// OpenVPN -- An application to securely tunnel IP networks // over a single port, with support for SSL/TLS-based // session authentication and key exchange, // packet encryption, packet authentication, and // packet compression. // // Copyright (C) 2012-2020 OpenVPN Inc. // // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU Affero General Public License Version 3 // as published by the Free Software Foundation. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Affero General Public License for more details. // // You should have received a copy of the GNU Affero General Public License // along with this program in the COPYING file. // If not, see <http://www.gnu.org/licenses/>. #ifndef OPENVPN_COMMON_PTHREADCOND_H #define OPENVPN_COMMON_PTHREADCOND_H #include <mutex> #include <condition_variable> #include <chrono> #include <openvpn/common/stop.hpp> namespace openvpn { // Barrier class that is useful in cases where all threads // need to reach a known point before executing some action. // Note that this barrier implementation is // constructed using C++11 condition variables. class PThreadBarrier { enum State { UNSIGNALED=0, // initial state SIGNALED, // signal() was called ERROR_THROWN, // error() was called }; public: // status return from wait() enum Status { SUCCESS=0, // successful CHOSEN_ONE, // successful and chosen (only one thread is chosen) TIMEOUT, // timeout ERROR, // at least one thread called error() }; PThreadBarrier(const int initial_limit = -1) : stop(nullptr), limit(initial_limit) { } PThreadBarrier(Stop* stop_arg, const int initial_limit = -1) : stop(stop_arg), limit(initial_limit) { } // All callers will increment count and block until // count == limit. CHOSEN_ONE will be returned to // the first caller to reach limit. This caller can // then release all the other callers by calling // signal(). int wait(const unsigned int seconds) { // allow asynchronous stop Stop::Scope stop_scope(stop, [this]() { error(); }); bool timeout = false; int ret; std::unique_lock<std::mutex> lock(mutex); const unsigned int c = ++count; while (state == UNSIGNALED && (limit < 0 || c < static_cast<unsigned int>(limit)) && !timeout) timeout = (cv.wait_for(lock, std::chrono::seconds(seconds)) == std::cv_status::timeout); if (timeout) ret = TIMEOUT; else if (state == ERROR_THROWN) ret = ERROR; else if (state == UNSIGNALED && !chosen) { ret = CHOSEN_ONE; chosen = true; } else ret = SUCCESS; return ret; } void set_limit(const int new_limit) { std::unique_lock<std::mutex> lock(mutex); limit = new_limit; cv.notify_all(); } // Generally, only the CHOSEN_ONE calls signal() after its work // is complete, to allow the other threads to pass the barrier. void signal() { signal_(SIGNALED); } // Causes all threads waiting on wait() (and those which call wait() // in the future) to exit with ERROR status. void error() { signal_(ERROR_THROWN); } private: void signal_(const State newstate) { std::unique_lock<std::mutex> lock(mutex); if (state == UNSIGNALED) { state = newstate; cv.notify_all(); } } std::mutex mutex; std::condition_variable cv; Stop* stop; State state{UNSIGNALED}; bool chosen = false; int count = 0; int limit; }; } #endif