relativeEpsilon, absoluteEpsilon) { return Cartesian4.equalsEpsilon(this, right, relativeEpsilon, absoluteEpsilon); }; /** * Creates a string representing this Cartesian in the format '(x, y, z, w)'. * * @returns {String} A string representing the provided Cartesian in the format '(x, y, z, w)'. */ Cartesian4.prototype.toString = function() { return '(' + this.x + ', ' + this.y + ', ' + this.z + ', ' + this.w + ')'; }; var scratchFloatArray = new Float32Array(1); var SHIFT_LEFT_8 = 256.0; var SHIFT_LEFT_16 = 65536.0; var SHIFT_LEFT_24 = 16777216.0; var SHIFT_RIGHT_8 = 1.0 / SHIFT_LEFT_8; var SHIFT_RIGHT_16 = 1.0 / SHIFT_LEFT_16; var SHIFT_RIGHT_24 = 1.0 / SHIFT_LEFT_24; var BIAS = 38.0; /** * Packs an arbitrary floating point value to 4 values representable using uint8. * * @param {Number} value A floating point number * @param {Cartesian4} [result] The Cartesian4 that will contain the packed float. * @returns {Cartesian4} A Cartesian4 representing the float packed to values in x, y, z, and w. */ Cartesian4.packFloat = function(value, result) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.number('value', value); //>>includeEnd('debug'); if (!when.defined(result)) { result = new Cartesian4(); } // Force the value to 32 bit precision scratchFloatArray[0] = value; value = scratchFloatArray[0]; if (value === 0.0) { return Cartesian4.clone(Cartesian4.ZERO, result); } var sign = value < 0.0 ? 1.0 : 0.0; var exponent; if (!isFinite(value)) { value = 0.1; exponent = BIAS; } else { value = Math.abs(value); exponent = Math.floor(_Math.CesiumMath.logBase(value, 10)) + 1.0; value = value / Math.pow(10.0, exponent); } var temp = value * SHIFT_LEFT_8; result.x = Math.floor(temp); temp = (temp - result.x) * SHIFT_LEFT_8; result.y = Math.floor(temp); temp = (temp - result.y) * SHIFT_LEFT_8; result.z = Math.floor(temp); result.w = (exponent + BIAS) * 2.0 + sign; return result; }; /** * Unpacks a float packed using Cartesian4.packFloat. * * @param {Cartesian4} packedFloat A Cartesian4 containing a float packed to 4 values representable using uint8. * @returns {Number} The unpacked float. * @private */ Cartesian4.unpackFloat = function(packedFloat) { //>>includeStart('debug', pragmas.debug); Check.Check.typeOf.object('packedFloat', packedFloat); //>>includeEnd('debug'); var temp = packedFloat.w / 2.0; var exponent = Math.floor(temp); var sign = (temp - exponent) * 2.0; exponent = exponent - BIAS; sign = sign * 2.0 - 1.0; sign = -sign; if (exponent >= BIAS) { return sign < 0.0 ? Number.NEGATIVE_INFINITY : Number.POSITIVE_INFINITY; } var unpacked = sign * packedFloat.x * SHIFT_RIGHT_8; unpacked += sign * packedFloat.y * SHIFT_RIGHT_16; unpacked += sign * packedFloat.z * SHIFT_RIGHT_24; return unpacked * Math.pow(10.0, exponent); }; exports.Cartesian4 = Cartesian4; });