// OpenVPN -- An application to securely tunnel IP networks // over a single port, with support for SSL/TLS-based // session authentication and key exchange, // packet encryption, packet authentication, and // packet compression. // // Copyright (C) 2012-2020 OpenVPN Inc. // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Affero General Public License Version 3 // as published by the Free Software Foundation. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Affero General Public License for more details. // // You should have received a copy of the GNU Affero General Public License // along with this program in the COPYING file. // If not, see <http://www.gnu.org/licenses/>. // OpenVPN AEAD data channel interface #ifndef OPENVPN_CRYPTO_CRYPTO_AEAD_H #define OPENVPN_CRYPTO_CRYPTO_AEAD_H #include <cstring> // for std::memcpy, std::memset #include <openvpn/common/size.hpp> #include <openvpn/common/exception.hpp> #include <openvpn/buffer/buffer.hpp> #include <openvpn/frame/frame.hpp> #include <openvpn/crypto/static_key.hpp> #include <openvpn/crypto/packet_id.hpp> #include <openvpn/log/sessionstats.hpp> #include <openvpn/crypto/cryptodc.hpp> // Sample AES-GCM head: // 48000001 00000005 7e7046bd 444a7e28 cc6387b1 64a4d6c1 380275a... // [ OP32 ] [seq # ] [ auth tag ] [ payload ... ] // [4-byte // IV head] namespace openvpn { namespace AEAD { OPENVPN_EXCEPTION(aead_error); /** * Check if a specific algorithm is support or not in the underlying * crypto library */ template <typename CRYPTO_API> static inline bool is_algorithm_supported(const CryptoAlgs::Type cipher) { return CRYPTO_API::CipherContextAEAD::is_supported(cipher); } template <typename CRYPTO_API> class Crypto : public CryptoDCInstance { class Nonce { public: Nonce() { static_assert(4 + CRYPTO_API::CipherContextAEAD::IV_LEN == sizeof(data), "AEAD IV_LEN inconsistency"); ad_op32 = false; std::memset(data, 0, sizeof(data)); } // setup void set_tail(const StaticKey& sk) { if (sk.size() < 8) throw aead_error("insufficient key material for nonce tail"); std::memcpy(data + 8, sk.data(), 8); } // for encrypt Nonce(const Nonce& ref, PacketIDSend& pid_send, const PacketID::time_t now, const unsigned char *op32) { std::memcpy(data, ref.data, sizeof(data)); Buffer buf(data + 4, 4, false); pid_send.write_next(buf, false, now); if (op32) { ad_op32 = true; std::memcpy(data, op32, 4); } else ad_op32 = false; } // for encrypt void prepend_ad(Buffer& buf) const { buf.prepend(data + 4, 4); } // for decrypt Nonce(const Nonce& ref, Buffer& buf, const unsigned char *op32) { std::memcpy(data, ref.data, sizeof(data)); buf.read(data + 4, 4); if (op32) { ad_op32 = true; std::memcpy(data, op32, 4); } else ad_op32 = false; } // for decrypt bool verify_packet_id(PacketIDReceive& pid_recv, const PacketID::time_t now) { Buffer buf(data + 4, 4, true); const PacketID pid = pid_recv.read_next(buf); return pid_recv.test_add(pid, now, true); // verify packet ID } const unsigned char *iv() const { return data + 4; } const unsigned char *ad() const { return ad_op32 ? data : data + 4; } const size_t ad_len() const { return ad_op32 ? 8 : 4; } private: bool ad_op32; // true if AD includes op32 opcode // Sample data: // [ OP32 (optional) ] [ pkt ID ] [ nonce tail ] // [ 48 00 00 01 ] [ 00 00 00 05 ] [ 7f 45 64 db 33 5b 6c 29 ] unsigned char data[16]; }; struct Encrypt { typename CRYPTO_API::CipherContextAEAD impl; Nonce nonce; PacketIDSend pid_send; BufferAllocated work; }; struct Decrypt { typename CRYPTO_API::CipherContextAEAD impl; Nonce nonce; PacketIDReceive pid_recv; BufferAllocated work; }; public: typedef CryptoDCInstance Base; Crypto(const CryptoAlgs::Type cipher_arg, const Frame::Ptr& frame_arg, const SessionStats::Ptr& stats_arg) : cipher(cipher_arg), frame(frame_arg), stats(stats_arg) { } // Encrypt/Decrypt // returns true if packet ID is close to wrapping virtual bool encrypt(BufferAllocated& buf, const PacketID::time_t now, const unsigned char *op32) { // only process non-null packets if (buf.size()) { // build nonce/IV/AD Nonce nonce(e.nonce, e.pid_send, now, op32); if (CRYPTO_API::CipherContextAEAD::SUPPORTS_IN_PLACE_ENCRYPT) { unsigned char *data = buf.data(); const size_t size = buf.size(); // alloc auth tag in buffer unsigned char *auth_tag = buf.prepend_alloc(CRYPTO_API::CipherContextAEAD::AUTH_TAG_LEN); // encrypt in-place e.impl.encrypt(data, data, size, nonce.iv(), auth_tag, nonce.ad(), nonce.ad_len()); } else { // encrypt to work buf frame->prepare(Frame::ENCRYPT_WORK, e.work); if (e.work.max_size() < buf.size()) throw aead_error("encrypt work buffer too small"); // alloc auth tag in buffer unsigned char *auth_tag = e.work.prepend_alloc(CRYPTO_API::CipherContextAEAD::AUTH_TAG_LEN); // prepare output buffer unsigned char *work_data = e.work.write_alloc(buf.size()); // encrypt e.impl.encrypt(buf.data(), work_data, buf.size(), nonce.iv(), auth_tag, nonce.ad(), nonce.ad_len()); buf.swap(e.work); } // prepend additional data nonce.prepend_ad(buf); } return e.pid_send.wrap_warning(); } virtual Error::Type decrypt(BufferAllocated& buf, const PacketID::time_t now, const unsigned char *op32) { // only process non-null packets if (buf.size()) { // get nonce/IV/AD Nonce nonce(d.nonce, buf, op32); // get auth tag unsigned char *auth_tag = buf.read_alloc(CRYPTO_API::CipherContextAEAD::AUTH_TAG_LEN); // initialize work buffer frame->prepare(Frame::DECRYPT_WORK, d.work); if (d.work.max_size() < buf.size()) throw aead_error("decrypt work buffer too small"); // decrypt from buf -> work if (!d.impl.decrypt(buf.c_data(), d.work.data(), buf.size(), nonce.iv(), auth_tag, nonce.ad(), nonce.ad_len())) { buf.reset_size(); return Error::DECRYPT_ERROR; } d.work.set_size(buf.size()); // verify packet ID if (!nonce.verify_packet_id(d.pid_recv, now)) { buf.reset_size(); return Error::REPLAY_ERROR; } // return cleartext result in buf buf.swap(d.work); } return Error::SUCCESS; } // Initialization virtual void init_cipher(StaticKey&& encrypt_key, StaticKey&& decrypt_key) { e.impl.init(cipher, encrypt_key.data(), encrypt_key.size(), CRYPTO_API::CipherContextAEAD::ENCRYPT); d.impl.init(cipher, decrypt_key.data(), decrypt_key.size(), CRYPTO_API::CipherContextAEAD::DECRYPT); } virtual void init_hmac(StaticKey&& encrypt_key, StaticKey&& decrypt_key) { e.nonce.set_tail(encrypt_key); d.nonce.set_tail(decrypt_key); } virtual void init_pid(const int send_form, const int recv_mode, const int recv_form, const char *recv_name, const int recv_unit, const SessionStats::Ptr& recv_stats_arg) { e.pid_send.init(send_form); d.pid_recv.init(recv_mode, recv_form, recv_name, recv_unit, recv_stats_arg); } // Indicate whether or not cipher/digest is defined virtual unsigned int defined() const { unsigned int ret = CRYPTO_DEFINED; // AEAD mode doesn't use HMAC, but we still indicate HMAC_DEFINED // because we want to use the HMAC keying material for the AEAD nonce tail. if (CryptoAlgs::defined(cipher)) ret |= (CIPHER_DEFINED|HMAC_DEFINED); return ret; } virtual bool consider_compression(const CompressContext& comp_ctx) { return true; } // Rekeying virtual void rekey(const typename Base::RekeyType type) { } private: CryptoAlgs::Type cipher; Frame::Ptr frame; SessionStats::Ptr stats; Encrypt e; Decrypt d; }; template <typename CRYPTO_API> class CryptoContext : public CryptoDCContext { public: typedef RCPtr<CryptoContext> Ptr; CryptoContext(const CryptoAlgs::Type cipher_arg, const CryptoAlgs::KeyDerivation key_method, const Frame::Ptr& frame_arg, const SessionStats::Ptr& stats_arg) : CryptoDCContext(key_method), cipher(CryptoAlgs::legal_dc_cipher(cipher_arg)), frame(frame_arg), stats(stats_arg) { } virtual CryptoDCInstance::Ptr new_obj(const unsigned int key_id) { return new Crypto<CRYPTO_API>(cipher, frame, stats); } // cipher/HMAC/key info virtual Info crypto_info() { Info ret; ret.cipher_alg = cipher; ret.hmac_alg = CryptoAlgs::NONE; ret.key_derivation = key_derivation; return ret; } // Info for ProtoContext::link_mtu_adjust virtual size_t encap_overhead() const { return CRYPTO_API::CipherContextAEAD::AUTH_TAG_LEN; } private: CryptoAlgs::Type cipher; Frame::Ptr frame; SessionStats::Ptr stats; }; } } #endif